CN102393328B - 一种测量硬薄膜与软基底界面断裂韧性方法 - Google Patents

一种测量硬薄膜与软基底界面断裂韧性方法 Download PDF

Info

Publication number
CN102393328B
CN102393328B CN 201110319476 CN201110319476A CN102393328B CN 102393328 B CN102393328 B CN 102393328B CN 201110319476 CN201110319476 CN 201110319476 CN 201110319476 A CN201110319476 A CN 201110319476A CN 102393328 B CN102393328 B CN 102393328B
Authority
CN
China
Prior art keywords
soft substrate
hard film
eta
interface
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110319476
Other languages
English (en)
Other versions
CN102393328A (zh
Inventor
冯雪
黄银
曲斌瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Wisdom Technology Co Ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN 201110319476 priority Critical patent/CN102393328B/zh
Publication of CN102393328A publication Critical patent/CN102393328A/zh
Application granted granted Critical
Publication of CN102393328B publication Critical patent/CN102393328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种测量硬薄膜与软基底界面断裂韧性方法,属于工程材料、结构形变及力学实验设备技术领域。该方法利用软基底受压发生向上偏转的屈曲,此时基底的上表面受到拉应力的作用,使得硬薄膜与软基底界面发生脱粘或滑移失效,求得界面失效的临界能量释放率,根据格里菲斯能量准则,将界面失效时的临界能量释放率作为断裂韧性。该方法特别适用于硬薄膜与软基底结构,操作简单、方便。

