CN102392323A - Preparation method of europium ion-doped yttrium oxide sulfide nanometer belt - Google Patents

Preparation method of europium ion-doped yttrium oxide sulfide nanometer belt Download PDF

Info

Publication number
CN102392323A
CN102392323A CN2011102514966A CN201110251496A CN102392323A CN 102392323 A CN102392323 A CN 102392323A CN 2011102514966 A CN2011102514966 A CN 2011102514966A CN 201110251496 A CN201110251496 A CN 201110251496A CN 102392323 A CN102392323 A CN 102392323A
Authority
CN
China
Prior art keywords
eu3
nanometer
nanoribbons
sulfur
yttrium oxide
Prior art date
Application number
CN2011102514966A
Other languages
Chinese (zh)
Inventor
于文生
刘桂霞
徐佳
杨利颖
王进贤
董相廷
Original Assignee
长春理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春理工大学 filed Critical 长春理工大学
Priority to CN2011102514966A priority Critical patent/CN102392323A/en
Publication of CN102392323A publication Critical patent/CN102392323A/en

Links

Abstract

The invention relates to a preparation method of a europium ion-doped yttrium oxide sulfide nanometer belt and belongs to the technical field of preparation of nanometer materials. The invention aims at the problem that a europium ion-doped yttrium oxide sulfide nanometer particle, a nanometer tube, a nanometer wire, a nanometer rod, a nanometer flower and a polyhedral nanometer crystal are prepared in the prior art. A Y2O2S: 3 percents of Eu3+nanometer belt is prepared by adopting a method of combining an electro-spinning technology and a vulcanization technology. The preparation method comprises the two steps of: firstly, preparing a Y2O3: 3 percents of Eu3+nanometer belt: preparing a PVP (Polyvinyl Pyrrolidone)/[Y(NO3)3+Eu(NO3)3] composite nanometer belt by adopting the electro-spinning technology and then carrying out heat treatment to obtain the Y2O3: 3 percents of Eu3+nanometer belt; and secondly, preparing the Y2O2S: 3 percent of Eu3+nanometer fiber: vulcanizing the Y2O3: 3 percents of Eu3+nanometer belt with sulphur by adopting a double-crucible method to obtain the pure-phased Y2O2S: 3 percents of Eu3+nanometer belt. The obtained Y2O2S: 3 percents of Eu3+nanometer belt has good crystal forms and also has a width of 6.1-7.3mu m, a thickness of 125 nm and a length of greater than 100mu m. The preparation method is simple and easy and is suitable for batch production. The europium ion-doped yttrium oxide sulfide nanometer belt is a novel important red nanometer fluorescent material and has wide application prospect.

Description

铕离子掺杂硫氧化钇纳米带的制备方法 Europium-doped yttrium oxysulfide preparation nanoribbons

技术领域 FIELD

[0001] 本发明涉及纳米材料制备技术领域,具体说涉及铕离子掺杂硫氧化钇纳米带的制备方法。 [0001] The present invention relates to the field of nano-materials preparation, specifically preparation of yttrium oxide sulfur nanoribbons relates europium ion doping.

背景技术 Background technique

[0002] 无机物纳米带的制备与性质研究目前是材料科学、凝聚态物理、化学等学科研究的前沿热点之一。 [0002] Preparation and properties of inorganic compounds is currently one of the leading edge with the hot materials science research disciplines, condensed matter physics, chemistry. 纳米带是一种用人工方法合成的呈带状结构的纳米材料,它的横截面是一个矩形结构,其厚度在纳米量级,宽度可达到微米级,而长度可达几百微米,甚至几毫米。 Nanoribbons zonal structure is a synthetic nanomaterials artificially, which is a cross section of rectangular configuration, having a thickness in the order of nanometers, up to micron width and a length up to several hundreds of micrometers, even a few mm. 纳米带由于其不同于管、线材料的新颖结构以及独特的光、电、磁等性能而引起人们的高度重视。 Since the band which is different from the nano tube, the wire material and the novel structure unique optical, electrical and magnetic properties caused people's attention.

