CN102446940B - 图像传感器中的光侦测器隔离 - Google Patents

图像传感器中的光侦测器隔离 Download PDF

Info

Publication number
CN102446940B
CN102446940B CN201110307872.9A CN201110307872A CN102446940B CN 102446940 B CN102446940 B CN 102446940B CN 201110307872 A CN201110307872 A CN 201110307872A CN 102446940 B CN102446940 B CN 102446940B
Authority
CN
China
Prior art keywords
layer
semiconductor layer
silicon semiconductor
charge
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110307872.9A
Other languages
English (en)
Other versions
CN102446940A (zh
Inventor
H·Q·多恩
E·G·史蒂文斯
R·M·盖达施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omnivision Technologies Inc
Original Assignee
Omnivision Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omnivision Technologies Inc filed Critical Omnivision Technologies Inc
Publication of CN102446940A publication Critical patent/CN102446940A/zh
Application granted granted Critical
Publication of CN102446940B publication Critical patent/CN102446940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

在n型硅半导体层中横向地邻近光侦测器的采集区和横向地邻近电荷转电压转换区安置浅沟槽隔离区。这些浅沟槽隔离区各自包括安置在硅半导体层中的沟槽和沿每个沟槽的内底部及侧壁安置的第一介电结构。在钉扎层之上形成第二介电结构。这些介电结构包括安置在氧化层之上的氮化硅层。仅沿沟槽的外面底部的一部分和沟槽的紧邻光侦测器的外面侧壁安置n型隔离层。沿沟槽的底部的其余部分和相对的外侧壁不安置n型隔离层。