Description

一种测量硬薄膜与软基底界面断裂韧性方法
技术领域
本发明涉及一种测量硬薄膜与软基底界面断裂韧性的方法,属于工程材料、结构形变及力学实验设备技术领域。
背景技术
柔性电子可以避免传统电子产品硬、脆的特点,近来受到了学术界和工业界的广泛关注,其中无机柔性电子(硬薄膜-软基底结构)兼具无机半导体优良的电化学性能和塑性基底优良的柔韧性能,更是关注的重点。对于柔性电子结构,在使用过程中不可避免的需要承受反复的拉伸、弯曲等变形。此时,电子器件与基底界面可能出现脱粘、滑移等现象,而且这种界面的失效往往先于材料本身的破坏,因此有必要研究柔性电子结构的界面性能和破坏机理。
目前,有一些测量界面断裂韧性的标准实验方法。双悬臂梁(DCB)实验和端部载荷劈裂(ENF)实验分别适用于纯Ⅰ型裂纹和纯Ⅱ型裂纹,三点弯实验、四点弯实验一般用来测量均匀金属材料的混合型断裂韧性,Brazil-nut用来进行脆性材料的混合型断裂实验。然而,对于无机柔性电子,一般具有硬薄膜-软基底结构。传统的测试方法将导致软基底很大的变形,相应的非线性行为大大降低了测试的精度。因此,亟待开发测量无机柔性电子界面断裂韧性的方法。
发明内容
本发明的目的是提供一种测量硬薄膜与软基底界面断裂韧性的方法,对柔性电子结构设计具有指导意义,避免柔性结构因变形过渡而失效。该方法特别适用于硬薄膜-软基底的结构,操作简单、方便。
本发明的技术方案如下:
本发明提供一种测量硬薄膜与软基底界面断裂韧性的方法,其特征在于该方法包括如下步骤:
1)将贴有硬薄膜的软基底水平放置在平板上,固定软基底的A端,同时允许B端在水平方向的移动,记录软基底的原长L;
2)对软基底的B端施加水平方向的压力,使软基底发生向上偏转的屈曲,并实时观察硬薄膜与软基底的界面直至界面脱粘或者滑移现象出现为止,记录此时软基底在水平方向的压缩量dL;
根据格里菲斯能量准则,断裂韧性可以由能量释放率表征,利用下列公式求得硬薄膜与软基底的界面出现脱粘失效和滑移失效的临界能量释放率分别为:
Figure GDA00003504067300021
其中,
Figure GDA00003504067300022
为软基底单位厚度所受的轴力,
Figure GDA00003504067300023
为软基底中心处的挠度,hf和hs分别为硬薄膜和软基底的厚度,E′f和E′s分别为硬薄膜和软基底的平面应变模量,下标“f”和“s”分别表示硬薄膜和软基底,η=hf/hs,t=E′f/E′s,∑=Δ23 Δ 1 = tη ( 1 + η ) 1 + tη , Δ 2 = η [ η 2 + 3 ( 1 + tη ) 2 ] , Δ 3 = 1 + 3 ( tη 1 + tη ) 2 .
本发明与现有技术相比,具有以下的优点和突出性效果:通过位移加载实时观察薄膜与基底界面的失效,并测量硬薄膜-软基底的界面断裂韧性,操作简单、方便。
附图说明
图1是本发明操作的示意图。
图中:(a)为贴有硬薄膜的软基底加载前的状态;(b)为对贴有硬薄膜的软基底施加水平方向压力的示意图;(c)为硬薄膜与软基底界面的滑移失效;(d)为硬薄膜与软基底的脱粘失效。
图2是一种可以实现本发明方法的装置结构示意图。
图中:1-支座、2-滑移块、3-圆头螺栓、4-硬薄膜、5-软基底。
具体实施方式
下面结合附图进一步说明本发明提供的测量柔性电子器件界面断裂韧性的方法,该方法包括如下步骤:
1).将贴有硬薄膜的软基底水平放置在平板上,固定软基底的A端,同时允许B端在水平方向的移动(如图1(a)所示),记录软基底5的原长L;
2).对软基底的B端施加水平方向的压力,使软基底发生向上偏转的屈曲(图1(b)所示),此时软基底的上表面受到拉应力的作用,使得硬薄膜与软基底界面有发生脱粘或滑移的趋势。继续施加压力,并实时观察硬薄膜与软基底的界面直至脱粘或者滑移现象出现为止。记录此时软基底在水平方向的压缩量dL,如图1所示。基于复合梁理论并忽略薄膜对屈曲形貌的影响,因此软基底失稳后的形状可以由正弦函数w=w0sin(πx/L)表示,其中w0为软基底中心处的挠度,
w 0 = 2 π L dL L - π 2 h s 2 3 L 2
式中,hs为软基底的厚度。
若薄膜-软基底界面发生脱粘,则在发生脱粘的部分,界面上应力自由,薄膜、软基底的应力场分别表示为,
σ x f = 0 , σ y f = 0 , τ xy f = 0
σ x s = - N h s ± z s M I y s , σ y s = νσ x s , τ xy s = 0
其中,
Figure GDA00003504067300037
M=Nw0分别为软基底单位厚度所受的轴力和弯矩,η=hf/hs,t=E′f/E′shf为薄膜的厚度,E′f和E′s分别为薄膜和软基底的平面应变模量,上标“f”和“s”分别为表示硬薄膜和软基底,zs表示距软基底中性轴的距离,弯矩产生的正应力为拉应力时公式取正号,为压应力时公式取负号。
若薄膜-软基底界面发生滑移,则在发生滑移的部分,界面上应力自由,薄膜、软基底的应力场分别表示为,
σ x f = ± z f t 1 + tη 3 M I y s , σ y f = νσ x f , τ xy f = 0
σ x s = - N h s ± z s 1 1 + tη 3 M I y s , σ y s = νσ x s , τ xy s = 0
zs和zf分别表示距软基底和硬薄膜中性轴的距离,弯矩产生的正应力为拉应力时公式取正号,为压应力时公式取负号。
对于硬薄膜-软基底界面发生脱粘和滑移两种情况,未失效部分硬薄膜-软基底界面保持完好粘结,界面上应力和位移连续,硬薄膜、软基底的应力场分别表示为
σ x f = tσ x s , σ y f = νσ x f , τ xy f = 0
σ x s = - 1 1 + tη N h s ± z 1 1 + tΣ M ′ I y su , σ y s = νσ x s , τ xy s = 0
其中, M ′ = M + N ( δ - 1 2 ) h s , I y su = Δ 3 I y s , δ = 1 2 + Δ 1 2 , ∑=Δ23 Δ 1 = tη ( 1 + η ) 1 + tη , Δ 2 = η [ η 2 + 3 ( 1 + tη ) 2 ] , Δ 3 = 1 + 3 ( tη 1 + tη ) 2 , z表示距硬薄膜与软基底复合梁中性轴的距离。弯矩产生的正应力为拉应力时公式取正号,为压应力时公式取负号。
根据应力场求得势能,进而根据格里菲斯能量准则,断裂韧性可以由能量释放率表征,利用下列公式求得硬薄膜与软基底的界面出现脱粘失效和滑移失效的临界能量释放率分别为:
Figure GDA00003504067300041
Figure GDA00003504067300042
上面所述的发明方法可以通过如图2所示的装置实现,该装置包括支座1、滑移块2和圆头螺栓3,其中支座1由一水平底座和未开孔挡板和开孔挡板组成,两挡板固定在水平底座上。滑移块2可以在底座上沿水平方向滑动;圆头螺栓3穿过支座开孔侧板中心的螺纹孔推动滑移块2运动。操作时,将贴有硬薄膜的软基底水平放置在水平底座上,将软基底5的A端固定在支座1的未开孔挡板上,B端固定在滑移块2上,旋转圆头螺栓3,使滑移块2在水平底座上沿水平方向滑动,软基底的B端则受到水平方向的压力。

