CN102449505B - 测定辐射方向性的组合物及方法 - Google Patents

测定辐射方向性的组合物及方法 Download PDF

Info

Publication number
CN102449505B
CN102449505B CN201080020177.8A CN201080020177A CN102449505B CN 102449505 B CN102449505 B CN 102449505B CN 201080020177 A CN201080020177 A CN 201080020177A CN 102449505 B CN102449505 B CN 102449505B
Authority
CN
China
Prior art keywords
chamber
mensuration
hole
radiation
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080020177.8A
Other languages
English (en)
Other versions
CN102449505A (zh
Inventor
R·P·塔里雅克汗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102449505A publication Critical patent/CN102449505A/zh
Application granted granted Critical
Publication of CN102449505B publication Critical patent/CN102449505B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T5/00Recording of movements or tracks of particles; Processing or analysis of such tracks
    • G01T5/06Bubble chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/12Calorimetric dosimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明揭示一种测定辐射方向性的方法,该方法包括将靠近辐射源的张拉的亚稳态流体液体体积分割为多个区段,测定各自区段的反向区段比率,并根据该多个区段的反向区段比率测定辐射的方向性。该方法还包括通过在张拉压力的协助下拉长的气泡形状来测定入射辐射的方向性的方法,该些气泡形状指向与张拉的亚稳态流体检测系统中的核子相互作用的辐射粒子的方向。本发明还揭示了一种能够实施上述这些方法的设备。