Description

图像传感器中的光侦测器隔离
相关申请的交叉引用
本申请要求提交于2010年9月30日的美国临时申请61/388,013的权益。
技术领域
本发明涉及供用于数码相机及其它类型的图像捕捉装置中的图像传感器,具体涉及互补金属氧化物半导体(CMOS)图像传感器。更具体地,本发明涉及CMOS图像传感器中的光电二极管隔离及用于产生此隔离的方法。
发明背景
图像传感器使用通常配置成阵列的数千个至数百万个像素来捕捉图像。图1描绘根据现有技术的CMOS图像传感器中通常所使用的像素的俯视图。像素100包括响应于入射光而收集电荷的光侦测器(PD)102。在读出光侦测器102的电荷之前,经由接触点104将一适当信号施加至重设晶体管的栅极(RG)以将电荷转电压转换区(FD)106重设至一已知电位VDD。当经由使用接触点108将一适当信号施加至转移栅极(TG)而启用转移晶体管时,电荷接着自光侦测器102转移至电荷转电压转换区106。电荷转电压转换区106用于将所收集的电荷转换成电压。
放大器晶体管(SF)的栅极110经由信号线111连接至电荷转电压转换区106。为了将来自电荷转电压转换区106的电压转移至一输出端VOUT,经由接触点112将一适当信号施加至行选择晶体管(RS)的栅极。该行选择晶体管的激活启用放大器晶体管(SF),SF继而将来自电荷转电压转换器(FD)的电压转移至VOUT。浅沟槽隔离区(STI)包围光侦测器(PD)及像素100以电隔离图像传感器中的像素与邻近像素。n型隔离层114包围这些STI区,如将结合图2及图3更详细描述的。
图2说明沿着图1中的线A-A’的横截面示意图,其描绘现有技术的像素结构。像素100包括转移栅极(TG)、电荷转电压转换区106及光侦测器102。光侦测器102实施为由形成于n型层204内的n+钉扎层200及p型储存区202组成的钉扎(Pinned)光电二极管。n型层204安置于基板层206上方。
浅沟槽隔离区(STI)208横向地邻近于光侦测器102的相对侧而形成且包围该光侦测器。STI 208亦横向地邻近于电荷转电压转换区106而形成,其中转移栅极(TG)定位于光侦测器102与电荷转电压转换区106之间。STI区208包括形成于n型层204中的用介电材料210填充的沟槽。n型隔离层114包围每一沟槽的侧壁及底部。通常藉由在用介电材料210填充沟槽之前将n型掺杂剂植入沟槽的侧壁及底部中而形成隔离层114。
图3描绘沿着图1中的线B-B’的横截面示意图,其描绘现有技术的像素结构。STI区208横向地邻近于光侦测器102而形成且包围光侦测器102。STI区208亦横向地邻近于电荷转电压转换区106而形成。n型隔离层114包围沟槽的侧壁及底部。
隔离层114的浅n+植入可使电荷转电压转换区106的周边电容增加,且可由于藉由n型隔离层及p型电荷转电压转换区106形成的p+/n+二极管结而导致较高暗电流或点缺陷。另外,横向地邻近于像素100中的一个或多个晶体管(诸如,放大器晶体管(SF))的n型隔离层114可减小晶体管的有效宽度。这可导致窄沟道效应,且需要较宽晶体管的设计,此举又会减小像素的填充因子。
发明内容
图像传感器包括形成成像区域的像素阵列。至少一个像素包括安置于硅半导体层中的光侦测器及电荷转电压转换区。光侦测器包括具有p导电类型的储存区,该储存区安置于n型硅半导体层中。电荷转电压转换区具有p导电类型,且可藉由定位于该储存区与该电荷转电压转换区之间的转移栅极电连接至该储存区。
浅沟槽隔离区可横向地邻近于该光侦测器、该电荷转电压转换区及像素中的其它特征及组件或在它们周围而形成。这些浅沟槽隔离区各自包括安置于该硅半导体层中的与介电结构排成行并用介电材料填充的沟槽。一个浅沟槽隔离区横向地邻近于每一光侦测器且包围每一光侦测器。该浅沟槽隔离区包括沿该沟槽的内底部和侧壁安置的介电结构。该介电结构包括安置在氧化物衬里层上的氮化硅层。
具有n导电类型的隔离层仅沿着沟槽的紧邻于光侦测器的外面底部的一部分和外侧壁而安置。该隔离层不沿着该沟槽的其余外面底部部分及相对的外面侧壁安置。
另一浅沟槽隔离区可横向地邻近于每一像素中的其它电组件或包围每一像素中的其它电组件而形成。这些其它电组件可包括电荷转电压转换区及一个或多个晶体管的源极/漏极植入区。该浅沟槽隔离区包括沿沟槽的内底部和侧壁安置的介电结构。该介电结构包括安置在栅极氧化层上的氮化硅层。隔离层不沿着沟槽的邻近于像素中的这些其它电组件的外面底部及侧壁安置。
附图说明
参照附图更好地理解本发明的实施例。附图的元件不一定是相对于彼此按比例绘制的。
图1描绘根据现有技术的CMOS图像传感器中通常所使用的像素的俯视图;
图2说明沿着图1中的线A-A’的横截面图,其描绘现有技术的像素结构;
图3描绘沿着图1中的线B-B’的横截面图,其描绘现有技术的像素结构;
图4为根据本发明的实施例中的图像捕捉装置的简化框图;
图5为根据本发明的实施例中的适合用作图4中所示的图像传感器406的图像传感器的简化框图;
图6说明根据本发明的实施例中的各自适合用作图5中所示的像素502的两个示例性像素的俯视图;
图7描绘沿着图6中的线C-C’的横截面图;
图8描绘沿着图6中的线D-D’的横截面图;
图9为根据本发明的实施例中的用于制造图像传感器中所包括的像素的一部分的方法的流程图;
图10A-10D描绘根据本发明的实施例中的用于产生图7中所示的STI区714、716及隔离层614的方法;
图11A-11B描绘根据本发明的实施例中的用于产生图8中所示的STI区714、716及隔离层614的方法;
图12为根据本发明的实施例中的第二像素结构的横截面图;
图13描绘根据本发明的实施例中的第三像素结构的横截面示意图;
图14说明图13中所示的区域1310的放大视图;
图15描绘图13中所示的区域1308的放大视图;
图16描绘根据本发明的实施例中的第四像素结构的横截面示意图;
图17说明图16中所示的区域1606的放大视图;以及
图18A-18F描绘根据本发明的实施例中的一种用于产生图13中所示的STI区1309、1311和隔离层614的方法;
图19描绘沿图2中的线E-E’的对数净掺杂浓度相对于深度的示图;
图20说明沿图13中的线F-F’的对数净掺杂浓度相对于深度的示图;以及
图21描绘穿过图2中的线E-E’和图13中的线F-F’的静电势相对于深度。
具体实施方式
贯穿说明书及权利要求书,除非上下文清楚指示其它意义,否则以下术语采用本文中明确相关联的意义。“一”及“该”的意义包括复数引用,“在……中”的意义包括“在……中”及“在……上”。术语“连接”表示所连接的项之间的直接电连接,或经由一个或多个无源或有源中间装置的间接连接。术语“电路”表示单一组件或连接在一起以提供所要功能的许多组件(有源或无源)。术语“信号”表示至少一个电流、电压、电荷或数据信号。
