CN102409400A - Light-emitting diode (LED) epitaxial growth device - Google Patents

Light-emitting diode (LED) epitaxial growth device Download PDF

Info

Publication number
CN102409400A
CN102409400A CN2011103712875A CN201110371287A CN102409400A CN 102409400 A CN102409400 A CN 102409400A CN 2011103712875 A CN2011103712875 A CN 2011103712875A CN 201110371287 A CN201110371287 A CN 201110371287A CN 102409400 A CN102409400 A CN 102409400A
Authority
CN
China
Prior art keywords
annular
guard shield
graphite
hydrogen
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103712875A
Other languages
Chinese (zh)
Other versions
CN102409400B (en
Inventor
田宇
韩效亚
马子越
杜石磊
林晓珊
张双翔
张银桥
王向武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Changelight Co Ltd
Original Assignee
Yangzhou Changelight Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Changelight Co Ltd filed Critical Yangzhou Changelight Co Ltd
Priority to CN201110371287.5A priority Critical patent/CN102409400B/en
Publication of CN102409400A publication Critical patent/CN102409400A/en
Application granted granted Critical
Publication of CN102409400B publication Critical patent/CN102409400B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention discloses a light-emitting diode (LED) epitaxial growth device, which belongs to the technical field of epitaxial growth equipment. The upper end and the lower end of a furnace barrel are connected with a furnace cover and a furnace bottom respectively; a nitrogen inlet, a mixed gas introducing channel and a plurality of hydrogen inlet channels are formed in the furnace cover respectively; an annular temperature equalization component is clamped between the furnace cover and an annular graphite protective cover; in the annular graphite protective cover, a cooling device is arranged at the lower end of the annular temperature equalization component; a hydrogen introducing channel is formed on the annular temperature equalization component; the upper end of the hydrogen introducing channel is connected with the hydrogen inlet channels on the furnace cover, and the lower end of the hydrogen introducing channel is arranged above a small graphite base disc; and a gas exhaust opening is formed in the furnace bottom in the furnace barrel. By the device, the temperature between a reaction chamber and the furnace cover can be controlled; when a difference between the temperature in the reaction chamber and the temperature of the furnace cover is relatively small, particles are difficult to grow on the surface of the cooling device; therefore, the workload of replacing the cooling device can be eliminated, the time can be saved, and epitaxial production efficiency and the quality of an epitaxial product can be improved.