Description

测定辐射方向性的组合物及方法
优先权
本申请主张2009年4月30日提交的美国临时专利申请第61/174,159号的优先权,该申请的全部内容以引用的方式纳入本申请。
技术领域
本发明涉及一种测定辐射方向性的方法。尤其是涉及一种使用张拉的亚稳态流体检测系统测定辐射方向性的方法。受美国政府支持作出的发明创造
本发明得到政府支持,是在国防高级研究计划署授予的第HR0011-05-C-0141号合同下作出的。政府对本发明享受一定权利。
背景技术
人的感观无法感知辐射。已经存在多种手持式和实验室用辐射检测和测量仪器,例如盖格计数器。然而,这些设备不能提供关于入射辐射的方向性的信息。
发明内容
本发明提供测定入射辐射方向性的组合物和方法。
有一种测定辐射方向性的方法,其涉及将一腔室内的张拉的亚稳态流体体积分割为多个区段,将该流体放置于辐射源附近,并检测腔室内多个区域或区段中的发生的辐射诱导空穴成核事件(cavitation nucleation events),测定各个区段内反向区段的空穴数量比率,并根据上述多个区段内反向区段空穴比率测定辐射源的方向性。
已经揭示了一种给出辐射源方向的信息的中子检测系统。可以使用一种声学张拉的亚稳态流体检测(ATMFD)系统检测辐射来源的方向,而不是依赖无法给出检测到的辐射来源信息的中子或其他辐射(例如光子)的相互作用。
尽管ATMFD可用,但中子/辐射诱导空穴事件的发生概率是流体中张拉的负压力与中子/辐射通量的函数。在一个依赖于声学张拉的亚稳态流体的实施例中,压力曲线几乎与水平面呈轴对称,这样所有距离中心等距的点都具有基本上相同的负压。在该系统中,空穴概率是中子/辐射通量的函数。由于来自辐射源的中子/辐射通量随着距离、下散射(down scattering)的角度和吸收而降低,距离辐射源最近侧面区段具有更高的检测概率。借助对空穴事件样本集的位置的检测,就可通过观察空穴事件发生位置的不平衡测定方向信息。
可通过记录产生的空穴诱导的冲击波到达检测壁上不同位置的时间来测定中子/辐射检测成核地点的位置。为了测定空穴诱导的冲击波的辐射源的位置,检测器中可以使用任意数量的换能器。只要能够获得方向信息,可以使用任何适宜数量的换能器。例如,4个(外径大约为7mm)压电式换能器可用来检测由空穴事件产生的冲击波的到达。可在一个平面上设置至少2个,优选3个或更多的信号检测换能器,并在该平面之外设置一个或更多的信号检测换能器。然后可对来自这4个换能器的信号进行处理,得到需要的方向的信息。此外,还可通过在空穴事件发生期间或发生之后监测气泡的形状来获取方向的信息。这种由中子/辐射轰击ATMFD液体的声学张拉压力场中的原子核而产生的空穴气泡自身优先地以近似椭圆的形状沿着入射辐射的方向延伸。
本发明中描述的优选ATMFD系统具有以下能力:
●在8个数量级上检测SNM中子,
●检测阿尔法粒子,
●保持实质上对伽马光子的完全不灵敏性,
●以大约90%的固有效率工作,
●提供入射辐射的实时方向的信息。
已经用Pu(钚)基中子—伽马和光子光源进行了基准研究和合格性研究。本发明提供模型与实验框架,并演示ATMFD系统的操作。
附图简要说明
图1提供了ATMFD共振腔的示意图,(a)具有多个与中空圆柱状换能器设置的碟式换能器,或(b)单独与多个换能器间隔设置。
图2是在大约3.5W和10W时的腔内压力分布示意图。
图3是MCNP输入台的不按比例的几何示意图。
图4是长靶距丙酮和氟里昂-113中子通量比率的示意图。
图5是信号处理前的冲击脉冲的屏幕快照示意图。垂直刻度约为500mV/div。水平刻度约为100ms/div。
图6是方向的信息分析的冲击脉冲的屏幕快照示意图。垂直刻度约为500mV/div。水平刻度约为5μs/div。
图7是方向性自动化的实验设置的示意图。
图8是利用离开腔室中轴线大约-20.3cm并与Mic 1和Mic3成一条直线的PuBe源的检测事件位置的轴向剖视图。
图9是测定源方向±30度以内的示意图。实验结果与MCNP模拟的比较。
图10是大约为4.5W时从rz平面上看去所有记录的中子检测事件与COMSOL模拟重叠的示意图。
图11是大约为4.5W时(a)和大约为10W时(b)腔内压力分布示意图。
图12是不按比例的MCNP输入的几何形状的示意图。
图13是空穴冲击波的示波器描迹示意图。第一信号的垂直刻度大约为20mV,第二信号大约为200mV。水平刻度大约为50ms/div。
图14是经过方向的信息分析的冲击脉冲屏幕截图示意图。
图15是各个换能器在不同触发级别上记录的触发率示意图。
图16是方向性自动化的实验设置示意图。
图17是使用4通道100MHz、100MSa/s示波器人工采集的数据的示意图。
图18是使用距离腔室中轴线-35.5cm并与Mic 1和Mic 3在一条直线上PuBe源的空穴事件的位置示意图。
图19是使用距离腔室中轴线+35.5cm并与Mic 1和Mic 3在一条直线上PuBe源的空穴事件的位置示意图。
图20是在xz平面上所见到的所有记录下来的空穴事件的示意图。使用Mics 1和Mics 3采集数据,源在x-轴上距腔室中心约-35.5cm和35.5cm。
图21是空穴事件的径向分布示意图,分为两个部分(距源最近和距源最远);(a)x-轴上源距离腔室中心约-35.5cm处取得的数据;(b)x-轴上源距离腔室中心约35.5cm处取得的数据
图22是ATMFD中一个指向入射辐射源(这里的中子来自Pu-Be同位素源)的拉长气泡的照片。
具体实施方式
在一个方法中,可由张拉亚稳态流体状态提供检测核粒子的能力,张拉亚稳态流体状态可通过特制的声学系统获得,例如声学张拉亚稳态流体检测器(ATMFD)。在张拉亚稳态流体中的辐射检测可通过由毫微微规模(femtoscale)的核子相互作用的宏观机械表现实现。入射核粒子可与动力学张拉亚稳流体相互作用,其中的分子间键足够脆弱,使得离子化核子的反冲产生纳米级蒸气空穴,直至该空穴增大至可见级别。离子化核子优先靠近入射辐射形成,从而能够首次提供确定入射辐射方向性的信息。
本发明带来的进步在于:更大的核粒子范围的检测,在超过8个数量级的能量范围内对中子进行检测,将固有检测效率提高到90%以上,以及较先前所及的可能性更加能够确定入射辐射的方向的信息。在一实例中,本发明提供一种组合物和一种方法,能够利用增强的信号处理和信号分析、精密的计算算法和按要求扩大检测器灵敏体积来增加确定方向的信息的准确性和精密度。
可通过实验与理论模型建立的结合使用提升ATMFD系统。模型建立方法论包括通过COMSOL的模拟平台使用MCNP5和基于声学、结构和电磁耦合的复杂多物理学评估的基于蒙特卡洛的核粒子转移。已经使用包括Pu基中子—伽马源在内的多种特种核材料(SNM)进行了基准研究和合格性研究。研究结果表明,ATMDF系统按照当前配置能够将辐射源的方向定位到至少在大约30度以内,置信度达到80%或更高。
第一实施例
张拉亚稳态流体中的辐射检测部分基于如下原理:入射核粒子与张拉流体相互作用,张拉流体中的分子间键足够脆弱,使用核粒子能够在流体中触发局部化的爆发相变。张拉状态的液体是热平衡状态之下的亚稳态,与处于其正常沸点之上的热量过量状态的过热液体不同。流体中的张拉力与固体结构的拉伸类似。撕裂固体的分子间键所需要的能量会随着结构内张拉力的增加而减少。类似地,断裂液体分子之间的分子间键所需要的额外触发能量随着张拉亚稳态的增加而减少,最终导致张拉力拐点极限处爆发相变的自主触发。在此状态界限之下,需要额外的能量触发张拉亚稳态流体的触发相变。该额外能量可通过与核粒子(例如:中子、阿尔法粒子、光子、贝塔粒子、裂变产物等)甚至是可见光光子的相互作用提供。这一属性使毫微微规模核子级粒子放大到相对较大(x 1013)的宏观规模,从而产生例如本发明所描述的基于声学张拉亚稳态流体的检测系统(ATMFD)的用于核工程和科学应用的新型低成本、超灵敏检测器。
本发明的目的是通过与检测器流体的直接撞击实现MeV范围内的中子的方向性检测(例如:由特种核材料如U、Pu、Cf、Am、Cm等发射的中子)。
上述ATMFD方法看起来不仅能够检测入射辐射的能量和强度,还能够确定辐射源的位置信息,潜在应用领域十分广泛,包括出于国家安全辨识能够泄露实情的来自SNM的中子发射特征。由于中子诱导的检测事件会发生在张拉流体体积中最靠近源的区段部分,因此可以在ATMFD系统中确定方向信息。中子诱导的检测事情的发生概率是检测器流体中的负压和中子通量及能量的函数。由于压力曲线是近乎轴对称的,所以检测事件的概率是中子通量和能量的函数。由于来自源的给定能量的中子通量随着距离的增加和向下散射的角度和吸收而减少,最靠近源的灵敏一侧体积具有最高的检测概率。通过对检测器内部这些检测事件所在位置的检测,使用者就能够确定辐射源方向信息。本发明提供一种改进的方向性测定机械处理方案。
符号说明
ATMFD-声学张拉亚稳态流体检测器
COMSOL-COMSOL MultiphysicsTM
GPIB-通用接口总线(IEEE 488)
GPS-全球定位系统
LabVIEMTM-图形程序语言
LET-线性能量转移(也记作dE/dx)
PuBe-钚铍中子源
PZT-锆钛酸铅
Mic-麦克风
MCNP5-蒙特卡洛n粒子版本5
OD-外径
SDD-过热微滴检测器
SNM-特种核材料
TDOA-到达时差(也记作’t)
TMFD-张拉亚稳态流体检测器
V1-最靠近源的灵敏体积(或区段)
V2-最远离源的灵敏体积(或区段)
XatMaxY-相对于触发点最高峰的时间
XatMinY-相对于触发点最低峰的时间
ATMFD设计
