CN102419310A - 一种检测Hg2+的方法 - Google Patents

一种检测Hg2+的方法 Download PDF

Info

Publication number
CN102419310A
CN102419310A CN2011102632110A CN201110263211A CN102419310A CN 102419310 A CN102419310 A CN 102419310A CN 2011102632110 A CN2011102632110 A CN 2011102632110A CN 201110263211 A CN201110263211 A CN 201110263211A CN 102419310 A CN102419310 A CN 102419310A
Authority
CN
China
Prior art keywords
test sample
treat
add
solution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102632110A
Other languages
English (en)
Other versions
CN102419310B (zh
Inventor
杨瑜涛
霍方俊
阴彩霞
刘滇生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN 201110263211 priority Critical patent/CN102419310B/zh
Publication of CN102419310A publication Critical patent/CN102419310A/zh
Application granted granted Critical
Publication of CN102419310B publication Critical patent/CN102419310B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种检测Hg2+的方法,是基于荧光素衍生物Fluorescein Hydrazide(FH)的定量检测Hg2+的方法。具体是在pH为8.0的缓冲溶液中用FH,并借助紫外可见光谱或者荧光光谱定量地检测Hg2+的含量。该检测方法,对Hg2+显示了高的灵敏性和选择性,检测过程简便、灵敏、快速,检测结果准确。