[0003] 硫氧化钇具有化学稳定性好、不溶于水、熔点高、抗氧化性强以及光吸收效率和传能效率高、无毒等优点,成为稀土离子激活的发光材料的重要基质。 [0003] Yttrium oxysulfide has good chemical stability, water-insoluble, high melting point, high oxidation resistance and high light absorption efficiency and energy transfer efficiency, non-toxic, etc., a light-emitting material, a rare earth ion activated key matrix. 铕离子掺杂硫氧化钇Y2O2SiEu3+是一类重要的性能优良、广泛应用的红色发光材料。 Europium doped yttria Y2O2SiEu3 + sulfur is an important class of high performance, the red luminescent material is widely used. Y》2S:Eu3+纳米材料的研究已引起了人们的高度关注。 Y "2S: Eu3 + nanomaterials have attracted people's attention. 已经采用水热与溶剂热法、固相反应法、燃烧法、微波法等,制备了纳米颗粒、纳米管、纳米线、纳米棒、纳米花、多面体纳米晶。 It has the hydrothermal solvothermal method, solid-phase reaction method, a combustion method, a microwave method and the like, the prepared nanoparticles, nanotubes, nanowires, nanorods, flowers, polyhedral nanocrystals. 纳米带是一种重要的新型红色纳米发光材料,将在发光与显示、防伪、生物标记、纳米器件等领域得到重要应用,具有广阔的应用前景。 Nanoribbons is an important new nano-red light emitting material, obtained with important applications in the field emission display, security, biomarker, nano-devices, has broad application prospects. 目前,未见有Y》2S : Eu3+纳米带的相关报道。 Currently, there are no Y "2S: Eu3 + reports nanoribbons.

[0004] 专利号为1975504的美国专利公开了一项有关静电纺丝方法(electrospirming) 的技术方案,该方法是制备连续的、具有宏观长度的微纳米纤维的一种有效方法,由i^ormhals于1934年首先提出。 [0004] U.S. Patent No. 1,975,504 discloses an electrostatic spinning process about (electrospirming) technical solution, which is prepared in a continuous method, to a micro macroscopic nanofiber length effective method by i ^ ormhals first proposed in 1934. 这一方法主要用来制备高分子纳米纤维,其特征是使带电的高分子溶液或熔体在静电场中受静电力的牵引而由喷嘴喷出,投向对面的接收屏,从而实现拉丝,然后,在常温下溶剂蒸发,或者熔体冷却到常温而固化,得到微纳米纤维。 This method is mainly used polymer nanofibers, wherein the charged polymer solution or melt in the electrostatic field by the traction force of the ejection power by the nozzles, toward the opposite receiving screen, in order to achieve wire drawing, and then , the solvent was evaporated at normal temperature, or the melt is cooled down to room temperature and solidified to obtain micro and nano fibers. 近10年来,在无机纤维制备技术领域出现了采用静电纺丝方法制备无机化合物如氧化物纳米纤维的技术方案,所述的氧化物包括TiO2, ZrO2, Y2O3> Y2O3:RE3+(RE3+ = Eu3+、Tb3+、Er3+、 Yb3+/Er3+)、NiO、Co3O4、Mn2O3> Mn3O4, CuO、SiO2, A1203、V2O5, ZnO, Nb2O5, MoO3> CeO2, LaMO3 (Μ =Fe、Cr、Mn、Co、Ni、Al)、Y3Al5O12, La2Zr2O7等金属氧化物和金属复合氧化物。 The past 10 years, appear in the inorganic fibers produced Field of the electrospinning process for preparing an inorganic compound such as an oxide nanofibers aspect, the oxides include TiO2, ZrO2, Y2O3> Y2O3: RE3 + (RE3 + = Eu3 +, Tb3 + , Er3 +, Yb3 + / Er3 +), NiO, Co3O4, Mn2O3> Mn3O4, CuO, SiO2, A1203, V2O5, ZnO, Nb2O5, MoO3> CeO2, LaMO3 (Μ = Fe, Cr, Mn, Co, Ni, Al), Y3Al5O12 , La2Zr2O7 metal oxide and a metal composite oxide. 已有人利用静电纺丝技术成功制备了高分子纳米带(Materials Letters, 2007,61 =2325-2328 ; Journal of Polymer Science =Part B =Polymer Physics,2001,39 :2598-2606)。 It has been successfully prepared using high molecular nanoribbons electrospinning (Materials Letters, 2007,61 = 2325-2328; Journal of Polymer Science = Part B = Polymer Physics, 2001,39: 2598-2606). 有人利用锡的有机化合物,使用静电纺丝技术与金属有机化合物分解技术相结合制备了多孔SnA 纳米带(Nanotechnology,2007,18 :435704);有人利用静电纺丝技术首先制备了PEO/氢氧化锡复合纳米带,将其焙烧得到了多孔SnO2纳米带(J. Am. Ceram. Soc. ,2008,91(1): 257-262)。 Some use an organic tin compound, and electrospinning technique combining metal-organic decomposition porous SnA nanoribbons (Nanotechnology, 2007,18: 435704) was prepared; it was the first use of electrospinning PEO / tin hydroxide prepared nano composite tape, which has been calcined SnO2 nano-porous tape (J. Am Ceram Soc, 2008,91 (1):... 257-262). 董相廷等采用静电纺丝技术制备了稀土氟化物纳米带(中国发明专利,申请号: 201010108039. 7)、二氧化钛纳米带(中国发明专利,ZL200810050948. 2)和Gd3Ga5O12 = Eu3+ 多孔纳米带(高等学校化学学报,2010,31(7),1291-1四6)。 Dong phase ting the like by electrospinning a rare earth fluoride nanoribbons (Chinese patent application number: 201010108039.7) was prepared, (chemical Universities titania nanoribbons (Chinese patent, ZL200810050948 2.) And Gd3Ga5O12 = Eu3 + porous nanobelts Technology, 2010,31 (7), 1291-1 four 6). 目前,未见:Eu3+纳米带的报道。 Currently, no: Eu3 + nanoribbons were reported.