可使用任何适宜的腔室,只要该腔室可用于产生张拉亚稳态流体,优选声学张拉亚稳态流体,该流体中能够产生近乎轴对称的流体压力分布,使所有与中心轴等距的点都具有基本上相同的负压力,例如圆筒体。由于制造方面的原因,玻璃筒体沿外周及长度的厚度和直径可能会有轻微的偏差(~10-100微米类型)。这样导致共振腔的真实中心轴偏离中心线。这种偏离可产生径向和轴向上波动压力分布不对称。这些偏差可在系统特征化中先行考虑。例如通过在相关频率范围中的瞬时波动压力映射找到真实中心轴。对于实际使用的系统,来自几何中心轴的波动压力通常基本上相同,尽管可能会有一些偏斜,但其程度在可知范围内,这样在获取相关方向的信息时就可以进行调整。在一些实施例中,适宜的腔室具有以下特性:它们可以受来自外部换能器的脉冲以在腔室中容纳的流体中产生标准声波的方式瞬时机械变形。在一些实施例中,腔室所具有的尺寸和形状允许直接辐射检测,能够在腔室的不同区域进行向下散射协助的气泡空穴事件的收集。压力波可由波动正压和负压构成,负压在张力拐点界限之上的范围内、但允许核粒子与液体分子相互作用时释放的能量触发相变,该相变也被称为气泡成核或空穴事件。通常,当上述流体为氟里昂-113时,认为负压大约为-2.5巴或存在来自例如Pu-Be源的SNM的~4MeV中子时更低。当丙酮为测试流体时,负压大约为-3.5巴或更低。要求的负压值随外部中子能量变化,可以通过与已知能量的中子源进行比较而预先标定(例如:来自加速器系统或阿尔法发射同位素源如Am-Be、Am-Li、Am-B、Am-C、Am-Fl,及类似同位素等)。适宜的腔室可使用石英、玻璃(优选派热克斯玻璃)、陶瓷、聚碳酸酯和若干种金属,均如本领域所知。在一实施例中,共振声学腔可为外径大约为70mm、长150mm的圆柱状石英管,顶端和底端为半球形。图1a展示了该ATMFD的示意图。只要符合工作频率相关需要,还可以选择其他尺寸。腔室可注满流体并且通常是封闭的。可使腔室成为适合于在腔室的流体内聚焦声能的机构。可使用任何适宜的手段在腔室中的流体内聚焦声能,例如可以使用设置于测试流体顶部的中空玻璃或石英反射器和类似的置于腔室底部的中空玻璃或石英反射器。可以使用塑料、特氟隆、聚碳酸酯,如果不让它们受到工作流体侵蚀的话。例如,可使用标准方法(机械或基于环氧胶的)将锆钛酸铅(PZT)制成的同心环形压电换能器固定在腔室外侧为声学共振腔提供动力。适宜的换能器可以使用任何能够在流体内诱导共振的材料制成,例如钛酸钡、锆钛酸铅(PZT),以及其他已知的材料。没有必要使用同心环形状的中空圆柱体。特别是对于大直径ATMFD来说更是如此,因为圆形同心环形换能器尺寸越大采购越困难。另一种可选方案是,可如图1b所示将多个碟型,例如圆形、矩形或其他形状的换能器或如图1a与中空圆柱体设置在一起,或是如图1b各自设置。这种情况下,大约将4个此类碟型设置于给定平面作为驱动换能器。第5个换能器安装在较高处,并且尺寸可以极其微小—其用途是接收冲击信号。上述4个位于同一平面的换能器的作用不仅是提供驱动功率,同时也接收来自内爆气泡的冲击信号。上述两种情况中,都是给定材料的厚度和尺寸控制换能器的电容量和共振频率。例如,对于中空环形换能器,电容量分别与环的高度直接成正比,与中空圆柱体的外径对内径之比的自然对数成反比。对于无论是在平面方向还是厚度方向上被极化的圆形碟状换能器来说,其电容量与直径的平方直接成正比并与其厚度成反比。这些换能器的最佳使用方式是其共振与测试小室外壳的机械共振相匹配。对于图1中所示的外径为70mm且长度为150mm的测试小室来说,机械共振频率(注满丙酮)达到大约20kHz,环形换能器的电容量大约为20nF。对于图1b中的碟式换能器,碟式换能器也应按70mm外径和大约为20nF的电容进行选择,但应对其尺寸进行选择,使其提供大约为20kHz的共振频率。对于较大直径的系统,机械共振大体与系统的直径按第一级近似成反比变化(例如:对于外径为140mm的系统,机械共振可能会降至大约10kHz),因此换能器的电容量也必须进行相应调整,使换能器的共振频率同样接近10kHz,以便获得最大效率的驱动功率。可以通过在一个频率范围内测试小室在测试液中不同高度下的直接压力映射对系统的机构共振进行更为精确的估测(即包括了多维3D效果的估测),这样可以找到压力振动达到最高值的频率。或者,还可使用多物理建模和模拟方案,如后文介绍COMSOL多物理模拟平台的使用时所述。
可使用连结剂例如粘合剂将换能器固定在腔室之上。适宜的连结剂应具有适宜的阻抗,其基本上与产品的密度、介质中的声速、驱动换能器、接收来自高频振荡换能器机械脉冲的被驱动结构匹配。所选的连结剂要尽量降低声能散射和/或耗费,例如热散逸。作为举例,可使用环氧树脂将换能器固定在腔室壁上。使用环氧时要避免留下气泡,气泡会影响粘接性能。可将玻璃粉与环氧树脂混合以提供连结阻抗,但必须限制玻璃的用量才不至于削弱环氧树脂的粘接性能。还可使用一种叫做Stycast的产品固定换能器。室温下为液态的金属例如加林斯坦(galinstan)—一种Ga、In和Sn的低共熔混合物,或其他具有极低蒸汽压力的液体,例如十四烷或甘油也可作为连结剂使用。声能可在这些连结剂中传导。盛装这些流体、将声能由换能器传导至玻璃壁的空腔的边缘可用环氧树脂或硅橡胶(RTV-类似物)水泥密封。
很多种流体都可以在ATMFD中使用,这些流体包括丙酮、氟里昂、苯、异戊烷、硼酸三甲酯、水等类似物,都可考虑在本发明中使用。具有更高氢含量的检测流体可用来增加向下散射对中子通量比的影响,从而可增强长靶距(at large standoff)方向性测定精度。
可以对ATMFD设备进行翻新,例如更换换能器或重新灌注腔室与换能器之间间隙的流体。操作时去除环氧树脂或重新灌注时必须十分小心,不能损坏易碎或易失效的PZT换能器。
操作设备时可使用线性放大器放大的正弦曲线信号,用来驱动可在径向或轴向上极化的压电换能器。压电材料在某一给定方向上拉伸后会在垂直于上述第一方向的方向上收缩。选择径向上极化的中空圆柱状PZT传感器的原因在于主要需要在径向上驱使扰动;电极引线位于环的内外表面。对于电极引线位于唇边上的情况也可使用垂直极化中空圆柱状PZT。或者,还可将扁平碟式压电换能器组固定(机械固定或胶/环氧固定)到玻璃表面并单独或并行驱动。这种驱动换能器组具有双重目的:首先是为ATMFD提供驱动功率,其次是作为来自破裂空穴气泡的冲击波信号拾取装置;该冲击波信号被叠加到主驱动频率上。这种情况下,可免除对额外的小型麦克风的需要,或者,也可以继续使用以获得更多的关于ATMFD性能和方向性监测方面的声学信息。共振时,可利用该尺寸的石英/玻璃/陶瓷/金属腔室的机械变形产生由20kHz范围的振荡正和负(即:亚真空)压力构成的持续声波。流体分子在负压力期间时,处于亚稳态,可产生来自入射辐射的核粒子轰击。
建模与模拟
在ATMFD系统粒子轰击特性化中可使用两种模拟工具:COMSOL MultphysicsTM(以下简称为COMSOLTM),这是一种有限元多物理程序,以及MCNP5,这是一种核粒子代码。COMSOLTM数值模型可用来解决声学—结构相互作用的复杂多物理问题,包括超瞬时变化、结构动力学、强多维方面(strong multidimensional aspects)和电磁耦合。MCNP5可用来评估在3D空间和能量依存物理方面影响ATMFD灵敏体积上的中子/辐射运送和能量谱。
有限元模拟
可利用COMSOLTM的结构机械学模型建立共振声学腔室模型,包括应力应变和压电效果分析和声波传送模型以及电磁耦合。由于问题的复杂性,COMSOLTM模型利用有限元方法解决频率方面的问题。
使用乙二醇和丙酮的类似模型均已与实验数据进行了压力分布和频谱响应基准检查。ATMDF系统的模型为轴对称,围绕中心轴对称。模型使用约25o的检测流体作为纯丙酮。图2展示了各个不同施加在PZT上的驱动功率与共振频率大约18.78kHz的腔室灵敏体积的空间特性之间的关系。在当前的检测器配置中,腔室的灵敏体积可定义为为腔室的体积,其中的振荡负压波动为等于或低于-3.5巴,这是在丙酮中快速检测(MeV)中子的负压力阈值。
如图2所示,将驱动功率适当地由约4.5W加倍到10W,导致灵敏体积由约50cm3到约100cm3。检测器中较大的灵敏体积不仅增加了有效检测效率,还允许更多的中子在腔室中的灵敏体积相互作用,但也增加了灵敏体积的径向尺寸,可用于增加方向的信息的精度信息并检测效率。
蒙特卡洛模拟
可利用美国新墨西哥州洛斯阿拉莫斯国家实验室开发的MCNP5代码估测核粒子传输。该模型包括ATMFD共振腔室和一距腔室中心轴20.3cm的PuBe中子源(发射能量约为2x106n/s)。该腔室可被建模为轴对称。包括反射器在内的适宜的结构材料可以是石英,压电换能器可以是锆钛酸铅(PZT),工作流体可以是丙酮(C3H60)。顶部反射器之上,顶部和底部反射器内和腔室之外的部分可以建模为空气。
根据这一方法,如图3所示,在检测流体中定义两个区域灵敏体积。定义灵敏体积的圆柱体(r=约1.25cm,h=约4cm)可被分割为两半,一半正对源(V1),一半背对源(V2)。这两个半圆柱体形成中子计数体积。可使用裸PuBe源的中子通量谱,并且所有横截面都被评估为约300oK。所有评测都可计算到约1%以内的相对误差内。
MCNP5模拟结果表明V1相对于V2的中子通量高出约23%。通过比较由这两个灵敏体积对向的立体角和PuBe源,其自身的空间效应导致V1的能量比V2高出-13%。相比之下,下散射导致V1中快中子通量高出约10%。这表明随着源到检测器距离的增加,有效地减少并最终取消了空间效应可能带来的贡献,ATMFD中的检测仍将是优先的并且可辨别,对最靠近源的区域有利。