Description

一种检测Hg2+的方法
技术领域
本发明涉及Hg2+检测分析技术,具体属于一种基于荧光素衍生物Fluorescein Hydrazide(FH)的定量检测Hg2+的方法。
背景技术
汞离子(Hg2+)是剧毒的重金属元素之一,对汞离子的选择性识别尤其是汞离子的荧光成像技术、实时、在线监测对于医学、生物学和环境科学都具有重要意义。汞是一种严重危害人体健康的金属,由于其具有持久性、易迁移性和高度的生物富集性,成为全球最引人关注的环境污染物之一。汞离子一旦进入海洋,细菌可将无机汞转化为有机汞如(甲基汞),并不断的在海洋中的生物体内累积,尤其是可食用的鱼类体内累积,最后经食物链被人类吸收。甲基汞会毒害神经,可导致感知、行为紊乱和神经损伤,对机体造成以神经毒性和肾脏毒性为主的多系统损害从而对人类健康构成巨大威胁。基于以上原因,汞的检测引起人们的极大关注,不断探讨其检测方法。
当前,常见的汞元素检测手段主要是原子吸收发射光谱法、X射线荧光光谱法、电感耦合等离子体、质谱、核磁共振、比色法(如传统的双硫腙法)、电化学方法(如阳极溶出伏安法、氧化还原电位法等)。但这些分析手段在实际应用中既昂贵又繁琐,且常常需要特殊的实验仪器。因此,发展高效、廉价、简捷的汞离子检测方法成为重要的研究目标。
发明内容:
本发明的目的是提供一种体系简单、操作方便、选择性高的Hg2+定量检测的方法。
本发明提供的检测Hg2+的方法,是一种基于荧光素衍生物Fluorescein Hydrazide(FH)检测汞离子的方法。
本发明采用的检测汞离子的试剂是荧光素衍生物(FH),参照文献(T.R.Li,Z.Y.Yang,Y.Li,Z.C.Liu,G.F.Qi,B.D Wang,Dyes and Pigments,2011,88,103-108)合成。合成路线为:
Figure BDA0000089515400000011
FH的合成方法:将0.1mol的荧光素溶解在20mL的乙醇中,并加入过量的水合肼(85%,1.2mL),在油浴中回流8小时,减压蒸馏得到棕色油状产物,用乙醇重结晶得到FH。
本发明提供的一种检测Hg2+的方法,包括如下步骤:
(1)配制pH=8.0、浓度为1-100mM的HEPES缓冲溶液,并用乙醇配制2mM的FH乙醇溶液;
(2)把1mL的HEPES缓冲溶液和1mL乙醇溶液加到干净的紫外比色皿中,并加入30μL的FH乙醇溶液,在紫外可见分光光度仪上检测,随着待测样的加入,吸收峰397nm、504nm和641nm均逐渐上升,当吸收峰不再上升时,停止加待测样,此时加入待测样的体积计为V待测样
(3)按30×1×2×10-3/V待测样计算出待测样中Hg2+的浓度(mol/L)。
本发明提供的另一种检测Hg2+的方法,包括如下步骤:
(1)配制pH=8.0、浓度为1-100mM的HEPES缓冲溶液,并用乙醇配制2mM的FH乙醇溶液;
(2)把1mL的HEPES缓冲溶液和1mL乙醇溶液加到干净的荧光比色皿中,并加入1μL的FH乙醇溶液,在荧光可见分光光度仪上检测,随着待测样的加入,522nm出现明显的荧光增强,且随着Hg2+浓度的增大,荧光强度也增大,当强度不再增大时,停止加待测样,此时加入待测样的体积计为V待测样
(3)按1×1×2×10-3/V待测样计算出待测样中Hg2+的浓度(mol/L)。
经实验证明,其它离子不干扰体系对汞离子的测定。
与现有技术相比,本发明具有如下优点和效果:1、检测体系成本低廉,试剂由荧光素和水合肼,在回流8小时下一步制得,原料便宜,反应条件简单,易于生产;2、本发明的检测方法,对Hg2+显示了高的选择性,不受其他离子的干扰;3、检测过程简便、灵敏,检测结果准确;4、检测手段简单,只需要借助紫外分光光度计或荧光分光光度计,其中借助荧光分光光度计,汞离子的检测极限更低。
附图说明:
图1实施例1FH的单晶衍射结构图。
图2实施例2检测Hg2+的紫外吸收图。
图3实施例3FH和各种阳离子作用的紫外可见吸收图。
图4实施例4FH和各种阳离子作用的紫外柱状图及颜色对照图。
图5实施例5检测Hg2+的荧光发射图。
图6实施例6Hg2+和其他阳离子的荧光发射图。
图7实施例7加入Hg2+和其他阳离子的荧光柱状图。
具体实施方式:
实施例1
FH的合成:将0.1mol的荧光素溶解在20mL的乙醇中,并加入过量的水合肼(85%,1.2mL),在油浴中回流8小时,减压蒸馏得到棕色油状产物,用乙醇重结晶得到FH。
FH的表征:1H NMR,(DMSO-d6):δ(ppm)9.80(s,2H),7.76(m,1H),7.48(m,2H),6.99(m,1H),6.58(s,2H),6.43(d,2H),6.38(d,2H),4.37(s,2H);13C NMR(75MHz,CDCl3):δ24.25,33.00,113.31,117.96,121.58,121.88,123.80,138.69,156.24,196.37;ESI-MS m/z 347.2[FH1+H]+(calcd.347.1);元素分析(calcd.%):C20H14N2O4,C,69.36;N,8.09;H,4.07:Found:C,69.30;N,8.11;H,4.01.晶体数据:C20H16N2O5:crystal size:0.22×0.2×0.1,triclinic,spacegroup P-1(No.2).
Figure BDA0000089515400000031
Figure BDA0000089515400000032
Figure BDA0000089515400000033
α=104.34(3)°,β=109.09(3)°,γ=99.67(3)°,
Figure BDA0000089515400000034
Z=2,T=173K,θmax=25.0°,7521reflectionsmeasured,2762unique(Rint=0.0412).Final residual for 250parameters and 2503reflections withI>2σ(I):R1=0.0622,wR2=0.1390,GOF=1.17.单晶衍射结构图见图1。
实施例2
配制pH=8.0的的HERES(10mM)缓冲溶液,配制2mM的Hg2+溶液,并用乙醇配制2mM的FH溶液;把1mL的乙醇和1mL HERES缓冲溶液及30μL的FH乙醇溶液加到干净的紫外比色皿中,在紫外可见分光光度仪上检测,在397nm,504nm和642nm有吸收;取Hg2+的溶液,逐渐用微量进样器加到此比色皿中,边加样边在紫外可见分光光度仪上检测,随着Hg2+的加入,吸收峰397nm,504nm和642nm均逐渐升高,当吸收峰不再升高时,停止加待测样,此时加入待测样的体积计为30μL;按30×1×2×10-3/30计算出Hg2+的含量为2×10-3(mol/L)。紫外可见吸收图见图2。
实施例3
把1mL的乙醇和1mL的pH8.0HERES(10mM)缓冲溶液及2mM、30μL的FH乙醇溶液分别加到不同的紫外比色皿中,再分别加入等摩尔的Hg2+,以及10摩尔当量的其他各种阳离子的紫外可见吸收图见图3。
实施例4
把1mL的乙醇和1mL的pH8.0HERES(10mM)缓冲溶液及2mM、30μL的FH乙醇溶液分别加到不同的紫外比色皿中,再分别加入等摩尔量的Hg2+,以及10摩尔当量的其他各种阳离子,在紫外可见光谱仪测定642nm的吸收值,绘制不同阳离子对应的吸收值的柱状图,见图4(内部为对应的溶液颜色变化图)。
实施例5
配制pH=8.0的的HEPES(10mM)缓冲溶液,配制2mM的Hg2+溶液,并用乙醇配制2mM的FH溶液;把1mL的乙醇和1mL的HEPES缓冲溶液及1μL的FH乙醇溶液加到干净的荧光比色皿中,取Hg2+的溶液,逐渐用微量进样器加到此比色皿中,边加样边在荧光分光光度仪上检测,随着Hg2+的加入,522nm处荧光强度逐渐增强,当荧光强度不再变化时,停止加待测样。此时加入待测样的体积计为1μL;按1×1×2×10-3/1计算出Hg2+的含量为2×10-3(mol/L)。紫外可见吸收图见图5。
实施例6
配制pH=8.0的HEPES(10mM)缓冲溶液,配制2mM的Hg2+溶液,并用乙醇配制2mM的FH溶液;把1mL的乙醇和1mL的HEPES缓冲溶液及1μL的FH乙醇溶液分别加到不同的荧光比色皿中,再分别加入等摩尔量的Hg2+,以及10摩尔当量的其他各种阳离子的荧光图见图6。
实施例7
把1mL的乙醇和1mL的HEPES缓冲溶液及1μL的FH乙醇溶液分别加到不同的荧光比色皿中,并分别加入等摩尔量的Hg2+,以及10摩尔当量的其他各种阳离子,在荧光分光光度仪上检测,绘制不同阳离子对应的522nm荧光强度的柱状图,见图7。