另外,诸如“在……上”、“在……上方”、“顶部”、“底部”的方向术语是参考所描述的图的定向来使用的。因为本发明的实施例的组件可定位于许多不同定向上,所以方向术语仅用于说明目的而决非限制。当结合图像传感器晶片的层或对应图像传感器使用时,方向术语意欲广义地解释,且因此不应被解译为排除一个或多个居间层或其它居间图像传感器特征或组件的存在。因此,本文中描述为形成于另一层上或形成于另一层上方的给定层可藉由一个或多个额外层而与该另一层分离。
最后,术语“基板层”应理解为基于半导体的材料,其包括(但不限于)硅、绝缘体上硅(SOI)技术、蓝宝石上硅(SOS)技术、掺杂及未掺杂的半导体、形成于半导体基板上的外延层或井区或其它半导体结构。
参看附图,相同数字在各视图中始终指示相同部件。
图4为根据本发明的实施例中的图像捕捉装置的简化框图。图像捕捉装置400实施为图4中的数码相机。本领域技术人员将认识到,数码相机仅为可利用结合了本发明的图像传感器的图像捕捉装置的一实例。其它类型的图像捕捉装置(诸如,蜂窝电话相机及数码视频摄录像机)可与本发明一起使用。
在数码相机400中,来自主题场景的光402输入至成像级404。成像级404可包括常规组件,诸如透镜、中性密度滤光器、光圈及快门。光402由成像级404聚焦以在图像传感器406上形成图像。图像传感器406藉由将入射光转换成电信号来捕捉一个或多个图像。数码相机400进一步包括处理器408、存储器410、显示器412及一个或多个额外输入/输出(I/O)组件414。虽然在图4的实施例中示为单独组件,但成像级404可与图像传感器406整合,且可能与数码相机400的一个或多个额外组件整合以形成一紧凑型相机模块。
处理器408可实施(例如)为微处理器、中央处理单元(CPU)、专用集成电路(ASIC)、数字信号处理器(DSP)或其它处理装置,或多个此类装置的组合。成像级404及图像传感器406的各种组件可由从处理器408供应的时序信号或其它信号控制。
存储器410可以任何组合配置为任何类型的存储器,诸如随机存取存储器(RAM)、只读存储器(ROM)、闪存、基于盘的存储器、可移动存储器或其它类型的储存组件。由图像传感器406捕捉的给定图像可由处理器408储存于存储器410中,且在显示器412上呈现。显示器412通常为有源矩阵彩色液晶显示器(LCD),但可使用其它类型的显示器。额外I/O组件414可包括(例如)各种屏上控件、按钮或其它用户接口、网络接口或存储卡接口。
将了解,图4中所示的数码相机可包含本领域技术人员已知的类型的额外或替代组件。本文中未具体示出或描述的组件可选自本领域熟知的那些组件。如先前所指示的,本发明可在多种图像捕捉装置中实施。再者,本文中所描述的实施例的某些方面可至少部分地以由图像捕捉装置的一个或多个处理组件执行的软件的形式实施。如本领域技术人员将了解,给定本文中所提供的教示,此类软件可以直接方式实施。
现参看图5,其示出根据本发明的实施例中的适合用作图4中所示的图像传感器406的图像传感器的简化框图。图像传感器500通常包括形成成像区域504的像素502的阵列。图像传感器500进一步包括列解码器506、行解码器508、数字逻辑510及模拟或数字输出电路512。在根据本发明的实施例中,图像传感器500被实施为背照式或前照式互补金属氧化物半导体(CMOS)图像传感器。因此,列解码器506、行解码器508、数字逻辑510及模拟或数字输出电路512被实施为电连接至成像区域504的标准CMOS电子电路。
与成像区域504的取样和读出及对应图像数据的处理相关联的功能性可至少部分地以储存于存储器410中且由处理器408(参见图4)执行的软件的形式实施。取样和读出电路的部分可配置在图像传感器406外部,或与成像区域504整合地形成,例如,与光侦测器及成像区域的其它组件整合地形成于共同集成电路上。本领域技术人员将认识到,在根据本发明的其它实施例中可实施其它外围电路配置或架构。
图6说明根据本发明的实施例中的适合用作图5中所示的像素502的两个示例性邻近像素的俯视图。像素600各自包括光侦测器(PD)602、具有转移栅极(TG)及接触点604的转移晶体管、电荷转电压转换区(FD)606、具有重设栅极(RG)608的重设晶体管、具有栅极610的放大器晶体管(SF)、具有栅极及接触点612的行选择晶体管、VDD及VOUT。为简单起见,在图6中省略将电荷转电压转换区606连接至放大器晶体管(SF)的栅极610的信号线(例如,图1中的线111)。在根据本发明的实施例中,放大器晶体管(SF)被实施为源极跟随器晶体管,且电荷转电压转换区被实施为浮动扩散区。
转移晶体管、电荷转电压转换区606、重设晶体管、行选择晶体管、放大器晶体管、VDD及VOUT为可包括于像素600中的电组件的实例。根据本发明的其它实施例可省略这些所说明的电组件中的一者或多者。或者,像素可包括更少、额外或不同类型的电组件。
电荷收集及自像素600的读出与参照图1所描述的电荷收集及读出相同。浅沟槽隔离区(STI)如在现有技术中那样包围光侦测器602及其它电组件,但n型隔离层614仅包围STI区中紧邻光侦测器602的外面部分,如将结合图7及图8加以更详细描述的。
图7描绘沿着图6中的线C-C’的横截面图。在根据本发明的实施例中,像素600包括一起形成光侦测器602的储存区700及钉扎层702。在所说明的实施例中,储存区700用具有p导电类型的一种或多种掺杂剂掺杂,而钉扎层702用具有n导电类型的一种或多种掺杂剂掺杂。
像素600进一步包括安置于光侦测器602与电荷转电压转换区606之间的转移栅极704。当将一适当信号施加至接触点604时,在储存区700中收集的电荷转移至电荷转电压转换区606。
光侦测器602及电荷转电压转换区606安置于硅半导体层706中。硅半导体层706具有n导电类型,且可实施为横越成像区域(例如,成像区域504)的层或实施为井。硅半导体层706安置于基板层708上方。在根据本发明的实施例中,硅半导体层706可被实现为横越成像区域(例如,图5中的成像区域504)的不间断的连续层。在另一实施例中,半导体层706可被实现为图案化的层。仅作为示例,半导体层706可被图案化成使得在储存区700的至少一部分之下不安置层706。
在图7实施例中,基板层708实施为安置于基板712上方的外延层710。在根据本发明的实施例中,外延层710及基板712均具有p导电类型。在根据本发明的另一实施例中,基板712可实施为具有n导电类型的块状基板。