基于指数衰减定律的计算能够对下散射对中子通量比率的影响与灵敏体积大小之间的关系进行估算。加入第二流体氟里昂-113(通常用于基于亚稳态流体的检测系统)进行比较。PuBe源发射的中子具有约4MeV的平均能量,在丙酮内有约5cm的平均自由程λ,而在氟里昂-113中约为10cm。结果如图4所示。下散射对中子通量的影响随着灵敏体积的大小成比例增加。当源距离足够远时观察到可得到的方向信息增加的能力,从而立体角对中子通量幅度的影响变小。下散射的影响还取决于检测器流体的成分。如图4所示,丙酮中下散射的影响大于氟里昂-113中的影响。这主要归功于丙酮中MeV中子具有更高的氢含量(因而更低的λ)。可使用其他具有更高氢含量的流体以增加下散射对中子通量比率的影响,进而在长靶距上提高方向性测定的精度。因此,诸如丙酮、氟里昂、苯、异戊烷、硼酸三甲酯、水等类似的流体都可用于本发明。
自动化
方向性解读的能力需要获取数百至数千个检测信号,然后迅速进行分析,在几秒到几分钟内得出具有足够可信度(例如:>75%)的结果。实际应用的系统中高度需要自动化。核粒子相互作用形成的内爆蒸汽空穴的剧烈溃陷产生的可以听到的喀嗒声在距离腔室数英尺之外就可以听到。可使用4个微小的可固定在共振腔外侧MHz响应压电换能器记录来自溃陷蒸汽空穴的可以听见的喀嗒声。基于硬件和LabVIEWTM的虚拟仪器软件的控制系统已被开发出来,用于记录这些检测事件和提取关于辐射源方向的信息。
来自压电换能器的电信号可被送入一个三级巴氏(Butterworth)高通滤波器以消除优势驱动频率,从而将高频分量分离出来。然后可将来自滤波器的信号送入AgilentTM 100MHz数字存储示波器,用以显示、存储和进一步的信号分析。实验中使用的真实信号屏幕截图见图4、5。信号中的峰值是记录的中子检测事件造成的,这些事件造成内爆蒸汽空穴,进而导致被PZT换能器检测出来的辐射冲击信号。
可以将基于LabVIEWTM的虚拟仪器(VI)作为图形用户界面设计出来,不仅用来控制ATMFD系统的操作,还用来收集和分析实验数据。可借助与示波器的GPIB1界面通过LabVIEWTM虚拟仪器获取实验数据。在一个方法中,一旦由示波器获取了数据,虚拟仪器就会使用两种静态技术将获取的电信号作为中子检测事件而有效化。中子检测事件的有效化可利用冲击痕迹的两个特征。由图6可以看出,来自中子检测事件的冲击痕迹具有高频(约250kHz)正弦脉冲形状。冲击痕迹的另一个特征是它们都是对称的。可对被称为歪斜度的冲击痕迹的对称性进行测量计算以测定该电信号是否为中子检测事件的电信号。这一技术利用了噪音的随机本性(电噪声和机械噪声均如此),并有助于消除假阳性。第二种可以使用的技术是对两个冲击痕迹的相似度测量。在真实中子检测事件中,各个换能器冲击监测器记录的冲击痕迹应具有基本相同的形状。可对两个冲击痕迹的交叉相互关联,或称为滑动点积进行计算以测定两个个体冲击痕迹的匹配程度如何。该交叉相互关联方法还允许对两个冲击痕迹的到达时间差进行计算。到达时间差(τ)以图形的形式展示于图6。然后可利用双曲线定位算法对到达时间差进行分析,以计算中共振腔中中子检测事件的位置。然后LabVIEWTM虚拟仪器利用中子检测事件的位置确定中子源的方向,并以图形形状展现给用户。为ATMFD设计的从中子检测事件到中子源方向确定的一体化检测系统可以在微秒(ms)时间级上近乎实时执行。
方向性性测定实验和结果
如MCNP和COMSOLTM模型中所述,实验设置使用外径约为6.9cm的石英ATMFD腔室,其他形状如Pyrex玻璃制成的球形和圆锥形也实验成功。腔室内使用的液体为约25oC、约20英寸Hg柱真空条件下的纯丙酮。使用波发生器(Agilent,型号33120A)和线性放大器(Piezo System公司出品,型号EPA-104)对腔室进行操作。得知共振频率约为18.3kHz,使用约96V驱动电压。使用记录冲击痕迹的示波器采集实验数据。使用LabVIEWTM程序控制示波器的操作、采集数据、并执行信号处理和分析。通过GPIB界面与示波器进行通信。在同一XY平面上相互呈直角放置4个压电换能器,例外是第4个换能器按正Z分量放置,以允许3-D定位。整个设置如图7所示。
用约1Ci PuBe中子—伽玛源(发射能力约2x106n/s)、Mic 1和Mic 3进行实验,伽玛源距轴上的腔室中心约-20.3cm和20.3cm。如图8所示,使用记录的TDOA计算成核事件的位置。由于系统的高品质因素,必须考虑腔室结构的微小变化导致几何中心与灵敏体积中心的微小差异。使用XY平面上的核事件的平均位置确定灵敏体积的中心。相应地进行位置调整。首先将图形分割为两个基本上大小相等的半球体体积。最靠近辐射源的体积V1中包含大约55.2%(±2.5%)的检测事件,仅有44.8%(±2.2%)的检测事件发生在V2。给出的中子检测事件比率结果约为1.23(±0.07)。如前所述,MCNP给出的预测比率约为1.23。
对中子检测事件的位置进行进一步分析以测定检测器能力,从而更好地解决辐射源的角方向。灵敏体积被分割为6个隔开的约600角区段。对每个区段内的中子检测事件总数进行计算,并与发生在反向区段内的中子检测事件的数量进行比较。类似地,向MCNP模拟中加入灵敏体积中的中子通量的圆柱状网格计数。反向区段之间进行比较时,观察到最靠近辐射源的区段包含约57.8%(±4.5%)的中子检测事件,距离辐射源最远的区段仅有约43.2%(±3.7%)的中子检测事件发生。得出的中子检测事件的比率为约1.37(±0.13)。再次注意到实验结果与理论模型估测结果在一个标准偏差内是相互关联的。
为了调查ATMFD系统检测置于未知位置的辐射源的方向的能力而进行了研究。所有区段的反向区段的比率都经过计算并绘制于图9中,以便正确地测定正确的辐射源方向。指向源方向的区段具有出人意料的清晰的最大反向区段比率。合乎逻辑地,第二大反向区段比率发生在与源方向区段直接相邻的区段。给出的相邻区段的区段比率大约为1.16(±0.11)。MCNP模拟预测的比率为约1.18,处于实验结果标准偏差范围之内。分析结果表明ATMFD系统能够在30o内以约80%的可信度对辐射源的方向进行定位。
根据液体中压力幅值越大、中子诱导的成核事件的发生概率就越大这一原理,腔室内的压力场由分布密度和中子诱导的气泡成核地点分布图映射。利用Mic 1和Mic 3、距离轴上的腔室中心约-20.3cm和20.3cm的PuBe源进行了实验,使用防止检测器的方向性本质成为一个因素。检测事件地点的位置在RZ平面上绘制,并覆盖于COMSOLTM模型预测的灵敏体积压力场之上。结果如图10所示。对结果的分析表明,中子诱导的检测事件主要发生在低于约-4巴的压力下,与此前测量的约3.5巴的阈值相互关联。同样清楚的是基本上所有的中子检测事件都发生在距ATMFD中心线约1.25cm的半径范围内。因此MCNP评测中使用的值约为1.25cm。
这一工作演示了方向性性的测定,还表明可将ATMFD定制为对伽玛辐射不敏感,以及通过将检测液改为氟里昂-113和硼酸三甲酯,ATMFD系统还可同时用于检测具有跨越8个数量级的能量的中子,操作中达到几乎90%的固有检测效率。这一点是通过与氟里昂的Cl原子的(n,p)反应和与硼酸三甲酯中的硼原子的(n,阿尔法)反应实现的。
描述了近乎实时测定入射辐射方向的方法。这里展示的实验证据表明中子检测事件的位置优先发生在检测器最靠近源的一侧,比率约为1.23(±0.07),与我们进行的基于蒙特卡洛的模拟(1.23∶1)匹配。计算表明由最靠近源的灵敏体积到距离源最远的灵敏体积的立体角的增大构成了中子通量大约13%的减少。中子通过丙酮的下散射构成大约10%的减少。即使源距离远到足以使立体角对中子通量幅度的影响可以忽略,仍然可以使用ATMFD技术固有地获得位置信息。这些相同的计算结果证明了随着灵敏体积的增加,由于下散射造成的中子通量减少也增加了,由此提供在长靶距下提高测定源方向的精度和准确度的方法。COMSOLTM耦合的物理模拟与实验中子检测数据进行了基准检查,并且可以通过增加驱动功率从而产生原方向测定精度和准确的增加和提高的检测效率而具有对检测器灵敏体积进行修正的能力
对中子检测事件位置的进一步分析可得到改进的借助相向的中子通量区段比率进行的方向性测定的方法。结果表明,按当前配置的ATMFD系统能够在约30o内以约80%的可信度测定辐射源的方向。
第二实施例
在另一实施例中,张拉的亚稳态流体状态提供了提升辐射检测的可能性。可利用定制的共振声学装置得到该亚稳态流体状态,得到声学张拉的亚稳态流体检测(ATMFD)系统。当前的中子检测器有时会体积庞大、昂贵,对不同的中子能群需要不同的检测系统,并且不适合于提供中子辐射自何方向到达的信息。ATMFD中的辐射检测是基于如下原理:入射核粒子与动力学张拉的流体相互作用,其中的分子间键足够脆弱,即使能量在8个数量级或更多的基本粒子也能被检测出来,其固有效率远高于常规的检测系统。对于中子-核子相互作用的情况,由目标原子放出离子化反冲核在局部沉积通量,有效地引发蒸气核子的形成,使其由亚纳米级生长为可见级别,使记录入射辐射(中子、阿尔法粒子、光子)的时间和比例成为可能。核子优先地形成于入射辐射的方向。随后内爆的核子导致冲击波的产生,该冲击波不仅可以被直接听到,还可以对其使用到达时间差(TDOA)法在检测器的不同点上进行电子监测。由此引发的回旋的时空信息结合双曲线定位,不仅首次提供了入射中子辐射的速率,还提供了其方向性。