Claims (2)

1.一种检测Hg2+的方法,其特征在于包括如下步骤:
(1)配制pH=8.0、浓度为1-100mM的HEPES缓冲溶液,并用乙醇配制2mM的FH乙醇溶液;
(2)把1mL的HEPES缓冲溶液和1mL乙醇溶液加到干净的紫外比色皿中,并加入30μL的FH乙醇溶液,在紫外可见分光光度仪上检测,随着待测样的加入,吸收峰397nm、504nm和641nm均逐渐上升,当吸收峰不再上升时,停止加待测样,此时加入待测样的体积计为V待测样
(3)按30×1×2×10-3/V待测样计算出待测样中Hg2+的浓度(mol/L)。
2.一种检测Hg2+的方法,其特征在于包括如下步骤:
(1)配制pH=8.0、浓度为1-100mM的HEPES缓冲溶液,并用乙醇配制2mM的FH乙醇溶液;
(2)把1mL的HEPES缓冲溶液和1mL乙醇溶液加到干净的荧光比色皿中,并加入1μL的FH乙醇溶液,在荧光可见分光光度仪上检测,随着待测样的加入,522nm出现明显的荧光增强,且随着Hg2+浓度的增大,荧光强度也增大,当强度不再增大时,停止加待测样,此时加入待测样的体积计为V待测样
(3)按1×1×2×10-3/V待测样计算出待测样中Hg2+的浓度(mol/L)。
CN 201110263211 2011-09-07 2011-09-07 一种检测Hg2+的方法 Expired - Fee Related CN102419310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110263211 CN102419310B (zh) 2011-09-07 2011-09-07 一种检测Hg2+的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110263211 CN102419310B (zh) 2011-09-07 2011-09-07 一种检测Hg2+的方法