[0005] 利用静电纺丝技术制备纳米材料时,原料的种类、高分子模板剂的分子量、纺丝液的组成、纺丝过程参数和热处理工艺对最终产品的形貌和尺寸都有重要影响。 [0005] When prepared using electrostatic spinning in nanotechnology, have a significant impact type of raw material, the molecular weight of the polymer template, the composition of the spinning solution, spinning process and heat treatment parameters on the morphology and size of the final product. 本发明先采用静电纺丝技术,以氧化钇IO3和氧化铕Eu2O3为原料,用稀硝酸溶解后蒸发,得到Y(NO3)3 和Eu(NO3)3混合晶体,加入溶剂N,N- 二甲基甲酰胺DMF和高分子模板剂聚乙烯吡咯烷酮PVP,得到纺丝液后进行静电纺丝,在最佳的实验条件下,制备出PVP/[Y (NO3) 3+Eu (NO3)3]原始纳米带,将其在空气中进行热处理,得到103:EU3+纳米带,采用双坩埚法、以硫磺为硫化剂进行硫化,制备出了结构新颖纯相的纳米带。 To the present invention by electrospinning, IO3 yttrium oxide and europium oxide Eu2O3 as raw material, after dissolution in dilute nitric acid and evaporated to give 3, and 3 mixed crystal Y (NO3) Eu (NO3), a solvent was added N, N- dimethyl after electrostatic spinning formamide DMF templating agent and a polymer polyvinylpyrrolidone PVP, to obtain a spinning solution, in the best experimental conditions to prepare the PVP / [Y (NO3) 3 + Eu (NO3) 3] original nanoribbons, which was heat treated in air, to give 103: EU3 + nanoribbons, double crucible method, to the sulfur vulcanizing agent is vulcanized to prepare a novel structure with phase pure nanometers.

发明内容 SUMMARY

[0006] 在背景技术中的制备IO2S = Eu3+纳米颗粒、纳米管、纳米线、纳米棒、纳米花、多面体纳米晶,采用了水热与溶剂热法、固相反应法、燃烧法、微波法等。 [0006] Preparation of the background art IO2S = Eu3 + nanoparticles, nanotubes, nanowires, nanorods, flowers, polyhedral nanocrystals, using the hydrothermal solvothermal method, solid-phase reaction method, a combustion method, microwave method Wait. 背景技术中的使用静电纺丝技术制备了金属氧化物、金属复合氧化物纳米纤维、高分子纳米带、SnO2纳米带、TiO2 纳米带、Gd3Ga5O12 = Eu3+多孔纳米带和稀土氟化物纳米带。 Background art Metal Oxide electrospinning techniques for the preparation of a metal composite oxide nanofibers, nanoribbons polymer, SnO2 nanobelts, nanoribbons - TiO2, Gd3Ga5O12 = Eu3 + and the rare earth fluorides with a porous nano nanoribbons. 所使用的原料、模板剂和溶剂都与本发明的方法不同。 Materials, templating agent, and solvent used are different from the method of the present invention. 为了在纳米带领域提供一种新型红色发光纳米带材料,我们将静电纺丝技术与硫化技术相结合,发明了 纳米带的制备方法。 To provide a novel red luminescent material in the field of nanotechnology nanoribbons with, we will electrospinning technique and curing technology, the invention is a method for preparing nanoribbons.

[0007] 本发明是这样实现的,首先制备出用于静电纺丝的具有一定粘度的纺丝液,应用静电纺丝技术进行静电纺丝,在最佳的实验条件下,制备出PVP/[Y (NO3) 3+Eu (NO3)3]原始纳米带,将其在空气中进行热处理,得到103:EU3+纳米带,采用双坩埚法、以硫磺为硫化剂进行硫化,制备出了结构新颖纯相的纳米带。 [0007] The present invention is achieved, firstly prepare a spinning solution for electrospinning electrospinning technique has certain viscosity electrostatic spinning, under the best experimental conditions to prepare the PVP / [ Y (NO3) 3 + Eu (NO3) 3] original nanoribbons, which was heat treated in air, to give 103: EU3 + nanoribbons, double crucible method, in sulfur vulcanization is vulcanization agent, prepared a new structure of pure nanophase tape. 在本发明中,掺杂的铕离子的摩尔百分数为3%,标记为t02S:3%EU3+,即本发明所制备的是t02S:3%EU3+纳米带。 In the present invention, the mole percent of europium-doped ions is 3%, marked t02S: 3% EU3 +, i.e., the present invention is prepared t02S: 3% EU3 + nanoribbons. 其步骤为: The steps are as follows:

[0008] (1)制备^O3 : 3 % Eu3+ 纳米带 [0008] (1) Preparation of ^ O3: 3% Eu3 + nanoribbons

[0009] 钇源和铕源使用的是氧化钇IO3和氧化铕Eu2O3,高分子模板剂采用聚乙烯吡咯烷酮PVP,分子量为90000,采用N,N-二甲基甲酰胺DMF为溶剂。 [0009] The source of yttrium and europium source used is yttrium oxide and europium oxide Eu2O3 IO3, template polymer polyvinylpyrrolidone PVP, molecular weight of 90,000, using N, N- dimethylformamide DMF as solvent. 称取一定量的氧化钇和氧化铕,两者的摩尔比为97 : 3,即铕离子的摩尔百分数为3%,用稀硝酸溶解后蒸发,得到Y (NO3) 3和Eu (NO3) 3混合晶体,加入适量的DMF溶剂,再称取一定量的PVP加入到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液。 Weigh a certain amount of europium oxide, yttrium oxide and a molar ratio of 97: 3, i.e. the mole percent of europium ion was 3%, dissolved with dilute nitric acid and evaporated to give Y (NO3) 3 and Eu (NO3) 3 mixed crystal, an appropriate amount of DMF solvent, re-weighed amount of PVP was added to the solution, magnetically stirred at room temperature for 4h, and allowed to stand for 2h, i.e. form a spinning solution. 该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量10%,PVP含量20%,溶剂DMF含量70%。 Mass percentage of the components of the spinning solution is: a rare earth nitrate content 10%, PVP content of 20%, a solvent content of 70% DMF. 将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝,喷头内径0. 7mm,采用竖喷方式,喷头与水平面垂直, 施加8kV的直流电压,固化距离15cm,室温18〜25°C,相对湿度为60%〜80%,得到PVP/ [Y(NO3)3+Eu(NO3)3]复合纳米带。 DC voltage added to the prepared spinning solution spinning apparatus reservoir tube, electrostatic spinning, the nozzle inner diameter of 0. 7mm, using the vertical spray mode, the head perpendicular to the horizontal, 8kV is applied, the solidification distance 15cm, rt 18 ~25 ° C, relative humidity of 60% ~ 80%, to give PVP / [Y (NO3) 3 + Eu (NO3) 3] nano composite tape. 将所述的PVP/[Y(NO3)3+Eu(NO3)3]复合纳米带放到程序控温炉中进行热处理,升温速率为1°C /min,在700°C恒温8h,再以1°C /min的速率降温至2000C,之后随炉体自然冷却至室温,得到^O3:3% Eu3+纳米带。 To the PVP / [Y (NO3) 3 + Eu (NO3) 3] nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, temperature 8h at 700 ° C, and then to rate of 1 ° C / min cooling to 2000C, then cooled to room temperature with the furnace, to give ^ O3: 3% Eu3 + nanoribbons.

[0010] (2)制备IAS : 3 % Eu3+ 纳米带 [0010] Preparation of (2) IAS: 3% Eu3 + nanoribbons

[0011 ] 硫化试剂使用硫磺,采用双坩埚法,将硫磺放入小坩埚中,上面覆盖碳粉,将所述的IO3 : 3 % Eu3+纳米带放在碳粉上面,将小坩埚放入较大的坩埚中,在内外坩埚间加过量的硫磺,在外坩埚上加上坩埚盖子放入管式炉中,在室温时通入氩气40min,排出炉管内的空气,以5°C /min的升温速率至800°C,保温4h,再以5°C /min的降温速率降至200°C,之后自然冷却至室温,得到3% Eu3+纳米带,带宽为6. 1〜7.3 μ m,厚度为125nm,长度大于100 μ m0 [0011] The use of sulfur vulcanizing agent, double crucible method, the sulfur into a small crucible, and carbon powder covered above, according to IO3: 3% Eu3 + nanoribbons toner on top, into the larger crucible small crucible, the inner and outer crucibles plus excess sulfur, with the outer crucibles lid placed in a tube furnace, purged with argon for 40min at room temperature, discharge air in the tube furnace, at 5 ° C / min heating rate to 800 ° C, thermal insulation 4h, then at a cooling rate of 5 ° C / min is reduced to 200 ° C, then cooled to room temperature, to give 3% Eu3 + nanoribbons, bandwidth 6. 1~7.3 μ m, a thickness of 125nm, length greater than 100 μ m0