可利用实验—理论建模的结合实现固有高效、低成本、结实的ATMFD系统的开发。建模方法包括使用MCNP5的基于蒙特卡洛的核粒子传输,还有使用COMSOL的多物理模拟平台的复杂多维电磁—流体结构评估。利用LabVIEW软件的虚拟仪器(VI)控制算法编程实现了ATMFD系统自动化。
液体象固体一样可以承受张拉力(即:液体在被撕裂前可以承受亚真空压力)。处于张拉状态的液体是在其热平衡状态之下的亚稳态,与处于其正常沸点之上的热量过热状态下的亚稳态液体有所不同。液体内的张拉力类似于固体结构的拉伸力(与压缩力相对)。撕裂固体的分子间键所需要的能量随着结构的拉伸而减少。类似地,使液体分子间键断裂所需要的能量随着张拉力亚稳态的上升而减少;最终导致张拉力拐点(热动力学稳定性)极限处自发地触发爆炸相变。
爆炸相变可以在亚稳态液体的稳定极限之下触发。这种触发导致迅速成核和膨胀汽袋的爆炸性蒸发。三种在亚稳态液体中触发爆炸相变的方法为激光加热、核粒子(例如:中子)直接撞击和声学能量。以下重点讨论通过中子-核子直接撞击的触发方法。可通过机械方法或通过核粒子或激光器发射的光子启动爆炸相变。高能粒子特别是中子与液体分子单个核之间的直接撞击导致的快速、脉冲能量沉积可导致纳米级的触发和爆炸相变。直接撞击的脉冲能量沉积反冲的形式为热能,并在大约若干纳米尺度上沉积,导致蒸汽核子的形成。能量沉积范围取决于液体中反冲离子的阻止本领。如果热能沉积率足够高导致蒸汽核子大于临界尺寸,核子就会继续生长为宏观级别蒸汽气泡。临界半径通常在纳米尺度内并在若干纳秒内达到。发自激光光源的光子也可用来触发爆炸相变,但需要更大的量,因为与快中子(MeV)相比,可见光的个体光子具有相对较小的能量(大约为1eV)和较小的线性能量转移(LET)。
例如,大约4MeV的中子与丙酮中的碳原子撞击后会向碳核转移大约0.72MeV。这样释放出大约为36.4MJ/kg的能量密度,其中体积由丙酮蒸汽气泡的临界半径确定(大约30nm)。相比之下,对丙酮的蒸汽潜热大约为0.534MJ/kg。来自蓝光激光器(大约400nm)的单个能量大约为2.48eV的光子具有大约9.6x10-7MJ/kg的能量密度。对于可见光子,体积由可见光子的波长确定。这样,需要大约1.3x109的蓝光(UV)光子才等于一个中子直接撞击的能量密度。
从张拉的亚稳态检测核粒子要求诱导适当级别的负压力。这与过热微滴检测器(SOD)中使用的著名的“气泡室”有所区别,在“气泡室”中液体被置于其沸点以上的温度。在根据本发明的实施例中,液体保持在室温。张拉的亚稳亚中的流体检测原理以结构的拉伸类推为基础。张拉力越大,就越容易将保持材料结合状态的键撕开。以类推的方法,对工作流体的分子和原子施加的负压力越大,就越容易将保持分子结合状态的键撕开(即:促使局部气泡生成,该气泡可由纳米尺寸在溶解和内爆前生长为相对较大的若干毫米尺寸的气袋)。检测的灵敏度取决于施加的张拉力和来自给定入射核粒子的空间能量沉积值,或记作dE/dx。
ATMFD设计
如图11和图12所示的另一ATMFD系统的实施例是一共振声学系统,由(外径大约为60mm,长150mm)圆柱状玻璃,优选Pyrex玻璃、同心固定的环形压电换能器驱动的共振腔室构成。由一线性放大器放大的正弦波形信号驱动压电换能器。设置于腔室顶部和底部的反射器通过形成压力驻波协助能量聚集。在该实施例中4个(外径大约7mm)碟形压电换能器被固定在腔室圆柱形部分的外壁上,用来检测在检测器的灵敏体积中产生的辐射诱导的空穴的冲击波谱。
ATMFD的灵敏体积被定义为张拉(负)压力的幅度小于某一临界尺寸蒸汽核子可以通过入射核粒子与亚稳态分子撞击产生的能量沉积形成的阈值的区域。
建模与模拟
ATMFD系统特征化时可以使用两个模拟工具:COMSOLMultiphysicsTM(以下简称为COMSOL)-一个有限元多物理程序和MCNP5-一个核粒子传传输代码。COMSOL能够将共振声学系统的声、液体和结构模型耦和到一起。MCNP可用来对影响ATMFD的灵敏体积中子通量和能量谱的依赖空间与能量结合的物理属性进行评估。
有限元模拟
可开发出使用COMSOLTM的基于有限元方法的数值模型进行频域分析,并可将模型获得的结果与实验数据进行比较。这里设置的多物理模型一并使用COMSOL的结构机械学模块,包括应力—应变和压电效应分析和声波传输模块与电磁耦合建模。
我们假定系统为轴对称。在一实施例中将检测流体选为约25oC的纯丙酮。表1中列出了丙酮的各种属性。
表1 丙酮在25℃时的属性
  密度(kg/m3)   0.786x103
  粘度(Pa s)   0.308x10-3
  声速(m/s)   1174
  体积粘度(Pa s)   约1.5x10-3
已经将一使用乙二醇作为液体的类似模型的压力分布和频谱响应与实验数据进行了基准检查。在本实施例中,我们保持与经过基准检查的模型相同的物理区域设置和边界条件,改变了液体的属性和系统的结构,并引入了结构流体阻尼。
由于结构与液体之间尺寸的较大变化,液体与固体区域中的网格有限元的最大相对尺寸分别为大约0.003和大约0.017。网格结构包含了总计大约5237个元(element)。已经使用更细的网格(大约20948个元素)检查了数值收敛。
为了使系统驱动功率与腔室的灵敏体积之间的关系和相关性可视化,图11绘制出了共振频率大约为18.85kHz时的振荡压力分布。
如图11所示,ATMFD的灵敏体积可以通过驱动电压的变化而变化。各种其他的选择也变得可行(例如:使用更高的模式或叠加)。可利用这种建模方法根据需要设计出具有理想检测灵敏度,并能够取得方向的信息的ATMFD。
蒙特卡洛模拟
可以利用如图12所示的MCNP5代码建立核粒子传送评估系统模型。它由ATMFD的共振腔室和PuBe中子源(发射能力大约为2x106n/s)构成。腔室基本上为轴对称。包括反射器在内的所有结构材料都可以是石英玻璃,压电换能器可以是锆钛酸铅(PZT),代表性的检测流体可以是丙酮(C3H6O)。位于顶部反射器之上的部分,顶部和底部反射器之内、以及腔室之外被模型化为空气。
如图12所示,在反射器流体内定义两个区域灵敏体积。定义整个灵敏体积的圆柱体(r=约1.5cm,h=约4cm)被分割为基本相等的两半;其中一半面对源(V1),一半背对源(V2)。两个半圆柱体形成中子记数体积。
使用裸PuBe源的中子能谱,并且所有横截面均估值为约300oK。将源置于距离腔室中心轴约35.5cm处,以符合实验配置。
MCNP5模拟结果表明入射中子源方向的中子相互作用概率大约增加了25%。这一结果确认了第一原理估算的估算结果。
通过对两个灵敏体积对PuBe源的对向立体角进行比较,可以看出中子通量的空间效应大约为通量在V1中高出V2约15%。相比这下,向下散射使V1中快中子通量大约高出10%。这表明,即使源距离更远,由于有效地消除了中子通量的立体角依赖,在ATMFD(如本文所揭示)进行的检测由于有利于最靠近源一侧而仍然优先并且可辨别。
自动化操作
核粒子相互作用形成的内爆蒸汽空穴溃陷导致距离腔室几英尺之外都可以听到的卡嗒声。可以使用固定在腔室外侧的压电换能器记录溃陷空穴发出的可以听到的卡嗒声。将冲击波到达各个换能器的时间记录下来就可以计算出到达时差(TDOA)。可以将换能器之间的TDOA与双曲线定位算法结合使用,计算出气泡空穴事件的实际发生位置。
来自这些空穴事件的电信号首先被送入第三级巴氏(Butterworth)高通滤波器以除去主导的驱动频率,从而将高频部分分离出来。然后可将来自滤波器的信号送至示波器,例如AgilentTM100MHz数字存储示波器用来显示、存储和进一步的信号处理。图13展示了实验中使用的真实信号的屏幕截图。
图13中的第一频道展示了未经滤波的换能器信号。第二频道对应经过高通滤波器后的信号。信号中的峰值是明白无误的空穴脉冲记录结果。作为示波器的图形用户界面产生了LabVIEWTM程序。使用LabVIEW程序时,示波器在触发频道上模拟信号在穿过预定阈值前一直运行。通过示波器的屏幕截图可以得到若干测量结果;XatMaxY(相对于触发点最高峰的时间,以μs计),XatMinY(相对于触发点最低峰的时间,以μs计),以及Maximum(屏幕截图上记录的最大电压电平)。图14展示了使用的典型信号的真实屏幕截图。
测量结果XatMaxY和XatMinY服务于两个目的。有了这些测量结果就可以计算信号之间的TDOA,并可以估算各个换能器记录的空穴脉冲频率。最大电压测量结果确保所有4个频道上的空穴信号的高度都大于触发电平。每个空穴脉冲的TDOA、频率和最大电压值被用作约束值,以测定被分析的信号是否为空穴脉冲信号。
数据约束
利用双曲线定位算法的数值分析设定TDOA约束。可利用LabVIEW计算机程序生成腔室内空穴事件的随机样本。然后利用空穴的位置计算各个换能器将记录的TDOA。然后用双曲线定位算法分析TDOA。设置数据集中TDOA的上约束,以调查哪些TDOA会导致映射于前述的腔室灵敏体积模型之外的空穴位置的结果。该结果如表2所示。因此大约为20μs的TDOA上约束会产生腔室中心轴大约2cm以内的空穴结果,这与实验结果一致。
表2用于TDOA计算的数据约束
  TDOA约束   最大区域半径
  15μs   1.57cm
  20μs   1.97cm
  40μs   2.95cm
可利用XatMaxY和XatMinY测量值测定空穴脉冲中最大峰的优势频率。如图14所示,XatMaxY和XatMinY测量值应发生在具有最大量值的空穴脉冲的峰值处。可使用LabVIEW软件和示波器对频率约束进行实验调查。可将LabVIEW程序设计为记录基本上全部空穴脉冲的模拟波形。可以记录大约100个基于空穴的中子检测事件的实验数据集用于分析。然后对空穴波形进行快速傅里叶变换。发现空穴脉冲中的最大峰值的优势频率大约为300kHz。可使用大约200kHz的下约束测定记录的信号中是否包含空穴脉冲。可接受的频率范围很大,因为记录的空穴频率随着空穴强度、与记录换能器的距离、换能器的频率响应(制造方面的原因),以及腔室内的润湿度(由于散射中心例如蒸汽或气体泡造成)。