浅沟槽隔离区(STI)714、716安置于硅半导体层706中。每一STI区714、716包括用介电材料722填充的相应沟槽718、720。具有n导电类型的隔离层614仅部分地包围紧邻于光侦测器602且包围光侦测器602的STI区714。隔离层614沿着沟槽718的底部的一外面部分且沿着沟槽718的仅一个外面侧壁安置。特别是,隔离层614沿着沟槽718的紧邻于储存区700及钉扎层702的底部一外面部分及外面侧壁安置。
仅沿着沟槽718的底部的仅一外面部分且沿着沟槽718的紧邻于光侦测器602的外面侧壁形成隔离层614抑制紧邻光侦测器的STI侧壁或界面的暗电流。另外,隔离层614不沿着沟槽718的其余外面底部部分及其他外面侧壁、且不沿着STI区716的沟槽720的外面侧壁及底部安置。因为在这些区域没有隔离层614,所以电荷转电压转换区606的电容及像素600中的其它晶体管(例如,重设晶体管、源极跟随器晶体管、行选择晶体管)的特性不受隔离层614的不利影响。自沟槽720的外面侧壁及底部移除n+隔离层614的另一优点为场效晶体管(FET)有效宽度的增加。因此,FET宽度可物理上较小,这允许光侦测器602的宽度较大,藉此增加像素填充因子。
现参看图8,其示出沿着图6中的线D-D’的横截面图。浅沟槽隔离区714、716安置于硅半导体层706中。STI区714包括具有n导电类型的隔离层614。隔离层614仅部分地包围STI区714。隔离层614沿着沟槽718的紧邻于光侦测器602的储存区700及钉扎层702的底部一外面部分及外面侧壁安置。
隔离层614不沿着沟槽718的不紧邻于光侦测器602的底部另一外面部分及另一外面侧壁安置。隔离层614亦不沿着STI区716的沟槽720的外面侧壁及底部安置。
图9为根据本发明的实施例中的用于制造图像传感器中所包括的像素的一部分的方法的流程图。最初,在基板层708上方形成硅半导体层706(框900)。当基板层包括安置于基板上方的外延层时,在该外延层(例如,外延层710)上方形成硅半导体层706。
接下来,如框902中所示,在硅半导体层706中形成STI区714、716及隔离层614。用于产生STI区714、716及隔离层616的过程将结合图10及图11加以更详细描述。
如框904中所示,接着形成像素中的晶体管的栅极。在根据本发明的实施例中,这些栅极可包括转移栅极(TG)、重设栅极(RG)、放大器晶体管的栅极及行选择晶体管的栅极。
接下来,如框906中所示,形成植入区。在根据本发明的实施例中,该植入区包括储存区700、电荷转电压转换区606、其它源极/漏极区及钉扎层702。
本领域技术人员将认识到,像素或成像区域的其它特征及组件在图9中所说明的过程之前、与该过程同时或在该过程之后产生。此外,成像区域(例如,图5中的区域504)外的特征及组件可在图9中所说明的过程之前、与该过程同时或在该过程之后制造。
图10A-10D描绘根据本发明的实施例中的用于产生图7中所示的STI区714、716及隔离层614的方法。图10A-10D中所示的过程并非意在说明图像传感器或像素的制造技术的全部。本领域技术人员将认识到,可在图10A-10D中所示的过程之前、之间、和之后实施其它过程。
图10A说明在n型硅半导体层706形成于p型外延层710之中或之上之后且在沟槽718、720形成于层706中之后的像素。在根据本发明的实施例中,藉由将具有n导电类型的掺杂剂植入外延层710中来产生n型硅半导体层706。沟槽718、720可藉由使用本领域中已知的技术蚀刻n型层706来形成。
方框1000表示硅半导体层706中的随后将形成光侦测器的区域。方框1002表示硅半导体层706中的随后将形成电荷转电压转换区的区域。如图9中所示,通常在已形成STI区与栅极之后形成光侦测器及其它植入区(诸如,电荷转电压转换区及源极/漏极植入区)。
接着在像素600上方形成掩模层1004,且将其图案化以产生开口1006(图10B)。开口1006暴露沟槽718及n型硅半导体层706的一部分。开口1006中所暴露的沟槽718的底部部分及沟槽718的侧壁为沟槽718的紧邻于待形成的PD(由方框1000表示)的部分。如箭头所表示,将n型掺杂剂植入开口1006中。该n型掺杂剂通常具有高掺杂剂浓度。植入的掺杂剂沿着沟槽718的紧邻于方框1000的底部外面部分及沟槽718的紧邻于方框1000的外面侧壁形成n型隔离层614。在根据本发明的实施例中,该植入是在沿沟槽718的内侧壁和底部表面产生氧化层的线性氧化过程之后执行的。在根据本发明的另一实施例中,该植入是在该线性氧化过程之前执行的。
接着移除掩模层1004,且在n型硅半导体层706的表面上方形成介电材料722。介电材料722填充沟槽718、720。自硅半导体层706的表面移除介电材料722,直至介电材料722仅填充沟槽718、720。介电材料722的上表面基本与硅半导体层706的上表面呈平面。图10C中说明这些过程。
接着在像素600上方形成掩模层1008,且将其图案化以产生开口1010(图10D)。如箭头所表示,将n型掺杂剂植入开口1010中。该n型掺杂剂通常具有比图10B中所植入的掺杂剂低的掺杂剂浓度。植入的掺杂剂使侧壁表面与n型硅半导体层706及n型隔离层614之间的界面钝化。植入的掺杂剂使像素或光侦测器彼此间电隔离。植入的掺杂剂还被用于形成FET的井。图10D中所描绘的过程为可选用的,且在根据本发明的其它实施例中并不执行。
现参看图11A-11B,其示出根据本发明的实施例中的用于产生图8中所示的STI区714、716及隔离层614的方法。图11A描绘在n型硅半导体层706形成于p型外延层710之中或之上之后且在沟槽718、720形成于层706中之后的像素。
接着在像素600上方形成掩模层1100,且将其图案化以产生开口1102(图11B)。开口1102仅暴露沟槽718及n型硅半导体层706的部分。开口1102中所暴露的沟槽718的底部部分及沟槽718的侧壁为沟槽718的紧邻于待形成的PD(由方框1000表示)的那些部分。并不针对沟槽720形成开口,且沟槽720保持由掩模层1100覆盖。
如箭头所表示,接着经由开口1102将n型掺杂剂植入硅半导体层706中。该n型掺杂剂通常具有高掺杂剂浓度。植入的掺杂剂仅沿着沟槽718的该底部外面部分及沟槽718的这一个外面侧壁形成n型隔离层614。在硅半导体层706中紧邻于将形成光侦测器的区域形成隔离层614。在根据本发明的实施例中,该植入是在沿沟槽718的内侧壁和底部表面产生氧化层的线性氧化过程之后执行的。在根据本发明的另一实施例中,该植入是在该线性氧化过程之前执行的。