Claims (1)

1.一种测量硬薄膜与软基底界面断裂韧性的方法,其特征在于该方法包括如下步骤:
1)将贴有硬薄膜的软基底水平放置在平板上,固定软基底的A端,同时允许B端在水平方向的移动,使软基底的A端和B端相对平板不能发生转动,记录软基底的原长L;
2)对软基底的B端施加水平方向的压力,使软基底发生向上偏转的屈曲,并实时观察硬薄膜与软基底的界面直至界面脱粘或者滑移现象出现为止,记录此时软基底在水平方向的压缩量dL;
根据格里菲斯能量准则,断裂韧性由能量释放率表征,利用下列公式求得硬薄膜与软基底的界面出现脱粘失效和滑移失效的临界能量释放率分别为:
Figure FDA00003504067200011
Figure FDA00003504067200012
其中,
Figure FDA00003504067200013
为软基底单位厚度所受的轴力,为软基底中心处的挠度,hf和hs分别为硬薄膜和软基底的厚度,E′f和E′s分别为硬薄膜和软基底的平面应变模量,下标“f”和“s”分别表示硬薄膜和软基底,η=hf/hs,t=E′f/E′s,∑=Δ23 Δ 1 = tη ( 1 + η ) 1 + tη , Δ 2 = η [ η 2 + 3 ( 1 + tη ) 2 ] , Δ 3 = 1 + 3 ( tη 1 + tη ) 2 .
CN 201110319476 2011-10-19 2011-10-19 一种测量硬薄膜与软基底界面断裂韧性方法 Active CN102393328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110319476 CN102393328B (zh) 2011-10-19 2011-10-19 一种测量硬薄膜与软基底界面断裂韧性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110319476 CN102393328B (zh) 2011-10-19 2011-10-19 一种测量硬薄膜与软基底界面断裂韧性方法

Publications (2)

Publication Number Publication Date
CN102393328A CN102393328A (zh) 2012-03-28
CN102393328B true CN102393328B (zh) 2013-09-25

Family

ID=45860688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110319476 Active CN102393328B (zh) 2011-10-19 2011-10-19 一种测量硬薄膜与软基底界面断裂韧性方法

Country Status (1)

Country Link
CN (1) CN102393328B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018160B (zh) * 2012-12-10 2014-10-01 湘潭大学 定量表征薄膜材料界面结合性能的屈曲测试方法及装置
CN103926136B (zh) * 2013-01-10 2016-01-06 中国石油天然气集团公司 管线钢平面应变断裂韧性和安全临界壁厚的确定方法
CN103454215A (zh) * 2013-09-12 2013-12-18 南京理工大学 铝/端羟基聚丁二烯胶的粘接界面i型断裂性能测定试件
CN103454153A (zh) * 2013-09-12 2013-12-18 南京理工大学 复合推进剂/包覆层粘接界面i型断裂能测定试件
CN103592188A (zh) * 2013-11-19 2014-02-19 安涛 一种观察和测量脆性薄膜在硬基底上界面断裂韧性的方法
CN104359835B (zh) * 2014-11-24 2017-01-11 湘潭大学 一种柔性薄膜界面结合强度的测量方法
CN104677819B (zh) * 2015-01-28 2017-06-06 西安交通大学 一种评价 Cu 系金属纳米多层膜材料附着性能的方法
CN106680109A (zh) * 2017-02-26 2017-05-17 合肥国轩高科动力能源有限公司 一种锂离子电池的电极片涂层柔韧性的检测装置及其检测方法
CN111398018B (zh) * 2020-03-30 2021-07-02 河海大学 一种滚球式土体剪切型断裂破坏试验装置
CN111398015B (zh) * 2020-03-30 2020-12-29 河海大学 一种采用滚动摩擦实现土体纯ⅱ型断裂的试验方法
CN112903442B (zh) * 2021-01-26 2022-07-26 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心) 复材胶接结构胶接界面i型断裂韧性测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512159A (zh) * 2002-12-28 2004-07-14 中国科学院金属研究所 一种脆性镀膜层弹性模量和强度的测试方法
CN101726442A (zh) * 2008-10-24 2010-06-09 中国科学院金属研究所 柔性电子基板上薄膜材料可靠性原位评价系统及方法
CN102001617A (zh) * 2010-09-28 2011-04-06 清华大学 一种柔性电子器件位移加载装置及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351346B2 (en) * 2004-11-30 2008-04-01 Agoura Technologies, Inc. Non-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512159A (zh) * 2002-12-28 2004-07-14 中国科学院金属研究所 一种脆性镀膜层弹性模量和强度的测试方法
CN101726442A (zh) * 2008-10-24 2010-06-09 中国科学院金属研究所 柔性电子基板上薄膜材料可靠性原位评价系统及方法
CN102001617A (zh) * 2010-09-28 2011-04-06 清华大学 一种柔性电子器件位移加载装置及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Interfacial slippage of inorganic electronic materials on plastic substrates;Longchao Dai et al;《Applied Physics Letters》;20101129;第97卷(第22期);第221903- 221903-3页 *
Longchao Dai et al.Interfacial slippage of inorganic electronic materials on plastic substrates.《Applied Physics Letters》.2010,第97卷(第22期),
Slippage toughness measurement of soft interface between stiff thin films and elastomeric substrate;Yin Huang et al;《Review of Scientific Instruments》;20111018;第82卷(第10期);第104704-1 - 104704-2页第II节 *
Yin Huang et al.Slippage toughness measurement of soft interface between stiff thin films and elastomeric substrate.《Review of Scientific Instruments》.2011,第82卷(第10期),