[0012] 在上述过程中所述的Eu3+纳米带具有良好的晶型,带宽为6. 1〜7. 3 μ m,厚度为125nm,长度大于100 μ m,实现了发明目的。 [0012] In the process according to Eu3 + nanoribbons having good crystal form, bandwidth is 6. 1~7. 3 μ m, a thickness of 125nm, length greater than 100 μ m, to achieve the object of the invention. 附图说明 BRIEF DESCRIPTION

[0013] 图1是Y2O2S : 3 % Eu3+纳米带的XRD谱图; [0013] FIG. 1 is Y2O2S: 3% Eu3 + XRD spectra nanoribbons;

[0014] 图2是3% Eu3+纳米带的SEM照片,该图兼作摘要附图; [0014] FIG. 2 is a 3% Eu3 + SEM photograph nanoribbons, which serves FIG summary drawings;

[0015] 图3是Y2O2S : 3 % Eu3+纳米带的EDS谱图; [0015] Figure 3 is Y2O2S: 3% Eu3 + nanoribbons EDS spectra;

[0016] 图4是3% Eu3+纳米带的激发光谱图; [0016] FIG. 4 is a 3% Eu3 + nanoribbons excitation spectrum;

[0017] 图5是IAS: 3% Eu3+纳米带的发射光谱图。 [0017] FIG. 5 is IAS: 3% Eu3 + emission spectra nanoribbons.

具体实施方式 Detailed ways

[0018] 本发明所选用的氧化钇IO3和氧化铕Eu2O3的纯度为99. 99 %,聚乙烯吡咯烷酮PVP,分子量90000,N,N- 二甲基甲酰胺DMF,硫磺,碳粉和硝酸均为市售分析纯产品;所用的玻璃仪器、坩埚和设备是实验室中常用的仪器和设备。 [0018] The present invention is selected purity yttrium oxide and europium oxide Eu2O3 IO3 of 99.99 percent, are polyvinyl pyrrolidone PVP, molecular weight 90000, N, N- dimethylformamide of DMF, sulfur, carbon powder and nitric acid commercially available analytically pure product; glassware and equipment used crucibles are commonly used in laboratory equipment and instruments.