掺杂剂未被植入沟槽718的其它外面部分中及沟槽720的外面侧壁及底部中,因为沟槽718的该其它部分及沟槽720由掩模层1100覆盖。因此,n型隔离层614不沿着沟槽718的底部的其余外面部分、沟槽718的不紧邻于将形成光侦测器的区域的外面侧壁形成,且不沿着沟槽720的外面侧壁及底部形成。
如先前所描述,形成隔离层614的掺杂剂通常在将介电层安置于沟槽中之前植入沟槽中。一般而言,隔离层植入仅在图像传感器的成像区域(例如,图5中的成像区域504)中执行。现有技术在成像区域中的植入为无图案化或无屏蔽的植入,这意谓成像区域中的所有STI区都接收隔离层植入。经图案化的掩模层用于在现有技术隔离层植入期间仅覆盖成像区域外的区域。因此,本发明并未因在成像区域中使用掩模层(图10B中的层1004;图11中的层1100)而使制造成本增加,这是因为该掩模层可用与现有技术中用于覆盖成像区域外的区域的掩模层相同的掩模层来形成。
图12为根据本发明的实施例中的第二像素结构的横截面图。除了使用井1200替代STI区之外,图12中所示的像素结构与图7中所描绘的像素结构相同。在所说明的实施例中,井1200用具有n导电类型的一种或多种掺杂剂掺杂。井1200横向地邻近于电荷转电压转换区606(在与转移栅极704相对的侧上)安置于硅半导体层706中。井1200用于隔离电荷转电压转换区606与邻近像素中的其它电荷转电压转换区及组件。n+隔离层614不存在于井1200周围。根据本发明的其他实施例可形成井以使其包围电荷转电压转换区606。
图13描绘根据本发明的实施例中的第三像素结构的横截面示意图。像素1300类似于图7中所示的像素600,只是在诸多硅-二氧化硅界面中增添了固定正电荷。在此像素结构中,n型硅界面1302、1304上方并与之邻近的介电结构已被改为具有较大的固定正电荷。此较大的固定正电荷在n型表面区上产生累积,并在较低的n型掺杂水平处提供表面钝化。产生较大的固定正电荷的介电结构的具体示例是氧化物-氮化物-氧化物(ONO)或氧化物-氮化物(ON)结构。
在图13中所示的实施例中,介电结构1306安置于n型钉扎层702和电荷转电压转换区606的硅界面之上。在STI区1309的底部和侧壁上在该介电结构与n型隔离层614之间的界面处安置另一介电结构(包括在圈1308中)。在根据本发明的实施例中,在STI区1311中在该介电结构与n型硅半导体层706之间的界面处也形成介电结构。
在图13中所示的实施例中,介电结构1306可在转移栅极704之下延伸。这将结合图14和18更详细地描述。在根据本发明的其他实施例中,介电结构1306无需在转移栅极704下延伸。
图13中所说明的像素结构是p型金属氧化物半导体(pMOS)像素。pMOS像素使用p型掺杂或植入区形成金属-氧化物-半导体场效应晶体管(MOSFET)。另一像素结构是nMOS像素,nMOS像素使用n型掺杂或植入区形成金属-氧化物-半导体场效应晶体管(MOSFET)。因此,在nMOS像素中,像素传感器中的钉扎层702、硅半导体层706和其他区是用p型掺杂剂形成的。由于与nMOS像素相关联的大多数表面是p型的,图像传感器设计者之前已经关注减少或消除与直接在硅表面上方且毗邻硅表面安置的介电层相关联的固定正电荷。移除固定正电荷预防p型层(例如,层702、706)在硅-二氧化硅界面处的耗尽,由此减少暗电流的表面发生分量。
本发明利用pMOS像素,这意味着与像素相关联的大多数表面是n型的。图13中所说明的结构包括被最优化以增强像素表面上的固定正电荷的效应的介电结构。此增强结合图14、15和17更详细地描述。
图14说明图13中所示的区域1310的放大视图。介电结构1306包括覆盖n+钉扎层702和n型硅半导体层706的表面的薄栅极氧化层1400以及安置于该较薄栅极氧化层1400上的较厚氮化硅层1402。示出了位于栅极氧化层1400与氮化硅层1402之间的界面1406上的正固定电荷1404。
在所解说的实施例中,薄栅极氧化层1400和氮化硅层1402皆在转移栅极704下延伸。在根据本发明的另一实施例中,氮化硅层1402不在转移栅极704下延伸。
氧化物-氮化物界面1406包含并保持正固定电荷1404。栅极氧化层1400的厚度被选择为通过将氧化物-氮化物界面1406安置得与界面1302尽可能的近来优化界面1302(n型钉扎层702与栅极氧化层1400之间的界面)上的电子累积。固定正电荷1404造成用电子堆积硅表面的电场。在界面1302上累积电子有利地钝化了硅表面以抑制该位置上的暗电流发生。
图15描绘图13中所示的区域1308的放大视图。介电结构1500沿沟槽的内底部和侧壁安置。介电结构1500包括薄氧化物衬里层1502和氮化硅层1504。该薄氧化物衬里层1502沿该沟槽的侧壁和底部表面生长或沉积。随后在氧化物衬里层1502上沉积较厚的氮化硅层1504。氮化硅层1504通常不是与图14中所示的层1402相同的氮化硅层。示出了位于氧化物衬里层1502与氮化硅层1504之间的界面1508上的正固定电荷1506。
固定正电荷1506造成用电子堆积硅界面1304(n型隔离层614与氧化物衬里层1502之间的界面)的电场。在界面1304上累积电子有利地钝化了硅表面以抑制该位置上的暗电流发生。
图16描绘根据本发明的实施例中的第四像素结构的横截面示意图。该结构与图13中所示的结构类似,但是组成介电结构1600的层是不同地形成的。栅极氧化层1602在形成包括转移栅极704在内的栅极之前形成。因此,栅极氧化层1602安置于转移栅极(TG)704之下。
氮化硅层1604安置于栅极形成之后的像素之上。在栅极形成之后在像素上沉积氮化硅层1604具有不影响像素中FET的电参数的益处。另外,可以选择氮化硅层中材料的类型或氮化硅层的沉积方法以增大或最大化正固定电荷的量。例如,一种用于氮化硅层的能最大化正固定电荷的材料类型是紫外线“UV”氮化物材料。UV氮化物材料的一个示例在Chung-Wei Chang等人的题为“High Sensitivity of Dielectric Films Structure for Advanced CMOS ImageSensor Technology(用于高级CMOS图像传感器技术的介电膜结构的高灵敏度)”的文章中有记载。
图17说明图16中所示的区域1606的放大视图。介电结构1600包括安置于钉扎层702和硅半导体层706的表面上的栅极氧化层1602和安置于栅极氧化层1602的部分上的氮化硅层1604。如早先讨论的,栅极氧化层1602是在栅极形成之前形成于像素的表面上的。在形成栅极之后,在栅极氧化层1602的暴露部分和栅极上安置氮化硅层1604。示出了位于栅极氧化层1602与氮化硅层1604之间的界面上的正固定电荷1700。