Also Published As

Publication number Publication date
CN102393328A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
CN102393328B (zh) 一种测量硬薄膜与软基底界面断裂韧性方法
Zhang et al. Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads
Kim et al. Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system
Ebrahimi et al. Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams
Ahmed Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory
Bay et al. Uniaxial extension of ultrathin freestanding polymer films
CN103018160B (zh) 定量表征薄膜材料界面结合性能的屈曲测试方法及装置
Liu et al. Wrinkling and ratcheting of a thin film on cyclically deforming plastic substrate: Mechanical instability of the solid-electrolyte interphase in Li–ion batteries
Zhang et al. Cross structured two-dimensional violet phosphorene with extremely high deformation resistance
Li et al. Dynamic crushing of uniform and functionally graded origami-inspired cellular structure fabricated by SLM
CN103063571A (zh) 一种利用鼓包法测量薄膜材料界面结合能的方法和系统
Lu et al. Thermomechanical reliability of through-silicon vias in 3D interconnects
Feng et al. A finite-deformation mechanics theory for kinetically controlled transfer printing
Li et al. A multiscale flexible pressure sensor based on nanovesicle-like hollow microspheres for micro-vibration detection in non-contact mode
Wang et al. The effects of contact area on pressure sensing of ionic polymer metal composite sensor with a soft substrate
Moeinkhah et al. How does clamping pressure influence actuation performance of soft ionic polymer–metal composites?
Li et al. Modeling and low-velocity impact analysis of perovskite solar cells resting on porous substrates reinforced by graphene platelets
Ghamsari et al. Mechanical characterization of bucky gel morphing nanocomposite for actuating/sensing applications
Sun et al. A theoretical study of thin film delamination using clamped punch-loaded blister test: Energy release rate and closed-form solution
Missale et al. Ultrathin organic membranes: Can they sustain the quest for mechanically robust device applications?
CN103778293A (zh) 基于梁结构的多层印制电路板镀通孔应力-应变模型建立方法
Mousavi et al. Improved model for the adhesion of μcantilevers: Theory and experiments
Shi et al. Adhesion of a cylindrical shell in the presence of DLVO surface potential
Feng et al. Wrinkles formation and evolution of nanoribbons with finite length on elastomeric substrate
Zhang et al. An electro-thermal SU-8 cantilever micro actuator based on bimorph effect

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160712

Address after: 314006 Zhejiang City, South Lake District, Asia Pacific Road, No. 705, innovation building, A03-06,

Patentee after: Jiaxing Smart Electronic Technology Co., Ltd.

Address before: 100084 Haidian District, Beijing,,, Tsinghua University, the 100084 letter box office

Patentee before: Tsinghua University

C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 314006, Asia Pacific Road, Nanhu District, Zhejiang, Jiaxing, China 3FA03-06-29

Patentee after: Zhejiang wisdom Technology Co., Ltd.

Address before: 314006 Zhejiang City, South Lake District, Asia Pacific Road, No. 705, innovation building, A03-06,

Patentee before: Jiaxing Smart Electronic Technology Co., Ltd.