Publications (2)

Publication Number Publication Date
CN102419310A true CN102419310A (zh) 2012-04-18
CN102419310B CN102419310B (zh) 2013-04-24

Family

ID=45943824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110263211 Expired - Fee Related CN102419310B (zh) 2011-09-07 2011-09-07 一种检测Hg2+的方法

Country Status (1)

Country Link
CN (1) CN102419310B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411943A (zh) * 2013-09-02 2013-11-27 中国科学院合肥物质科学研究院 基于藻红B的荧光淬灭法或比色法检测Ag+、Hg2+和Fe3+的方法
CN106442366A (zh) * 2016-12-06 2017-02-22 厦门理工学院 一种铜离子显色试剂及其制备方法和应用
CN106990081A (zh) * 2017-04-10 2017-07-28 江苏大学 一种基于石墨烯氧化物传感器及其对Hg2+检测的方法
CN113698419A (zh) * 2021-04-21 2021-11-26 苏州科技大学 一种低毒性四碘代荧光素螺环内硫酯荧光探针及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007210A2 (en) * 2006-07-11 2008-01-17 Universita' Di Pisa Nitrogenous n-substituted 4-spiro-heterocyclic 2, 2 -dimethylchromane derivatives
CN101285776A (zh) * 2008-04-25 2008-10-15 山西大学 一种检测水溶液中草酸根的方法
CN101372494A (zh) * 2007-08-23 2009-02-25 中国科学院化学研究所 用于汞离子痕量检测的化合物及其制备方法与应用
CN101477059A (zh) * 2009-01-09 2009-07-08 山西大学 快速检测水溶液中无机磷的方法
KR20100028274A (ko) * 2008-09-04 2010-03-12 한국원자력연구원 수은 또는 구리 이온 선택성을 갖는 형광화합물, 이를 이용한 이온 검출 방법 및 형광센서

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007210A2 (en) * 2006-07-11 2008-01-17 Universita' Di Pisa Nitrogenous n-substituted 4-spiro-heterocyclic 2, 2 -dimethylchromane derivatives
WO2008007210A3 (en) * 2006-07-11 2008-08-14 Univ Pisa Nitrogenous n-substituted 4-spiro-heterocyclic 2, 2 -dimethylchromane derivatives
CN101372494A (zh) * 2007-08-23 2009-02-25 中国科学院化学研究所 用于汞离子痕量检测的化合物及其制备方法与应用
CN101285776A (zh) * 2008-04-25 2008-10-15 山西大学 一种检测水溶液中草酸根的方法
KR20100028274A (ko) * 2008-09-04 2010-03-12 한국원자력연구원 수은 또는 구리 이온 선택성을 갖는 형광화합물, 이를 이용한 이온 검출 방법 및 형광센서
CN101477059A (zh) * 2009-01-09 2009-07-08 山西大学 快速检测水溶液中无机磷的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANGJIE HE, ET AL: "Ratiometric fluorescence chemosensors for copper(II) and mercury(II) based on FRET systems", 《TETRAHEDRON》 *
李洪伟: "基于磺酰胺基团的汞离子荧光探针的设计、合成及识别机理研究", 《中国博士学位论文全文数据库》 *
赵英,等: "微量汞的紫外分光光度法测定", 《西安工业学院学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411943A (zh) * 2013-09-02 2013-11-27 中国科学院合肥物质科学研究院 基于藻红B的荧光淬灭法或比色法检测Ag+、Hg2+和Fe3+的方法
CN106442366A (zh) * 2016-12-06 2017-02-22 厦门理工学院 一种铜离子显色试剂及其制备方法和应用
CN106442366B (zh) * 2016-12-06 2019-05-10 厦门理工学院 一种铜离子显色试剂及其制备方法和应用
CN106990081A (zh) * 2017-04-10 2017-07-28 江苏大学 一种基于石墨烯氧化物传感器及其对Hg2+检测的方法
CN113698419A (zh) * 2021-04-21 2021-11-26 苏州科技大学 一种低毒性四碘代荧光素螺环内硫酯荧光探针及其制备方法与应用
CN113698419B (zh) * 2021-04-21 2022-05-17 苏州科技大学 一种低毒性四碘代荧光素螺环内硫酯荧光探针及其制备方法与应用