现在参照图18A-18F,示出了根据本发明的实施例中的一种用于产生图13中所示的STI区1309、1311和隔离层614的方法。图18A-18F中所示的过程并不意在说明用于图像传感器或用于像素的所有制造技术。本领域技术人员将领会可在图18A-18F所示的过程之前、之间、和之后实现其他过程。
图18A说明在p型外延层710之中或之上形成n型硅半导体层706、在硅半导体层706的表面上生长衬垫氧化层1800、并在衬垫氧化层1800上沉积氮化层1802之后的像素。也已在硅半导体层706中形成了沟槽718、720。方框1000表示硅半导体层706中随后将形成光侦测器的区域。方框1002表示硅半导体层706中随后将形成电荷转电压转换区的区域。
氧化物衬里层1804沿沟槽718、720的内表面生长。可在形成氧化物衬里层1804之前执行任选的氮化物回拉。氮化物回拉涉及往回蚀刻氮化层1802的一部分以暴露出沟槽718、720的拐角以用于当在沟槽718、720中生长氧化物衬里层1804时圆化。
随后在像素1300上形成掩模层1806并将其图案化以产生开口1808(图18B)。开口1808仅形成于沟槽718之上,而沟槽720被掩模层1806覆盖。随后将n型掺杂剂植入开口1808中穿过氧化物衬里层1804的一部分、氮化层1802的一部分、以及衬垫氧化层1800的一部分(如箭头所表示)。植入的掺杂剂沿沟槽718的底部的一外面部分和沟槽718的紧邻方框1000的外面侧壁形成n型隔离层614。
随后移去掩模层1806,并在像素1300上形成另一掩模层1810且将其图案化以产生开口1812(图18C)。向开口1812中沉积氮化硅材料以形成氮化硅层1814。氧化物衬里层1804和氮化硅层1814形成沿沟槽718、720的内底部和侧壁安置的介电结构。如结合图15描述的,氧化物衬里层1804和氮化硅层1814之间的界面包含并保持正固定电荷。
在形成氮化硅层1814之后,随后可以执行任选的将n型掺杂剂低能量地植入沟槽718、720以钝化硅-二氧化硅界面。此过程未在图中示出。
接着,如在图18D中所示的,移除掩模层1810,并在n型硅半导体层706的表面上形成介电材料1816。介电材料1816填充沟槽718、720。随后从硅半导体层706的表面移除介电材料1816直至介电材料1816仅填充沟槽718、720(参见图18D)。介电材料1816的上表面基本与硅半导体层706的上表面呈平面。通常,还移除衬垫氧化层1800和氮化层1802,并且在硅半导体层706的表面上形成氧化层1818。
通常,还在一单独的过程中移除氧化层1818并且在硅半导体层706的表面上形成薄栅极氧化层1820。在栅极氧化层1820的表面上形成转移栅极704,随后沉积氮化硅层1822。氮化硅层1822和栅极氧化层1820形成介电结构,诸如图14中描绘的结构。并且如结合图14描述的,栅极氧化层1820和氮化硅层1822之间的界面包含并保持正固定电荷。
现在参照图19,示出了沿图2中的线E-E’的对数净掺杂浓度相对于深度的示图。值Nd1是钉扎层200在硅表面处的峰值掺杂浓度。Xj1是n+钉扎层200的结深度。
图20说明沿图13中的线F-F’的示例性对数净掺杂浓度相对于深度的示图。值Nd2是钉扎层702在硅表面处的峰值掺杂浓度。Xj2是n+钉扎层702的结深度。图20中的峰值掺杂水平和结深度小于图19中所示的峰值掺杂水平和结深度。图20中较低的值是由于在硅表面上方的介电堆叠中包含有固定正电荷。降低的峰值掺杂水平和较低的结深度为短波长光提供了改善的量子效率。
现在参照图21,示出了穿过图2中的线E-E’和图13中的线F-F’的静电势相对于深度。与现有技术钉扎层200和储存区202相比,与钉扎层702和储存区700的表面结相关联的耗尽区更接近硅表面。这是由于硅表面上方的介电堆叠中所含的固定正电荷的缘故。使与钉扎层702和储存区700的表面结相关联的耗尽区更靠近硅表面为短波长光提供了改善的量子效率。
本发明已具体参考其特定较佳实施例加以详细描述,但将理解,在本发明的精神及范畴内,可实现各种改变及修改。举例而言,像素600、1300的特征已参考特定导电类型加以描述。在根据本发明的其它实施例中,可使用相反导电类型。另外,在根据本发明的其它实施例中,可省略或共享像素600、1300中所说明的特征中的一些。举例而言,钉扎层702不必包括于像素中。在根据本发明的其它实施例中,放大器晶体管(SF)或电荷转电压转换区106可由两个或两个以上像素共享。
而且,尽管本文中已描述了本发明的特定实施例,但应注意,本申请不限于这些实施例。特别是,关于一实施例所描述的任何特征亦可在其它实施例中使用(若兼容)。而且,不同实施例的特征可交换(若兼容)。
部件列表
100像素
102光侦测器
104接触点
106电荷转电压转换区
108接触点
110源极跟随器晶体管的栅极
111信号线
112接触点
114隔离层
200钉扎层
202储存区
204层
206基板层
208浅沟槽隔离
210介电材料
400图像捕捉装置
402光
404成像级
406图像传感器
408处理器
410存储器
412显示器
414其它输入/输出(I/O)
500图像传感器
502像素
504成像区域
506列解码器
508行解码器
510数字逻辑
512模拟或数字输出电路
600两个邻近像素
602光侦测器
604接触点
606电荷转电压转换区
608接触点
610放大器晶体管的栅极
612接触点
614隔离层
700储存区
702钉扎层
704转移栅极
706硅半导体层
708基板层
710外延层
712基板
714浅沟槽隔离
716浅沟槽隔离
718沟槽
720沟槽
722介电材料
1000将形成光侦测器的区域
1002将形成电荷转电压转换区的区域
1004掩模层
1006开口
1008掩模层
1010开口
1100掩模层
1102开口
1200井
1300像素
1302硅-二氧化硅界面
1304硅-二氧化硅界面
1306介电结构
1308将被放大的区域
1309 STI区
1310将被放大的区域
1311 STI区
1400栅极氧化层
1402氮化硅层
1404固定正电荷
1406界面
1500介电结构
1502氧化物衬里层
1504氮化硅层
1506固定正电荷
1508界面
1600介电结构
1602栅极氧化层
1604氮化硅层
1606将被放大的区域
1700固定正电荷
1800衬垫氧化层
1802氮化层
1804衬里氧化层
1806掩模层
1808开口
1810氮化硅层
1812介电材料
1814氮化层
1816掩模层
1818开口
1820栅极氧化层
1822氮化硅层
RG重设栅极
RS行选择晶体管
SF放大器晶体管
STI浅沟槽隔离
TG转移栅极
VDD电压供应
VOUT输出端