通过人工计算,在最初的实验中发现了用来消除触发偏差的允许最小电压约束的最大电压测量值,后文将对此进行说明。可利用实验数据设定最小电压约束。使用PuBe中子源通过所有4个换能器由大约450个空穴中确认出最大电压。为了消除由源位置造成的任何最大电压偏差,对距离腔室中心约+35.5cm和-35.5cm的源使用X-轴上的换能器1、3和Y-轴上的换能器2、4采集了4个数据集。记录的空穴平均最大电压见表3。
表3记录的麦克风对空穴冲击事件平均最大电压响应
  Mic 1   Mic 2   Mic 3   Mic 4
  源1   716mV   692mV   703mV   667mV
  源3   697mV   702mV   716mV   661mV
  平均   707mV   697mV   710mV   664mV
空穴脉冲的平均最大电压可用来设定各个换能器的触发电平。只有最大电压大于所有4个换能器的触发电平的空穴才被会记录下来进行分析。这一方法使示波器能够基本上一次被所有4个信号触发,从而消除了任何触发偏差。初步结果表明触发电平相互之间在大约6%之内,因此各个换能器可使用相同的触发电平。早期实验结果表明,所使用的触发电平影响结果的精度。为调查这一影响,可设计一LabVIEW程序记录触发电平在由大约5mV到195mV变化时各个换能器记录的空穴速率。结果如图15所示。
实验结果表明对于上至100mV的低触发电压,触发率不稳定,在大约200mV时得到稳定。因此本实施例中可使用大约200mV的触发电平作为基准。由于制造中误差的不同,以及使用的固定粒型换能器的环氧树脂或其他材料的可变性,目前可以利用上述方法开发出精确的触发电平。
方向性性测定实验及结果
实验设置使用如MCNP和COMSOL模型中描述的直径大约为6.9cm的石英ATMFD腔室。腔室中使用的液体为大约25oC、真空度约20英寸Hg柱以下的纯丙酮。腔室与一波发生器和线性放大器共同工作。已发现共振频率大约为18.3kHz,使用的驱动电压大约为100V。利用记录冲击痕迹的示波器采集数据。前文提及的LabVIEW程序控制示波器的操作和采集的数据。可通过GPIB接口与示波器实现通信。放置4个相互间呈直角且位于同一XY平面的压电换能器,例外是第4个换能器采用正Z分量放置,以便进行3-D定位。整个设置见图16。
首先利用记录空穴脉冲的示波器采取数据。使用示波器光标人工记录TDOA。然后利用前文提到的双曲线定位算法对TDOA进行分析。PuBe源在X轴上距腔室中心约13cm时的初步数据(如图17所示)提供了证明检测器腔室中的空穴事件的位置令人信服地偏向了辐射源的方向。
还可将腔室分割为两个大小相同的区段。最靠近源的区段包括大约65%(84/124)的空穴事件,距源最远的区段中发生的空穴事件大约为32%(40/124)。由此产生了大约为2.1∶1(2.1)的比率。还发现发生了朝向触发信号的偏差。该触发偏差的发生是因为数据集是在仅有一个信号触发时采集的。触发偏差的发生是因为靠近触发换能器的空穴具有更大的记录的冲击信号振幅,因此发生在触发换能器附近的空穴可被优先偏离。然而,如果所有4个换能器都被用来触发空穴事件,就可以消除该触发偏差。上述记录空穴位置的方法仍有不足之处,而且人工采集数据只能允许大约每分钟记录2个样本。因此设计了允许处理大量数据的自动化系统并在此后使用。然而,人工获取的数据用来确认提供方向的信息的能力,同时还作为基准点。
使用前文提及的双曲线定位算法、以及设计用来跟踪各个换能器记录的空穴脉冲最先发生多少次的LabVIEW程序对利用自动化系统采集的数据进行分析。两个换能器最先记录的空穴的数量计数列出表4中。
表4利用Mic 1和Mic3使用设置距腔室中心轴35.5cm的PuBe源得到的结果
  Mic 1   Mic 3
  位于1的源   88   65
  位于3的源   71   82
同样可以将腔室分割为两个大小相同的区段。最靠近辐射源的区段包括大约56%(170/306)的空穴事件,距源最远的区段中发生的空穴事件大约为44%(136/306)。由此产生了大约为5∶4(1.25)的比率。这些结果与此前人工采集的结果和MCNP模型给出的理论值(约1.24)相互关联。计算机的计数结果和人工计数结果的差异可归咎于通过为空穴的最大电压设定下约束而导致的触发偏差的消除。记录的TDOA还被用来计算空穴的位置,参见图18、19。
图中的图形也可被分割为两个大小基本相同的区段。最靠近辐射源的区段包括大约56%(170/306)的空穴事件,距源最远的区段中发生的空穴事件大约为44%(136/306)。由此产生了大约为5∶4(1.25)的比率。已经注意到使用第一个到达换能器法和双曲线定位法与大约100%的精度相互关联,并且还与理论模型估计值(即MCNP5和COMSOL)在大约2%以内关联。
还绘制了一张包括所有记录的空穴事件的图形,辐射源距离与Mic1和3的X轴上腔室中心约-35.5cm和35.5cm。XZ平面上看到的空穴事件的图形表明腔室的灵敏体积的大小和形状近似于开发的COMSOL模式(图20)。可以看出所有中子检测(空穴事件)都发生在距ATMFD中心线约1.5cm半径的范围内,这与COMSOL模型的预计十分吻合。因此,MCNP计算的取值大约为1.5cm。
还对空穴位置的径向(空间)分布进行了分析。空穴事件基本上分布为两个相等的部分:距离源最近的腔室部分和距离源最远的腔室部分。然后将径向位置绘制成柱状图,得到相向的同心弧内的空穴数量。结果如图21a和图21b所示。
腔室具有最大张拉力(负)的中心部分未在该计数中,因为这一位置是空穴事件优先发生的位置,双曲线定位算法的误差最大。因此发生在腔室中该部分的空穴对于方向的信息贡献最小。计数结果表明大约56%(120/274)的空穴事件发生在距源最远的部分,相当于5∶4的比率(1.28)。与较为简单的第一换能器到达法相比,该数据分析方法为获取方向的信息提供了改进的、更好的能力。
一种测定入射辐射方向性性的相关方法来自于对气泡形状的肉眼检验。已经发现来自例如Pu-Be中子源的辐射沿着源的方向将能量由辐射传送至原子核,产生纳米级的气泡,这些气泡会生长到宏观肉眼可见的大小。在一个振荡的声驱动场中,前文讨论过微小气泡在ATMFD系统中生长为数个毫米范围的宏观尺寸,然后将其自身拉长为椭圆形,在溶解和消失之前,其自身会在径向上朝着玻璃壁的方向向外传输。这一特性如图22所示,由中子诱导的与丙酮核子撞击产生的拉长气泡簇(形成于ATMFD系统中)的主轴正指向中子源并与中子源在一条直线上。观察使用1,000fps摄像机和普通30fps摄像机拍摄的视频剪辑后,看出每10个气泡簇中大约有8个指向这一优先方向。部分轰击张拉液体分子的发来中子可以是被反射后来自角度的中子,或者是以掠射角轰击流体的目标原子的原子核,因此给产生真实辐射源方向以外的各个不同方向的椭圆形传输的气泡。尽管如此,上述发现为通过检测对瞬时气泡簇直接视觉影像监测和分析相对快速(不超过几秒钟)可靠地测定方向性带来了可能性。这样的系统在到达检测器的极低密度辐射(例如:来自屏蔽良好的核材料)的场合具有非常高的价值,在这种情况下基于TDOA的技术不适于对方向性性的实时监测。
总结与结论
在所使用的第一到达换能器方法和双曲线定位方法中,由空穴事件(在外径约为70mm的ATMFD中)的位置证实的中子检测优先发生在检测器最靠近源的一侧,比率约为1.25∶1。这一尺寸的腔室中的下散射事件在得到可靠的方向性识别方面具起到重要作用,较大的ATMFD可在更短时间内得到更高的方向性辨别可信度。因此,可以看出双曲线定位算法的加入(能够进行空穴事件的3D映射)不会增加误差。对空穴事件进行三维映射的能力意味着不仅存在2D方向性检测的能力,还能够检测3D方向性信息。
已经发现空穴事件优先发生在检测器最靠近源的一侧,其比率与基于多物理模拟的预测值(约1.24∶1)相比大约为1.25∶1。这些比值对应距离检测器大约35.5cm的源。计算结果确认了这一距离从最靠近源到最远离源的灵敏体积的立体角中子通量的减少增加了大约15%。这意味着通过丙酮的中子下散射(即使是大约为6cm外径的ATMFD系统)造成了非常大(大约10%)的影响。较大的外径具有较高的方向性能力。因此即使源距离足够远,使得立体角对中子通量幅度的影响可以忽略,仍然可以获得方向的信息。
我们的COMSOL耦合的物理模拟通过增加驱动功率表现出修正灵敏体积,并较基准实例更短时间产生可信度提高的方向的信息的能力。
ATMFD可对伽玛射线不敏感,通过将液体改变为由Cl或B核(氟里昂-113或硼酸三甲酯)构成,ATMFD仍可利用热能能量同时用于检测中子/辐射方向性,TMFD系统还展示出了快速和接近100%的固有效率。
TMFD系统的辐射与核子的撞击将信息按优先方向传送,在相当大程度上与到达TMFD系统的液体分子的原子核的方向一至。张拉力将气泡由纳米级放大到数个毫米的级别,这种气泡能够变形为长形和大体上圆柱状的类似
尽管本说明书结合实施例对本发明进行了详细说明,本发明还可包括其他特点而不脱离本发明的精神和范围。因此前面的详细描述仅起说明作用,而非限定,并且应理解后附的权利要求书及所有等同物的目的在于对本发明的精神其目的是对本发明的精神和范围进行定义。