Description

The LED epitaxial growth device
Technical field
The invention belongs to the epitaxial growth equipment technical field, particularly in the technical field of structures of vapor phase epitaxial growth technology (MOCVD) reaction chamber loam cake temperature.
Background technology
In recent years, the LED growth technology was brought in constant renewal in, and production cost constantly reduces, and yield improves constantly, thereby for LED popularizes huge numbers of families, played great pushing effect.Simultaneously, the development of LED also runs into certain difficulty.In order to grow high-quality LED epitaxial wafer, epitaxy technology and equipment constantly update.At the extension technical elements, different new structure, for example combined type DBR, stress SQW, inverted structure, the surface coarsening GaP etc. of releasing of a lot of experts and scholars.Aspect epitaxial device, the MOCVD equipment supplier has a lot of novel MOCVD of release such as German AIXTRON company, U.S. VEECO company, japanic acid plain (NIPPON Sanso) and day new motor (Nissin Electric).
The loam cake of MOCVD reaction chamber all designs water coolant, wafer hygrosensor, MO source inlet mouth etc.In the epitaxial process, in order to grow the epitaxial wafer that wavelength good uniformity, brightness are high, the lattice match degree is high.Need the growth down of specific pressure and temperature in the reaction chamber.But because the influence of the factors such as variation of the distribution of gas flow, gas, the temperature in the reaction chamber, pressure; The temperature of reaction chamber bell has certain fluctuation, thus influence the Al component homogeneity, influence doping, influence the aspect such as brightness, voltage, electric current of LED.In epitaxial process, form particle on the ceiling surface simultaneously, these particles are attached to the surface of ceiling, and are long to a certain degree when these particles, under the drive of air-flow, come off and drop on substrate surface.Come off at the affected air-flow uniform distribution of substrate surface on the one hand, make outer layer growth inhomogeneous.Come off on the other hand at the particle of substrate surface, separated, be diffused in the epitaxial wafer surface, influence crystal mass by high speed airflow.The zone at particle place can't grow normal epitaxial film, therefore should just can not be used as led chip in the zone.Thereby influence the whole yield of LED epitaxial wafer.
Summary of the invention
The objective of the invention is to solve the deficiency of prior art, provide a kind of temperature of reaction controlled LED epitaxial growth device.
The present invention includes the ring furnace tube; At the upper/lower terminal of said stove tube be tightly connected respectively bell and furnace bottom; Connect vertical rotating shaft at the furnace bottom center through dynamic seal; The big graphite basal disc of horizontal arrangement in the stove tube, the center of said big graphite basal disc is fixedly connected with said vertical rotating shaft, arranges some gravelstone China ink basal discs at said big graphite basal disc upper surface; Below said big graphite basal disc through being arranged on the rack arrangement well heater on the furnace bottom; Between said well heater and big graphite basal disc, be horizontally disposed with quartzy guard shield; Between said quartzy guard shield and said stove tube, arrange annular graphite guard shield; Said annular graphite guard shield and said stove tube arranged concentric, and between annular graphite guard shield and the stove tube gap is set; Connect the nitrogen inlet mouth at the bell center, a mixed gas is set on bell inserts passage and some hydrogen induction trunks; Clamping annular samming assembly between bell and annular graphite guard shield; In said annular samming assembly, the volution gas passage is set; One end of said volution gas passage is connected with the inner that said mixed gas inserts passage, and the other end of said volution gas passage and said annular graphite guard shield are communicated with gap between the stove tube; In annular graphite guard shield, arrange refrigerating unit in said annular samming assembly lower end; On said annular samming assembly, offer hydrogen and introduce passage, the upper end of said hydrogen introducing passage is connected with the hydrogen induction trunk on the bell, and the lower end of hydrogen introducing passage is arranged in the top of gravelstone China ink basal disc; On the furnace bottom in the stove tube venting port is set.
Principle of work of the present invention is:
Need the extension material processed place on the gravelstone China ink basal disc, drive material through rotating shaft and in the graphite guard shield, rotate.
With H 2With N 2Monitor through mass flow controller; Under certain total flux; Hydrogen and nitrogen make it reach particular value through mass flow controller, insert passage through the mixed gas on the bell then and get into volution gas passage one end in the annular samming assembly; In the gap of discharging by the other end of passage under the effect of volution gas passage between annular graphite guard shield and the stove tube, discharge by the venting port on the furnace bottom at last.
The high temperature energy that well heater produces is upwards acted on the material in the gravelstone China ink basal disc by big graphite basal disc, gravelstone China ink basal disc behind quartzy guard shield samming successively.
The temperature that the refrigerating unit of annular samming assembly lower end and the mixed gas in the annular samming assembly are adjusted in the graphite guard shield jointly reaches the temperature condition that epitaxy technique needs.