[0019] 实施例:称取一定量的氧化钇和氧化铕,两者的摩尔比为97 : 3,即铕离子的摩尔百分数为3%,用稀硝酸溶解后蒸发,得到Y(NO3)3和Eu(NO3)3混合晶体,加入适量的DMF 溶剂,再称取一定量的PVP加入到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液。 [0019] Example: weighed amount of yttrium oxide and europium oxide, the molar ratio of 97: 3, i.e. the mole percent of europium ion was 3%, dissolved with dilute nitric acid and evaporated to give Y (NO3) 3 3 mixed crystal and Eu (NO3), adding an appropriate amount of DMF solvent, re-weighed amount of PVP was added to the solution, magnetically stirred at room temperature for 4h, and allowed to stand for 2h, i.e. form a spinning solution. 该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量10%,PVP含量20%,溶剂DMF含量70%。 Mass percentage of the components of the spinning solution is: a rare earth nitrate content 10%, PVP content of 20%, a solvent content of 70% DMF. 将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝,喷头内径0. 7mm,采用竖喷方式,喷头与水平面垂直,施加SkV的直流电压,固化距离15cm,室温18〜25°C,相对湿度为60%〜80%,得到PVP/[Y(NO3)3+Eu(NO3)3]复合纳米带。 DC voltage added to the prepared spinning solution spinning apparatus reservoir tube, electrostatic spinning, the nozzle inner diameter of 0. 7mm, using the vertical spray mode, the head perpendicular to the horizontal, the applied SkV, solidification distance 15cm, rt 18 ~25 ° C, relative humidity of 60% ~ 80%, to give PVP / [Y (NO3) 3 + Eu (NO3) 3] nano composite tape. 将所述的PVP/[Y(NO3)3+Eu(NO3)3]复合纳米带放到程序控温炉中进行热处理,升温速率为1°C /min, 在700°C恒温他,再以TC /min的速率降温至200°C,之后随炉体自然冷却至室温,得到Y2O3:3% Eu3+纳米带。 To the PVP / [Y (NO3) 3 + Eu (NO3) 3] nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, at his thermostat 700 ° C, and then to rate of TC / min cooling to 200 ° C, then allowed to cool with the furnace to room temperature, Y2O3: 3% Eu3 + nanoribbons. 硫化试剂使用硫磺,采用双坩埚法,将硫磺放入小坩埚中,上面覆盖碳粉,将所述的IO3:3 % Eu3+纳米带放在碳粉上面,将小坩埚放入较大的坩埚中,在内外坩埚间加过量的硫磺,在外坩埚上加上坩埚盖子放入管式炉中,在室温时通入氩气40min,排出炉管内的空气,以5°C /min的升温速率至800°C,保温4h,再以5°C /min的降温速率降至200°C,之后自然冷却至室温,得到IAS:3% Eu3+纳米带。 Use of sulfur vulcanizing agent, double crucible method, the sulfur into a small crucible, and carbon powder covered above, according to IO3: 3% Eu3 + nanoribbons toner on the top, a small crucible is placed in a larger crucible on adding an excess of sulfur inside and outside the crucible, the outer crucible together with the crucible lid placed in a tube furnace, purged with argon for 40min at room temperature, discharge air in the tube furnace at a heating rate of 5 ° C / min to 800 ° C, incubated 4h, then at a cooling rate of 5 ° C / min is reduced to 200 ° C, then cooled to room temperature, to give IAS: 3% Eu3 + nanoribbons. 所述的Eu3+纳米带具有良好的结晶性,其衍射峰的d值和相对强度与Y2AS的PDF标准卡片(M-1424)所列的d值和相对强度一致,属于六方晶系,见图1所示。 The Eu3 + nanoribbon has excellent crystallinity, whose d values ​​and relative intensities of the diffraction peaks with the PDF standard Y2AS card (M-1424) is consistent with d-values ​​and relative intensities listed belong to the hexagonal system, shown in Figure 1 Fig. 所述的纳米带的带宽为6. 1〜7. 3 μ m,厚度为125nm,长度大于100 μ m,见图2所示。 The bandwidth of the nanoribbons is 6. 1~7. 3 μ m, a thickness of 125nm, length greater than 100 μ m, as shown in Figure 2. Y2O2S: 3% Eu3+纳米带由Y、0、 S和Eu元素组成(Au来自于SEM制样时表面镀的Au导电层),见图3所示。 Y2O2S: 3% Eu3 + nanoribbons of Y, 0, S, and Eu elements (SEM made from Au Au plated conductive layer of the sample time), as shown in Figure 3. 当监测波长为628nm时,Y2O2S: 3% Eu3+纳米带的激发光谱最强峰位于325nm处,属于S2_-Eu3+之间的电荷迁移带,位于^Onm处的激发峰属于02_-Eu3+之间的电荷迁移带,见图4所示。 When monitoring the wavelength of 628nm, Y2O2S: 3% Eu3 + excitation spectrum nanoribbons strongest peak at 325nm at belongs charge transfer band between S2_-Eu3 +, located ^ excitation peak Onm at belongs charges between 02_-Eu3 + is migrating band, as shown in Figure 4. 在325nm的紫外光激发下,Y2O2S:3% Eu3+纳米带发射出主峰位于628nm的明亮红光,它对应于Eu3+离子的5Dtl — 7F2跃迁,属于Eu3+的强迫电偶极跃迁,见图5所示。 UV excitation at 325nm, Y2O2S: 3% Eu3 + nanoribbons main peak 628nm emits bright red light, which corresponds to the ions Eu3 + 5Dtl - 7F2 transition of Eu3 + belonging forced electric dipole transition, as shown in Figure 5 .

[0020] 当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 [0020] Of course, the present invention may have various other embodiments without departing from the spirit and the essence of the present invention, those skilled in the art can be made when various corresponding modifications and variations according to the present invention, these corresponding modifications and variations shall fall within the scope of the appended claims.

Claims (5)