Also Published As

Publication number Publication date
CN102419310B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
Bridgeman et al. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment
Maraldo et al. Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater
Jørgensen et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter
Guo et al. A reversible fluorescent chemosensor for cyanide in 100% aqueous solution
CN102419310B (zh) 一种检测Hg2+的方法
Müller et al. Amnesic shellfish poisoning biotoxin detection in seawater using pure or amino-functionalized Ag nanoparticles and SERS
Hu et al. Colorimetric detection of trace Hg2+ with near-infrared absorbing squaraine functionalized by dibenzo-18-crown-6 and its mechanism
Guo et al. A “turn-on” fluorescent chemosensor for aluminum ion and cell imaging application
Aghaei et al. A novel method for the preconcentration and determination of ampicillin using electromembrane microextraction followed by high‐performance liquid chromatography
Bhuvanesh et al. Small molecule “turn on” fluorescent probe for silver ion and application to bioimaging
Patel et al. Selective turn-off sensing of picric acid and p-nitrophenol using fluorescent histidine
CN102443388B (zh) 一种试剂及其在检测二价铜离子中的应用
CN104897585A (zh) 一种用于mc-lr快速检测的核酸适配体比色传感器的制备方法
Longobardi et al. Determination of ochratoxin A in wine by means of immunoaffinity and aminopropyl solid-phase column cleanup and fluorometric detection
CN109593078A (zh) N-丁基-4-羟基-1,8-萘二甲酰亚胺-3-甲醛-(2-吡啶)腙及应用
Berg et al. Spatial and temporal variability of dissolved organic matter molecular composition in a stratified eutrophic lake
Wang et al. Simultaneous determination of galanthamine and lycorine in Lycoris radiata by a capillary electrophoresis with an electrochemiluminescence method
Patsaeva et al. Excitation‐Dependent Fluorescence Quantum Yield for Freshwater Chromophoric Dissolved Organic Matter from Northern Russian Lakes
Feng et al. A highly selective fluorescent probe for the determination of Se (IV) in multivitamin tablets
Liu et al. A new “turn-on” fluorescent sensor for highly selective sensing of H2PO4−
Xiaoling et al. Chromophoric dissolved organic matter influence correction of algal concentration measurements using three-dimensional fluorescence spectra
CN103163107B (zh) 一种检测三价金离子的方法
Dumbare et al. Rhodamine B and rhodamine 6G based sensing of copper ions in environmental and biological samples: Recent Progress
Karuppiah et al. A novel indolehydrazone appended salicyaldehyde platform for detection of multianalytes (Al3+, Zn2+ and F-ions): Live cell imaging
Sunitha et al. The development of a simple imidazole-based probe for the selective detection of cyanide ion in real samples

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130424

Termination date: 20150907

EXPY Termination of patent right or utility model