The nitrogen that is got into by the nitrogen inlet mouth mixes the atmosphere that the back forms the epitaxy technique needs with the hydrogen that is got into by hydrogen inlet in the reaction chamber that is surrounded by graphite guard shield, bell and furnace bottom.
Temperature between may command reaction chamber of the present invention and the bell, the temperature in reaction chamber and the temperature head of bell hour just are not easy the particle of growing on the refrigerating unit surface.Therefore, can save the workload of changing refrigerating unit, save time, improve epitaxial growth efficient, also improve the quality of extension product.
Form closed cavity preferably in the reaction chamber in order to make, for waste gas is discharged, the epimere of annular graphite guard shield according to the invention is a solid construction again, and hypomere is the hollow structure that is provided with annular cavity.
Venting port on the furnace bottom according to the invention is communicated with the annular cavity of said annular graphite guard shield hypomere.
Manufacture for ease, annular samming assembly according to the invention is made up of two isometrical annular plates, and the helical flow groove is offered on an annular plate plane therein, and another annular plate arranged concentric is on the annular plate that is provided with the helical flow groove.
In like manner, make for ease, the xsect of helical flow groove according to the invention is semicircle.
The present invention also offers the thermopair plug receptacle on bell.Through the detection of thermopair, can more clearly understand the temperature between reaction chamber and the bell, thereby the temperature value of control value more exactly obtains optimum value.
Description of drawings
Fig. 1 is a kind of structural representation of the present invention.
Fig. 2 is gravelstone China ink basal disc and big graphite basal disc combination synoptic diagram.
Fig. 3 is the structural representation of the annular plate 7-1 of annular samming assembly 7.
Fig. 4 is the structural representation of the annular plate 7-2 of annular samming assembly 7.
Fig. 5 is an A portion partial enlarged drawing among Fig. 1.
Embodiment
One, LED epitaxial growth device structure:
Shown in Fig. 1 to 5, the present invention is provided with an annular stove tube 11, at the upper/lower terminal of stove tube 11 be tightly connected respectively bell 1 and furnace bottom 12.
Connect vertical rotating shaft 14 at furnace bottom 12 centers through dynamic seal 19, the big graphite basal disc 3 of horizontal arrangement in stove tube 11, the center of big graphite basal disc 3 is fixedly connected with vertical rotating shaft 14, arranges five gravelstone China ink basal discs 2 at big graphite basal disc 3 upper surfaces.
Below big graphite basal disc 3, arrange well heater 17, between well heater 17 and big graphite basal disc 3, be horizontally disposed with the quartzy guard shield 18 of annular through support 16 through the support 13 that is fixed on the furnace bottom 12.Between quartzy guard shield 18 and stove tube 11, arrange annular graphite guard shield 10, annular graphite guard shield 10 and stove tube 11 arranged concentric, and between annular graphite guard shield 10 and the stove tube 11 gap is set.The epimere 10-1 of annular graphite guard shield 10 is a solid construction, and hypomere 10-2 is the hollow structure that is provided with annular cavity.
Connect nitrogen inlet mouth 5 at bell 1 center, a mixed gas is set on bell 1 inserts passage 4 and the some hydrogen induction trunks 9 of a row.
Clamping annular samming assembly 7 between bell 1 and annular graphite guard shield 10 upper ends.Annular samming assembly 7 is made up of two isometrical annular plate 7-1 and 7-2.
Helical flow groove 7-3 is offered on a plane at annular plate 7-1, and the xsect of helical flow groove 7-3 is semicircle.Annular plate 7-2 covers on the annular plate 7-1 that is provided with helical flow groove 7-3 with one heart, makes between annular plate 7-1 and the 7-2 composition and forms the volution gas passage.The inner that the inner 7-4 of volution gas passage and mixed gas insert passage 4 is connected, and the outer end 7-5 of volution gas passage and annular graphite guard shield 10 are communicated with gap between the stove tube 11.
In annular graphite guard shield 10, arrange refrigerating unit 6 in annular samming assembly 7 lower ends.
On annular samming assembly 7, offer with hydrogen induction trunk 9 corresponding some hydrogen and introduce passage 7-6; The upper end that each hydrogen is introduced passage 7-6 respectively with bell 1 on corresponding hydrogen induction trunk 9 is connected, the lower end that each hydrogen is introduced passage 7-6 is arranged in the top of the black basal disc 2 of gravelstone.
On bell 1, offer thermopair plug receptacle 8.
Symmetry is offered two venting ports 15 on the furnace bottom 12 in stove tube 11, and each venting port 15 is communicated with the annular cavity of annular graphite guard shield 10 hypomere 10-2 respectively.
Two, operating process
MOCVD prepares beginning growing epitaxial sheet, and when reaction chamber reached certain pressure, the temperature of reaction chamber began to rise gradually.Hydrogen and nitrogen mix the back through mass flow controller respectively and insert the semicircle spiral shape airslide 7-3 of passage 4 entering the inside by mixed gas.Measure relative temperature through thermopair, obtain to regulate the relevant information of hydrogen and nitrogen mixed traffic ratio.Through regulating hydrogen and nitrogen mixed traffic ratio, the temperature head of the stability of the temperature of protective reaction chamber bell and bell and reaction chamber effectively.