1.铕离子掺杂硫氧化钇纳米带的制备方法,其特征在于,采用静电纺丝技术与硫化技术相结合的方法,使用聚乙烯吡咯烷酮PVP为高分子模板剂,采用N,N- 二甲基甲酰胺DMF 为溶剂,硫化试剂使用硫磺,制备产物为铕离子掺杂硫氧化钇Y2O2S: 3% Eu3+纳米带,其步骤为:(1)制备^O3:3% Eu3+纳米带称取一定量的氧化钇和氧化铕,两者的摩尔比为97 : 3,即铕离子的摩尔百分数为3%,用稀硝酸溶解后蒸发,得到Y (NO3) 3和Eu (NO3) 3混合晶体,加入适量的DMF溶剂,再称取一定量的PVP加入到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液,该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量10%,PVP含量20%,溶剂DMF含量70%, 将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝,喷头内径0. 7mm,采用竖喷方式,喷头与水平面垂直,施加8kV的直流电压,固 1. Preparation of sulfur europium ion doping yttrium oxide nanoribbons, characterized in that the method electrospinning technique in combination with a sulfiding, polyvinylpyrrolidone PVP as a polymer template, using N, N- dimethyl formamide DMF using sulfur as a solvent, curing agent, the product of preparation europium ion doping sulfur yttria Y2O2S: 3% Eu3 + nanoribbons, comprising the steps of: (1) preparation of ^ O3: 3% Eu3 + nanoribbons weighed amount of yttrium oxide and europium oxide, the molar ratio of 97: 3, i.e. the mole percent of europium ion was 3%, dissolved with dilute nitric acid and evaporated to give 3, and 3 mixed crystal Y (NO3) Eu (NO3), was added a suitable amount of DMF solvent, re-weighed amount of PVP was added to the solution, magnetically stirred at room temperature for 4h, and allowed to stand for 2h, i.e. formed spinning solution, the quality of the components of the dope percentages: rare earth nitrate salt content 10%, PVP content of 20%, a solvent content of 70% DMF, the prepared spinning solution added to the spinning stock solution tube apparatus, electrostatic spinning, the nozzle inner diameter of 0. 7mm, using the vertical spray mode, the head perpendicular to the horizontal, applying a DC voltage of 8kV, solid 距离15cm,室温18〜25°C,相对湿度为60 % 〜80 %,得到PVP/ [Y (NO3) 3+Eu (NO3) 3]复合纳米带,将所述的PVP/ [Y (NO3) 3+Eu (NO3) 3] 复合纳米带放到程序控温炉中进行热处理,升温速率为TC /min,在700°C恒温他,再以I0C /min的速率降温至200°C,之后随炉体自然冷却至室温,得到Eu3+纳米带;(2)制备Eu3+纳米带硫化试剂使用硫磺,采用双坩埚法,将硫磺放入小坩埚中,上面覆盖碳粉,将所述的Y2O3: 3% Eu3+纳米带放在碳粉上面,将小坩埚放入较大的坩埚中,在内外坩埚间加过量的硫磺,在外坩埚上加上坩埚盖子放入管式炉中,在室温时通入氩气40min,排出炉管内的空气, 以5°C /min的升温速率至800°C,保温4h,再以5°C /min的降温速率降至200°C,之后自然冷却至室温,得到Y2AS: 3% Eu3+纳米带,带宽为6. 1〜7.3 μ m,厚度为125nm,长度大于100 μ m0 Distance 15cm, at room temperature 18~25 ° C, relative humidity of 60% ~ 80%, to give PVP / [Y (NO3) 3 + Eu (NO3) 3] Nano composite tape according to the PVP / [Y (NO3) 3 + Eu (NO3) 3] nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of TC / min, he, at a rate of I0C / min to 200 ° C cooling at 700 ° C temperature, then with furnace cooled to room temperature, to give Eu3 + nanoribbons; (2) preparation of Eu3 + nanoribbons sulfurizing agent used sulfur, double crucible method, the sulfur into a small crucible, covered toner above, to the Y2O3: 3% Eu3 + nanoribbons on toner above, small crucibles were introduced into a large crucible, adding an excess of sulfur between the inside and outside of the crucible, together with the outer crucibles lid placed in a tube furnace supplied with argon at room temperature 40min, discharging furnace the air in the tube, at a heating rate of 5 ° C / min to 800 ° C, thermal insulation 4h, then at a cooling rate of 5 ° C / min is reduced to 200 ° C, then cooled to room temperature, to give Y2AS: 3% Eu3 + nanoribbons, bandwidth 6. 1~7.3 μ m, a thickness of 125nm, length greater than 100 μ m0
2.根据权利要求1所述的铕离子掺杂硫氧化钇纳米带的制备方法,其特征在于,钇源和铕源使用的是氧化钇IO3和氧化铕Eu203。 2. Preparation of sulfur-doped yttrium oxide nanoribbons europium ions according to the claim 1, wherein the source of yttrium and europium source used is yttrium oxide and europium oxide IO3 Eu203.
3.根据权利要求1所述的铕离子掺杂硫氧化钇纳米带的制备方法,其特征在于,高分子模板剂为分子量Mr = 90000的聚乙烯吡咯烷酮。 3. Preparation of sulfur-doped yttrium oxide nanoribbons europium ions according to the claim 1, wherein the template polymer polyvinylpyrrolidone having a molecular weight Mr = 90,000.
4.根据权利要求1所述的铕离子掺杂硫氧化钇纳米带的制备方法,其特征在于,硫化试剂使用硫磺。 4. A method for preparing a sulfur-doped yttrium oxide nanoribbons europium ions according to the claim 1, characterized in that the sulfur vulcanizing agent used.
5.根据权利要求1所述的铕离子掺杂硫氧化钇纳米带的制备方法,其特征在于,掺杂的Eu3+摩尔百分数为3%。 5. A method for preparing a sulfur-doped yttrium oxide nanoribbons europium ions according to the claim 1, wherein the mole percent of Eu3 + doped 3%.
CN2011102514966A 2011-08-30 2011-08-30 Preparation method of europium ion-doped yttrium oxide sulfide nanometer belt CN102392323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102514966A CN102392323A (en) 2011-08-30 2011-08-30 Preparation method of europium ion-doped yttrium oxide sulfide nanometer belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102514966A CN102392323A (en) 2011-08-30 2011-08-30 Preparation method of europium ion-doped yttrium oxide sulfide nanometer belt