Claims (6)

1.一种包括具有多个像素的成像区域的图像传感器,其中至少一个像素包括:
光侦测器,其包括安置在具有n导电类型的硅半导体层中的具有p导电类型的储存区;
安置在所述硅半导体层中的横向地邻近所述储存区的第一浅沟槽隔离区,其中所述第一浅沟槽隔离区包括形成在所述硅半导体层中的沟槽,所述沟槽包括沿所述沟槽的内底部和侧壁安置的第一介电结构,其中所述介电结构包括安置在氧化物衬里层上的第一氮化硅层;
具有所述n导电类型的隔离层,所述隔离层仅部分地沿所述沟槽的紧邻所述储存区的外底部和侧壁安置在所述硅半导体层中;
具有所述n导电类型的钉扎层,所述钉扎层安置在所述储存区之上并连接至所述隔离层;以及
介电结构,所述介电结构安置在所述钉扎层和所述硅半导体层的至少一部分之上,其中所述介电结构包括安置在所述钉扎层和所述硅半导体层之上的栅极氧化层和安置在所述栅极氧化层的至少一部分之上的氮化硅层,其中所述氮化硅层在位于所述光侦测器和所述电荷转电压转换区之间的转移栅极下延伸。
2.如权利要求1所述的图像传感器,其特征在于,还包括安置在所述硅半导体层中的具有所述p导电类型的电荷转电压转换区和安置在所述储存区与所述电荷转电压转换区之间的转移栅极。
3.如权利要求2所述的图像传感器,其特征在于,还包括安置在所述硅半导体层中的横向地邻近所述电荷转电压转换区的第二浅沟槽隔离区,其中所述第二浅沟槽隔离区包括沿该沟槽的内底部和侧壁安置的第二介电结构,其中该介电结构包括安置在栅极氧化层上的第二氮化硅层。
4.如权利要求2所述的图像传感器,其特征在于,还包括安置在所述硅半导体层中的横向地邻近所述电荷转电压转换区的具有n导电类型的井。
5.如权利要求1所述的图像传感器,其特征在于,所述图像传感器被安置在图像捕捉装置中。
6.一种包括具有多个像素的成像区域的图像传感器,其中至少一个像素包括:
光侦测器,其包括安置在具有n导电类型的硅半导体层中的具有p导电类型的储存区;
安置在所述硅半导体层中的具有所述p导电类型的电荷转电压转换区;
安置在所述光侦测器和所述电荷转电压转换区之间的转移栅极;
安置在所述硅半导体层中的横向地邻近所述光侦测器的第一浅沟槽隔离区,其中所述第一浅沟槽隔离区包括形成在所述层中的沟槽,所述沟槽包括沿所述沟槽的内底部和侧壁安置的第一介电结构,其中所述第一介电结构包括安置在氧化物衬里层上的第一氮化硅层;
具有所述n导电类型的隔离层,所述隔离层仅部分地沿所述沟槽的紧邻所述储存区的外底部和侧壁安置在所述硅半导体层中;
安置在所述硅半导体层中的横向地邻近所述电荷转电压转换区的第二浅沟槽隔离区,其中所述第二浅沟槽隔离区包括形成在所述硅半导体层中的沟槽,该沟槽包括沿该沟槽的内底部和侧壁安置的第二介电结构,其中所述第二介电结构包括安置在栅极氧化层上的第二氮化硅层;
具有所述n导电类型的钉扎层,所述钉扎层安置在所述储存区之上并连接至所述隔离层;以及
介电结构,所述介电结构安置在所述钉扎层和所述硅半导体层的至少一部分之上,其中所述介电结构包括安置在所述钉扎层和所述硅半导体层之上的栅极氧化层和安置在所述栅极氧化层的至少一部分之上的氮化硅层,其中所述氮化硅层在所述转移栅极下延伸。
CN201110307872.9A 2010-09-30 2011-09-29 图像传感器中的光侦测器隔离 Active CN102446940B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38801310P 2010-09-30 2010-09-30
US61/388,013 2010-09-30
US12/966,224 2010-12-13
US12/966,224 US8378398B2 (en) 2010-09-30 2010-12-13 Photodetector isolation in image sensors