Claims (30)

1.一种测定辐射方向性的方法,包括:产生一定体积的张拉的亚稳态流体;将上述一定体积的张拉的亚稳态流体置于一辐射源附近;其特征在于:在上述张拉的亚稳态流体中检测辐射诱导的空穴的位置;以及根据上述亚稳态流体内的辐射诱导的空穴的位置测定辐射源的方向。
2.根据权利要求1所述的测定辐射方向性的方法,其中所述的一定体积的张拉的亚稳态流体具有包含至少一个对称轴的形状。
3.根据权利要求1所述的测定辐射方向性的方法,其中所述的张拉的亚稳态流体是声学张拉的亚稳态流体。
4.根据权利要求1所述的测定辐射方向性的方法,其中所述的检测辐射诱导的空穴的位置的步骤包括通过对安装在腔室上的多个信号检测换能器获取的信号进行处理来检测空穴诱导的冲击信号的到达延时。
5.根据权利要求1所述的测定辐射方向性的方法,其中所述的检测辐射诱导的空穴的位置的步骤包括通过对安装在腔室上的多个信号检测换能器获取的信号进行处理来检测辐射诱导的空穴,该处理过程还包括一个将偏差减少至最低的步骤。
6.根据权利要求1所述的测定辐射方向性的方法,其中所述的检测辐射诱导的空穴的位置的步骤包括通过对安装在腔室上的多个信号检测换能器获取信号进行处理来检测空穴诱导的冲击信号,该处理过程还包括一个将偏差减少至最低的步骤,该步骤包括检测来自上述信号检测换能器的信号是否超过了一个阈电压电平,其中该阈电压电平可通过对所有换能器的渐近响应比较来确定。
7.根据权利要求1所述的测定辐射方向性的方法,其中所述的检测辐射诱导的空穴的位置的步骤包括通过一双曲线定位法测定空穴的位置。
8.根据权利要求1所述的测定辐射方向性的方法,其中所述的检测辐射位置的步骤包括测定发生在腔室中至少两个区域的空穴比率。
9.根据权利要求1所述的测定辐射方向性的方法,其中所述的方法还包括对反向区段的空穴事件进行比较,不包括那些包括至少中心线垂直轴一部分的一定体积的空间内的事件数目。
10.根据权利要求1所述的测定辐射方向性的方法,其中所述的方法还包括利用压力差将空穴气泡的拉长放大,使其与能量转移至来自入射辐射的液体分子的方向一致。
11.根据权利要求1所述的测定辐射方向性的方法,其中所述的方法还包括监测空穴气泡成核事件的形状。
12.根据权利要求1所述的测定辐射方向性的方法,其中所述的测定辐射源的方向的步骤包括测定由辐射诱导的空穴气泡的拉长形状的主轴的步骤。
13.根据权利要求1所述的测定辐射方向性的方法,其中所述的方法还包括通过视觉测定拉长的空穴诱导的气泡的主轴的入射辐射的方向。
14.一种测定入射辐射方向性的设备,包括:
容纳流体的腔室;
控制系统,其与使腔室变形的机构连通,两者共同工作以诱导并保持上述流体中的张拉的亚稳态,其中所述的张拉的亚稳态足以在流体分子受到入射核粒子轰击时使气泡成核;
多个在腔室内间隔分布的信号检测换能器,这些信号检测换能器和用来测定流体体积内气泡空穴事件的位置的系统电子通信;
其中所述的用来测定流体内气泡位置的系统包括一信号处理系统,该处理系统测定腔室内气泡空穴的数量和位置。
15.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的腔室是密封的。
16.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的腔室内的液体选自:丙酮、氟里昂、苯、异戊烷、硼酸三甲酯、水。
17.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的将腔室变形的机构还包括至少一个包括有压电材料的换能器。
18.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的将腔室变形的机构还包括至少一个包括含有锆钛酸铅的压电材料的换能器。
19.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的将腔室变形的机构还包括至少一个包括含有陶瓷的压电材料的换能器。
20.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的将腔室变形的机构还包括至少一个包括含有钛酸钡的压电材料的换能器。
21.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的将腔室变形的机构包括至少一个安装在腔室上的换能器,使得该换能器环绕中间平面或是位于对应需要的振荡张拉-压缩压力场的平面围绕腔室的外周。
22.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的将腔室变形的机构包括多个安装在腔室上不连续的平面位置上,和所需的振荡张拉-压缩压力场对应。
23.根据权利要求14所述的测定入射辐射方向性的设备,其中驱动换能器的共振频率和ATMFD腔室的共振频率匹配。
24.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的将腔室变形的机构包括至少一个安装在腔室壁上的电气驱动的压电元件,所述压电元件能够在流体内引入正、负压力波动,从而产生共振和张拉的亚稳态,当流体分子受到入射核粒子轰击时,足以使气泡成核。
25.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的多个在腔室内间隔设置、并与测定流体体积内空穴事件位置的系统电子通信的信号检测换能器包括至少4个信号检测换能器。
26.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的多个在腔室内间隔设置并与测定流体体积内空穴事件位置的系统电子通信的信号检测换能器还包括至少3个处于同一平面的信号检测换能器和至少一个位于该平面之外的信号检测换能器。
27.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的用来测定流体内气泡位置的系统包括一信号处理系统,该处理系统包括一将基线驱动频率信号去除的高通滤波器。
28.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的用来测定流体内气泡位置的系统包括一信号处理系统,该处理系统对来自信号检测换能器的经过滤波后的信号进行比较,用定位算法测定信号检测换能器的气泡信号的到达延时,以测定腔室中内爆气泡的位置。
29.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的用来测定流体内气泡位置的系统包括一信号处理系统,该系统包括一能够捕获流体体积内的实时气泡信息的视觉监测系统,并由拉长的空穴气泡的主轴测定方向性。
30.根据权利要求14所述的测定入射辐射方向性的设备,其中所述的腔室具有的尺寸和形状使腔室不同区域允许向下散射,协助空穴事件的收集的方向检测得以进行。
CN201080020177.8A 2009-04-30 2010-04-29 测定辐射方向性的组合物及方法 Expired - Fee Related CN102449505B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17415909P 2009-04-30 2009-04-30
US61/174,159 2009-04-30
PCT/US2010/032991 WO2010127131A2 (en) 2009-04-30 2010-04-29 Compositions and methods for determining directionality of radiation