Publications (1)

Publication Number Publication Date
CN102392323A true CN102392323A (en) 2012-03-28

Family

ID=45859695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102514966A CN102392323A (en) 2011-08-30 2011-08-30 Preparation method of europium ion-doped yttrium oxide sulfide nanometer belt

Country Status (1)

Country Link
CN (1) CN102392323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103628A (en) * 2013-01-14 2013-05-15 北京大学深圳研究生院 Nano material and application thereof, and method and device for preparing nano material
CN104562295A (en) * 2014-12-29 2015-04-29 长春理工大学 Erbium-doped yttrium oxysulfide up-conversion luminescent hollow nanofibers and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140381A1 (en) * 2008-05-13 2009-11-19 Research Triangle Institute Porous and non-porous nanostructures and application thereof
CN101786595A (en) * 2010-02-10 2010-07-28 长春理工大学 Rare-earth sesquioxide nanobelts and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140381A1 (en) * 2008-05-13 2009-11-19 Research Triangle Institute Porous and non-porous nanostructures and application thereof
CN101786595A (en) * 2010-02-10 2010-07-28 长春理工大学 Rare-earth sesquioxide nanobelts and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
于长娟等: "静电纺丝技术制Y2O3∶Eu3+纳米带及其发光性质", 《无机化学学报》 *
李丹等: "Y2O2S 纳米晶中Tb3+ 发光的浓度猝灭", 《发光学报》 *
艾鹏飞等: "纳米晶Y2O2S∶Eu3+,Mg2+,Ti4+长余辉发光材料的制备", 《功能材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103628A (en) * 2013-01-14 2013-05-15 北京大学深圳研究生院 Nano material and application thereof, and method and device for preparing nano material
CN104562295A (en) * 2014-12-29 2015-04-29 长春理工大学 Erbium-doped yttrium oxysulfide up-conversion luminescent hollow nanofibers and preparation method thereof

Similar Documents

Publication Publication Date Title
Li et al. Electrospinning derived one‐dimensional LaOCl: Ln3+ (Ln= Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor‐tunable emission properties
Chen et al. Preparation and characterization of ZrO2: Eu3+ phosphors
Hu et al. Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale
Lu et al. Large-scale synthesis of tungsten oxide nanofibers by electrospinning
Cao et al. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers
Tian et al. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route
Yang et al. In (OH) 3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties
Li et al. Shape-controllable synthesis and morphology-dependent luminescence properties of GaOOH: Dy3+ and β-Ga2O3: Dy3+
Jia et al. Facile surfactant-and template-free synthesis and luminescent properties of one-dimensional Lu2O3: Eu3+ phosphors
Gai et al. Monodisperse Gd2O3: Ln (Ln= Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties
Zhang et al. Microwave synthesis of NaLa (MoO4) 2 microcrystals and their near-infrared luminescent properties with lanthanide ion doping (Er3+, Nd3+, Yb3+)
Zhang et al. Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods
Quan et al. Synthesis and characterization of spherical ZrO2: Eu3+ phosphors by spray pyrolysis process
Wu et al. Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires
Chang et al. Preparation and characterization of rod-like Eu: Gd2O3 phosphor through a hydrothermal routine
Tang et al. Hydrothermal synthesis and luminescence properties of GdVO4: Ln3+ (Ln= Eu, Sm, Dy) phosphors
Li et al. Synthesis and luminescence properties of red long-lasting phosphor Y2O2S: Eu3+, Mg2+, Ti4+ nanoparticles
Yang et al. Synthesis of Y 2 O 2 S: Eu 3+ luminescent nanobelts via electrospinning combined with sulfurization technique
Zhao et al. Synthesis and optical properties of Mg-doped ZnO nanofibers prepared by electrospinning
Cheng et al. Preparation of SrAl2O4: Eu2+, Dy3+ fibers by electrospinning combined with sol–gel process
Yang et al. Fabrication and luminescence of BiPO4: Tb3+/Ce3+ nanofibers by electrospinning
Saif Synthesis of down conversion, high luminescent nano-phosphor materials based on new developed Ln3+: Y2Zr2O7/SiO2 for latent fingerprint application
Wang et al. Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts
An et al. Preparation and upconversion properties of Yb3+, Ho3+: Lu2O3 nanocrystalline powders
Pal et al. Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)