Claims (6)

1.LED epitaxial growth device; Comprise the ring furnace tube; At the upper/lower terminal of said stove tube be tightly connected respectively bell and furnace bottom, connect vertical rotating shaft at the furnace bottom center through dynamic seal, the big graphite basal disc of horizontal arrangement in the stove tube; The center of said big graphite basal disc is fixedly connected with said vertical rotating shaft, arranges some gravelstone China ink basal discs at said big graphite basal disc upper surface; Below said big graphite basal disc through being arranged on the rack arrangement well heater on the furnace bottom; Between said well heater and big graphite basal disc, be horizontally disposed with quartzy guard shield; Between said quartzy guard shield and said stove tube, arrange annular graphite guard shield; Said annular graphite guard shield and said stove tube arranged concentric, and between annular graphite guard shield and the stove tube gap is set; It is characterized in that connecting the nitrogen inlet mouth, a mixed gas is set on bell inserts passage and some hydrogen induction trunks at the bell center; Clamping annular samming assembly between bell and annular graphite guard shield; In said annular samming assembly, the volution gas passage is set; One end of said volution gas passage is connected with the inner that said mixed gas inserts passage, and the other end of said volution gas passage and said annular graphite guard shield are communicated with gap between the stove tube; In annular graphite guard shield, arrange refrigerating unit in said annular samming assembly lower end; On said annular samming assembly, offer hydrogen and introduce passage, the upper end of said hydrogen introducing passage is connected with the hydrogen induction trunk on the bell, and the lower end of hydrogen introducing passage is arranged in the top of gravelstone China ink basal disc; On the furnace bottom in the stove tube venting port is set.
2. according to the said LED epitaxial growth device of claim 1, the epimere that it is characterized in that said annular graphite guard shield is a solid construction, and hypomere is the hollow structure that is provided with annular cavity.
3. according to the said LED epitaxial growth device of claim 2, it is characterized in that the venting port on the said furnace bottom is communicated with the annular cavity of said annular graphite guard shield hypomere.
4. according to the said LED epitaxial growth device of claim 1; It is characterized in that said annular samming assembly is made up of two isometrical annular plates; The helical flow groove is offered on an annular plate plane therein, and another annular plate arranged concentric is on the annular plate that is provided with the helical flow groove.
5. according to claim 1 or 4 said LED epitaxial growth devices, the xsect that it is characterized in that said helical flow groove is for semicircle.
6. according to the said LED epitaxial growth device of claim 1, it is characterized in that on bell, offering the thermopair plug receptacle.
CN201110371287.5A 2011-11-21 2011-11-21 Light-emitting diode (LED) epitaxial growth device Active CN102409400B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110371287.5A CN102409400B (en) 2011-11-21 2011-11-21 Light-emitting diode (LED) epitaxial growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110371287.5A CN102409400B (en) 2011-11-21 2011-11-21 Light-emitting diode (LED) epitaxial growth device

Publications (2)

Publication Number Publication Date
CN102409400A true CN102409400A (en) 2012-04-11
CN102409400B CN102409400B (en) 2014-03-19

Family

ID=45911731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110371287.5A Active CN102409400B (en) 2011-11-21 2011-11-21 Light-emitting diode (LED) epitaxial growth device

Country Status (1)