Publications (2)

Publication Number Publication Date
CN102449505A CN102449505A (zh) 2012-05-09
CN102449505B true CN102449505B (zh) 2014-10-15

Family

ID=43032777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080020177.8A Expired - Fee Related CN102449505B (zh) 2009-04-30 2010-04-29 测定辐射方向性的组合物及方法

Country Status (9)

Country Link
US (3) US8436316B2 (zh)
EP (1) EP2425276A4 (zh)
JP (1) JP5548766B2 (zh)
CN (1) CN102449505B (zh)
AU (1) AU2010242954B2 (zh)
CA (1) CA2760528C (zh)
IL (1) IL215949A (zh)
RU (1) RU2526492C2 (zh)
WO (1) WO2010127131A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2526492C2 (ru) * 2009-04-30 2014-08-20 Руси П. ТАЛЕЙАРХАН Способ для определения направленности радиоактивного излучения и устройство для его осуществления
JP2015512505A (ja) * 2011-12-14 2015-04-27 パーデュー・リサーチ・ファウンデーションPurdue Research Foundation 検出位置を感知する高速中性子検出器
US9689995B2 (en) 2012-08-05 2017-06-27 Purdue Research Foundation Radiation detector
WO2014074875A1 (en) * 2012-11-08 2014-05-15 Rusi Taleyarkhan A trace isotope tagged real-time identification system and methods for its use
WO2014165121A1 (en) 2013-03-12 2014-10-09 Rusi Taleyarkhan Compositions and methods for generating cavitation resistance
JP2016515696A (ja) * 2013-03-15 2016-05-30 ルーシ・タリヤーカン アクチニドを監視するための構成及び方法
US9791391B2 (en) * 2013-09-24 2017-10-17 Oxford Instruments Industrial Analysis Oy Portable analyzer with radiation safety features
RU2620196C1 (ru) * 2016-04-01 2017-05-23 Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН) Радиохимический детектор плотности потока быстрых нейтронов
US10682528B2 (en) 2017-03-03 2020-06-16 Varian Medical Systems International Ag Systems, methods, and devices for radiation beam asymmetry measurements using electronic portal imaging devices
CN109448799B (zh) * 2018-09-03 2021-11-09 岭东核电有限公司 金属冷却快堆金属燃料多物理场模型耦合方法
CN109740279B (zh) * 2019-01-14 2022-06-14 东华理工大学 一种特征频率谱库的电可控中子伽马能谱解析方法
US11243315B2 (en) * 2020-01-30 2022-02-08 Rusi P. Taleyarkhan Low-cost, light-weight high efficiency (H*10 capable) neutron spectrometric detector-dosimeter
CN111722267B (zh) * 2020-06-23 2022-05-03 中国科学院国家空间科学中心 一种磁层能量粒子事件爆发源的探测追踪方法
CN113834833B (zh) * 2021-03-31 2023-06-06 中国工程物理研究院材料研究所 一种ods钢磁性粉末中纳米相的表征方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991313A (en) * 1975-01-29 1976-11-09 Westinghouse Electric Corporation Method and apparatus for acoustically monitoring neutron flux radiation
US4172226A (en) * 1977-03-29 1979-10-23 Saul Rubin Remote radiation detection system
US4689986A (en) * 1985-03-13 1987-09-01 The University Of Michigan Variable frequency gas-bubble-manipulating apparatus and method
CN1393073A (zh) * 2000-07-10 2003-01-22 莱泰克公司 用于测量空泡的方法和设备
CN101035681A (zh) * 2004-10-01 2007-09-12 拉伯赛特股份有限公司 与声发射有关的流体特性的声学评诂

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350607A (en) * 1977-07-28 1982-09-21 Apfel Robert E Detector and dosimeter for neutrons and other radiation
US5235524A (en) * 1990-04-02 1993-08-10 Rockwell International Corporation Ultrasonic cavitation detection system
US5321357A (en) * 1992-08-07 1994-06-14 Yale University Three-dimensional detection, dosimetry and imaging of an energy field by formation of a polymer in a gel
US5345084A (en) * 1993-03-29 1994-09-06 The United States Of America As Represented By The United States Department Of Energy Directional fast-neutron detector
US6178141B1 (en) * 1996-11-20 2001-01-23 Gte Internetworking Incorporated Acoustic counter-sniper system
US5784339A (en) * 1997-04-16 1998-07-21 Ocean Vision Technology, Inc. Underwater location and communication system
US6406429B1 (en) * 1999-08-23 2002-06-18 City Of Hope Detection of cystic structures using pulsed ultrasonically induced resonant cavitation
JP2004363489A (ja) * 2003-06-06 2004-12-24 Ngk Insulators Ltd 圧電/電歪素子、圧電/電歪素子の製造方法、圧電/電歪デバイス及び圧電/電歪デバイスの製造方法
US20050135532A1 (en) * 2003-10-27 2005-06-23 Taleyarkhan Rusi P. Methods and apparatus to induce D-D and D-T reactions
US20060269033A1 (en) * 2005-01-21 2006-11-30 Taleyarkhan Rusi P Nuclear material detection system
DE102005037043C5 (de) * 2005-08-05 2017-12-14 Dornier Medtech Systems Gmbh Stoßwellentherapiegerät mit Bildgewinnung
RU2526492C2 (ru) * 2009-04-30 2014-08-20 Руси П. ТАЛЕЙАРХАН Способ для определения направленности радиоактивного излучения и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991313A (en) * 1975-01-29 1976-11-09 Westinghouse Electric Corporation Method and apparatus for acoustically monitoring neutron flux radiation
US4172226A (en) * 1977-03-29 1979-10-23 Saul Rubin Remote radiation detection system
US4689986A (en) * 1985-03-13 1987-09-01 The University Of Michigan Variable frequency gas-bubble-manipulating apparatus and method
CN1393073A (zh) * 2000-07-10 2003-01-22 莱泰克公司 用于测量空泡的方法和设备
CN101035681A (zh) * 2004-10-01 2007-09-12 拉伯赛特股份有限公司 与声发射有关的流体特性的声学评诂

Also Published As

Publication number Publication date
US20140008537A1 (en) 2014-01-09
EP2425276A4 (en) 2017-07-05
CA2760528C (en) 2016-02-09
US9201151B2 (en) 2015-12-01
JP5548766B2 (ja) 2014-07-16
CA2760528A1 (en) 2010-11-04
WO2010127131A3 (en) 2010-12-23
US20170199288A1 (en) 2017-07-13
IL215949A0 (en) 2012-01-31
IL215949A (en) 2014-07-31
WO2010127131A2 (en) 2010-11-04
CN102449505A (zh) 2012-05-09
JP2012525598A (ja) 2012-10-22
AU2010242954B2 (en) 2013-11-14
RU2011148173A (ru) 2013-06-10
AU2010242954A1 (en) 2011-11-24
RU2526492C2 (ru) 2014-08-20
US8436316B2 (en) 2013-05-07
US20110174990A1 (en) 2011-07-21
EP2425276A2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
CN102449505B (zh) 测定辐射方向性的组合物及方法
Trombetta et al. Nonlinear soil–foundation–structure and structure–soil–structure interaction: engineering demands
Petružálek et al. Acoustic emission in a laboratory: Mechanism of microearthquakes using alternative source models
Li et al. Experimental investigation on the deformability, ultrasonic wave propagation, and acoustic emission of rock salt under triaxial compression
Bonomi et al. Cosmic ray tracking to monitor the stability of historical buildings: a feasibility study
Wang et al. Damage quantification with embedded piezoelectric aggregates based on wavelet packet energy analysis
CN104094136B (zh) 一种用于确定入射中子辐射源的方向的中子检测系统及方法
Moser et al. Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments
Cao et al. Simulation of underwater explosions initiated by high-pressure gas bubbles of various initial shapes
Liao et al. Microseismic Source Location Method and Application Based on NM-PSO Algorithm
Wu et al. Vibration energy comparison helps identify formation time of new free surface in urban tunnel blasting
Zhou et al. An optimization method for the station layout of a microseismic monitoring system in underground mine engineering
Ma et al. Laboratory study of deformational characteristics and acoustic emission properties of coal with different strengths under uniaxial compression
Ren et al. Research on Precursor Information of Brittle Rock Failure through Acoustic Emission
Zhao et al. Analyzing the synchronous acoustic and electric response of coal burst failure: validation through the on-site application
Lei et al. The Spatio-Temporal Evolution of Rock Failure Due to Blasting under High Stress
Jiang et al. Study on bursting liability of coal-like material with pores and anchors based on impact kinetic energy characteristics
Archambault et al. Ascertaining directionality information from incident nuclear radiation
Tu et al. Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data
Chen et al. Fractal Evolution Characteristics of Isolation Layers in a Submarine Gold Mine: A Case Study
Hao et al. A Plasma Transmitting Source for Borehole Acoustic Reflection Imaging
Archambault et al. Ascertaining Directional Information From Incident Nuclear Radiation
da Costa Advanced Instrumentation for Superheated Liquid Detectors in Dark Matter Searches
Detwiler Modeling of Air Attenuation Effects on Gamma Detection at Altitude

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141015

Termination date: 20190429