Publications (2)

Publication Number Publication Date
CN102446940A CN102446940A (zh) 2012-05-09
CN102446940B true CN102446940B (zh) 2014-10-15

Family

ID=45889063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110307872.9A Active CN102446940B (zh) 2010-09-30 2011-09-29 图像传感器中的光侦测器隔离

Country Status (4)

Country Link
US (1) US8378398B2 (zh)
CN (1) CN102446940B (zh)
HK (1) HK1170843A1 (zh)
TW (1) TWI456750B (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057256B2 (en) 2001-05-25 2006-06-06 President & Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
US7442629B2 (en) 2004-09-24 2008-10-28 President & Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US8692198B2 (en) 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
WO2011160130A2 (en) 2010-06-18 2011-12-22 Sionyx, Inc High speed photosensitive devices and associated methods
US8378398B2 (en) * 2010-09-30 2013-02-19 Omnivision Technologies, Inc. Photodetector isolation in image sensors
US20120080731A1 (en) * 2010-09-30 2012-04-05 Doan Hung Q Photodetector isolation in image sensors
US9496308B2 (en) 2011-06-09 2016-11-15 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
WO2013010127A2 (en) 2011-07-13 2013-01-17 Sionyx, Inc. Biometric imaging devices and associated methods
US9064764B2 (en) 2012-03-22 2015-06-23 Sionyx, Inc. Pixel isolation elements, devices, and associated methods
US9659981B2 (en) * 2012-04-25 2017-05-23 Taiwan Semiconductor Manufacturing Co., Ltd. Backside illuminated image sensor with negatively charged layer
US8921187B2 (en) * 2013-02-26 2014-12-30 Omnivision Technologies, Inc. Process to eliminate lag in pixels having a plasma-doped pinning layer
US9006080B2 (en) * 2013-03-12 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Varied STI liners for isolation structures in image sensing devices
WO2014151093A1 (en) 2013-03-15 2014-09-25 Sionyx, Inc. Three dimensional imaging utilizing stacked imager devices and associated methods
US9369648B2 (en) * 2013-06-18 2016-06-14 Alexander Krymski Image sensors, methods, and pixels with tri-level biased transfer gates
WO2014209421A1 (en) 2013-06-29 2014-12-31 Sionyx, Inc. Shallow trench textured regions and associated methods
US9147710B2 (en) 2013-07-23 2015-09-29 Taiwan Semiconductor Manufacturing Co., Ltd. Photodiode gate dielectric protection layer
KR102131327B1 (ko) 2013-08-16 2020-07-07 삼성전자 주식회사 소스 팔로워를 포함하는 이미지 센서
US9111993B1 (en) * 2014-08-21 2015-08-18 Omnivision Technologies, Inc. Conductive trench isolation
WO2017024121A1 (en) 2015-08-04 2017-02-09 Artilux Corporation Germanium-silicon light sensing apparatus
US9466753B1 (en) * 2015-08-27 2016-10-11 Globalfoundries Inc. Photodetector methods and photodetector structures
US9847363B2 (en) * 2015-10-20 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with a radiation sensing region and method for forming the same
US10418407B2 (en) 2015-11-06 2019-09-17 Artilux, Inc. High-speed light sensing apparatus III
US9728575B1 (en) * 2016-02-08 2017-08-08 Semiconductor Components Industries, Llc Pixel and circuit design for image sensors with hole-based photodiodes
JP6789653B2 (ja) * 2016-03-31 2020-11-25 キヤノン株式会社 光電変換装置およびカメラ
TWI585962B (zh) * 2016-04-18 2017-06-01 恆景科技股份有限公司 互補金屬氧化物半導體影像感測器及形成方法
JP6911767B2 (ja) 2016-04-25 2021-07-28 ソニーグループ株式会社 固体撮像素子およびその製造方法、並びに電子機器
TWI745582B (zh) * 2017-04-13 2021-11-11 美商光程研創股份有限公司 鍺矽光偵測裝置
US10672810B2 (en) 2017-10-31 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS image sensor with shallow trench edge doping
JPWO2019093150A1 (ja) * 2017-11-09 2020-11-26 ソニーセミコンダクタソリューションズ株式会社 撮像素子、電子機器
US10475828B2 (en) * 2017-11-21 2019-11-12 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device structure with doping layer in light-sensing region
US11448830B2 (en) 2018-12-12 2022-09-20 Artilux, Inc. Photo-detecting apparatus with multi-reset mechanism
TW202104927A (zh) 2019-06-19 2021-02-01 美商光程研創股份有限公司 光偵測裝置以及電流再利用方法
CN112397529A (zh) * 2019-08-12 2021-02-23 天津大学青岛海洋技术研究院 带有低噪声源跟随器的图像传感器像素结构及其制作方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102184B2 (en) * 2003-06-16 2006-09-05 Micron Technology, Inc. Image device and photodiode structure
US7148528B2 (en) * 2003-07-02 2006-12-12 Micron Technology, Inc. Pinned photodiode structure and method of formation
US7385238B2 (en) * 2004-08-16 2008-06-10 Micron Technology, Inc. Low dark current image sensors with epitaxial SiC and/or carbonated channels for array transistors
JP4967237B2 (ja) * 2005-01-28 2012-07-04 パナソニック株式会社 固体撮像装置
US7141836B1 (en) 2005-05-31 2006-11-28 International Business Machines Corporation Pixel sensor having doped isolation structure sidewall
US7728277B2 (en) * 2005-11-16 2010-06-01 Eastman Kodak Company PMOS pixel structure with low cross talk for active pixel image sensors
US20070200196A1 (en) * 2006-02-24 2007-08-30 Lattice Semiconductor Corporation Shallow trench isolation (STI) devices and processes
US20090243025A1 (en) * 2008-03-25 2009-10-01 Stevens Eric G Pixel structure with a photodetector having an extended depletion depth
US7800147B2 (en) * 2008-03-27 2010-09-21 International Business Machines Corporation CMOS image sensor with reduced dark current
US8618458B2 (en) * 2008-11-07 2013-12-31 Omnivision Technologies, Inc. Back-illuminated CMOS image sensors
US20100140668A1 (en) * 2008-12-08 2010-06-10 Stevens Eric G Shallow trench isolation regions in image sensors
US20100148230A1 (en) * 2008-12-11 2010-06-17 Stevens Eric G Trench isolation regions in image sensors
US8018016B2 (en) * 2009-06-26 2011-09-13 Omnivision Technologies, Inc. Back-illuminated image sensors having both frontside and backside photodetectors
US8654232B2 (en) * 2010-08-25 2014-02-18 Sri International Night vision CMOS imager with optical pixel cavity
US20120080731A1 (en) * 2010-09-30 2012-04-05 Doan Hung Q Photodetector isolation in image sensors
US8378398B2 (en) * 2010-09-30 2013-02-19 Omnivision Technologies, Inc. Photodetector isolation in image sensors
US8101450B1 (en) * 2010-12-13 2012-01-24 Omnivision Technologies, Inc. Photodetector isolation in image sensors

Also Published As

Publication number Publication date
TW201222801A (en) 2012-06-01
TWI456750B (zh) 2014-10-11
US20120080733A1 (en) 2012-04-05
US8378398B2 (en) 2013-02-19
CN102446940A (zh) 2012-05-09
HK1170843A1 (zh) 2013-03-08

Similar Documents

Publication Publication Date Title
CN102446940B (zh) 图像传感器中的光侦测器隔离
US10367025B2 (en) Solid-state imaging device and method of manufacturing the device
CN102544038B (zh) 用于产生图像传感器中的光电检测器隔离的方法
CN113437105B (zh) 固态图像感测装置及电子装置
US8227844B2 (en) Low lag transfer gate device
US7205584B2 (en) Image sensor for reduced dark current
US8743247B2 (en) Low lag transfer gate device
US7696597B2 (en) Split transfer gate for dark current suppression in an imager pixel
US9659987B2 (en) Approach for reducing pixel pitch using vertical transfer gates and implant isolation regions
US8310003B2 (en) Solid-state imaging device with vertical gate electrode and method of manufacturing the same
US20150372034A1 (en) High dielectric constant structure for the vertical transfer gates of a complementary metal-oxide semiconductor (cmos) image sensor
US8669135B2 (en) System and method for fabricating a 3D image sensor structure
US20060243981A1 (en) Masked spacer etching for imagers
US11894401B2 (en) Pixel device layout to reduce pixel noise
US11688749B2 (en) Image sensing device
TW201036152A (en) Shallow trench isolation regions in image sensors
US20220238575A1 (en) Dummy vertical transistor structure to reduce cross talk in pixel sensor
CN102446942A (zh) 在成像器中形成光侦测器隔离的方法
CN102446941A (zh) 图像传感器中的光侦测器隔离
CN113889492A (zh) 具有抬高式浮动扩散部的图像传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1170843

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1170843

Country of ref document: HK

CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: OmniVision Technologies, Inc.

Address before: American California

Patentee before: Omnivision Technologies, Inc.

CP01 Change in the name or title of a patent holder