Country Link
CN (1) CN102409400B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572371A (en) * 2012-07-25 2014-02-12 中微半导体设备(上海)有限公司 Metal-organic compound epitaxial-growth reaction chamber and its exhaust device and exhaust method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723302A (en) * 2002-12-11 2006-01-18 阿莫诺公司 A substrate for epitaxy and a method of preparing the same
CN101418465A (en) * 2007-10-26 2009-04-29 应用材料股份有限公司 Hvpe showerhead design
CN102074624A (en) * 2010-11-29 2011-05-25 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method and device of LED epitaxial wafer
US20110253034A1 (en) * 2006-03-14 2011-10-20 Hirokazu Iwata Crystal preparing device, crystal preparing method, and crystal
CN202415739U (en) * 2011-11-21 2012-09-05 扬州乾照光电有限公司 Light emitting diode (LED) epitaxial growth device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1723302A (en) * 2002-12-11 2006-01-18 阿莫诺公司 A substrate for epitaxy and a method of preparing the same
US20110253034A1 (en) * 2006-03-14 2011-10-20 Hirokazu Iwata Crystal preparing device, crystal preparing method, and crystal
CN101418465A (en) * 2007-10-26 2009-04-29 应用材料股份有限公司 Hvpe showerhead design
CN102074624A (en) * 2010-11-29 2011-05-25 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method and device of LED epitaxial wafer
CN202415739U (en) * 2011-11-21 2012-09-05 扬州乾照光电有限公司 Light emitting diode (LED) epitaxial growth device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103572371A (en) * 2012-07-25 2014-02-12 中微半导体设备(上海)有限公司 Metal-organic compound epitaxial-growth reaction chamber and its exhaust device and exhaust method
CN103572371B (en) * 2012-07-25 2016-02-03 中微半导体设备(上海)有限公司 Organometallics epitaxial growth reaction chamber and gas barrier, method for exhausting

Also Published As

Publication number Publication date
CN102409400B (en) 2014-03-19

Similar Documents

Publication Publication Date Title
CN102021650B (en) Production method of large polycrystalline ingot
CN103014846A (en) Concentric-ring sprayer structure for material vapor phase epitaxy
KR20070107782A (en) Chemical vapor deposition reactor having multiple inlets
CN106811736B (en) A kind of chemical vapor deposition unit
CN202415739U (en) Light emitting diode (LED) epitaxial growth device
CN102691100A (en) Process chamber device and epitaxial equipment with it
CN102267698B (en) Arrangement mode and connection method of novel polysilicon reduction furnace with 18 pairs of rods
CN105839074A (en) Metal organic chemical vapor deposition apparatus for solar cell
CN103702938A (en) Device for producing polycrystal silicon and method for producing polycrystal silicon
CN102234792B (en) Suspended spraying type metal organic chemical vapor deposition (MOCVD) reactor
CN102766902B (en) Processing chamber device and the substrate processing equipment with this processing chamber device
CN102409400A (en) Light-emitting diode (LED) epitaxial growth device
CN201105990Y (en) Polycrystalline silicon hydrogen reducing furnace
JP5829547B2 (en) Polycrystalline silicon rod and polycrystalline silicon production equipment
CN201105993Y (en) Polycrystalline silicon hydrogen reducing furnace suitable for low-voltage normal power supply hot start
CN202359232U (en) Polycrystalline silicon reduction furnace with 48 pairs of sticks
CN102259862B (en) Novel polysilicon reduction furnace with 42 rods and connection mode
CN104981428B (en) The method of polysilicon deposition
CN206538501U (en) A kind of device of fast deposition single crystal growing furnace charcoal charcoal guide shell
CN112960674B (en) Chassis and chassis assembly of polycrystalline silicon reduction furnace and reduction furnace
CN202265417U (en) Polycrystalline silicon reduction furnace with novel nozzles
CN213231540U (en) 63-pair-rod reduction furnace chassis for polycrystalline silicon production
CN114134571A (en) Crucible assembly and single crystal growing apparatus having the same
CN102796992B (en) Reaction chamber device and substrate processing equipment with same
CN206298659U (en) Polycrystalline furnace thermal field device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant