CN102061172B - Europium (Eu) ion doped Y7O6F9 nanobelt and preparation method thereof - Google Patents

Europium (Eu) ion doped Y7O6F9 nanobelt and preparation method thereof Download PDF

Info

Publication number
CN102061172B
CN102061172B CN2010105502152A CN201010550215A CN102061172B CN 102061172 B CN102061172 B CN 102061172B CN 2010105502152 A CN2010105502152 A CN 2010105502152A CN 201010550215 A CN201010550215 A CN 201010550215A CN 102061172 B CN102061172 B CN 102061172B
Authority
CN
China
Prior art keywords
eu3
nanobelt
y7o6f9
nanoribbons
no3
Prior art date
Application number
CN2010105502152A
Other languages
Chinese (zh)
Other versions
CN102061172A (en
Inventor
于文生
侯远
刘桂霞
王进贤
董相廷
赵恩贵
Original Assignee
长春理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春理工大学 filed Critical 长春理工大学
Priority to CN2010105502152A priority Critical patent/CN102061172B/en
Publication of CN102061172A publication Critical patent/CN102061172A/en
Application granted granted Critical
Publication of CN102061172B publication Critical patent/CN102061172B/en

Links

Abstract

The invention relates to a europium (Eu) ion doped Y7O6F9 nanobelt and a preparation method thereof, belonging to the technical field of nano material preparation. Rare-earth fluoride nanobelts are prepared by the existing electrospinning technology. The method comprises the following three steps: (1) preparing a Y2O3:5%Eu3+nanobelt: preparing a composite PVP/[Y(NO3)3+Eu(NO3)3] nanobelt by adopting the electrospinning technology and then carrying out heat treatment on the composite nanobelt to obtain the Y2O3:5%Eu3+nanobelt; (2) preparing a YF3:5%Eu3+nanobelt: taking ammonium bifluoride as a fluorinating reagent and fluorinating the Y2O3:5%Eu3+nanobelt by a double crucible method to obtain the YF3:5%Eu3+nanobelt; and (3) preparing a Y7O6F9:5%Eu3+nanobelt: placing the YF3:5%Eu3+nanobelt into a muffle furnace and heating the YF3:5%Eu3+nanobelt in air atmosphere at the temperature of 580 DEG C for 9 hours to obtain the Y7O6F9:5%Eu3+nanobelt. The Y7O6F9:5%Eu3+nanobelt has the width of 1.9-3.7 mu m, thickness of 185nm and length of more than 300 mu m. The Eu ion doped Y7O6F9 nanobelt is a novel important red nano fluorescent material and has a broad application prospect.

Description

铕离子掺杂Y7O6F9纳米带及其制备方法 Europium doped nanoribbons and preparation method Y7O6F9

技术领域 FIELD

[0001] 本发明涉及纳米材料制备技术领域,具体说涉及铕离子掺杂Y7O6F9纳米带及其制备方法。 [0001] The present invention relates to the field of nano-materials preparation, specifically preparation method Y7O6F9 nanoribbons relates europium ion doping.

背景技术 Background technique

[0002] 无机物纳米带的制备与性质研究目前是材料科学、凝聚态物理、化学等学科研究的前沿热点之一。 [0002] Preparation and properties of inorganic compounds is currently one of the leading edge with the hot materials science research disciplines, condensed matter physics, chemistry. 纳米带是一种用人工方法合成的呈带状结构的纳米材料,它的横截面是一个矩形结构,其厚度在纳米量级,宽度可达到微米级,而长度可达几百微米,甚至几毫米。 Nanoribbons zonal structure is a synthetic nanomaterials artificially, which is a cross section of rectangular configuration, having a thickness in the order of nanometers, up to micron width and a length up to several hundreds of micrometers, even a few mm. 纳米带由于其不同于管、线材料的新颖结构以及独特的光、电、磁等性能而引起人们的高度重视。 Since the band which is different from the nano tube, the wire material and the novel structure unique optical, electrical and magnetic properties caused people's attention.

[0003] 稀土氟氧化物声子能量低,有较高的发光量子效率,具有良好的热稳定性和环境稳定性,被广泛用做发光材料基质。 [0003] The rare earth oxyfluoride low phonon energy, a higher quantum efficiency of light emission, having good thermal and environmental stability, is widely used as a light emitting material substrate. 铕离子掺杂氟氧化钇(Y7O6F9 = Eu3+)是重要的红色荧光材料。 Europium doped yttria-fluoro (Y7O6F9 = Eu3 +) is an important red fluorescent material. 目前,未见有Y7O6F9 = Eu3+纳米材料的相关报道。 Currently, there are no reports Y7O6F9 = Eu3 + nanomaterials. Y7O6F9 = Eu3+纳米带是一种重要的新型红色纳米发光材料,将在发光与显示、防伪、生物标记、纳米器件等领域得到重要应用,具有广阔的应用前景。 Nanoribbons Y7O6F9 = Eu3 + is an important new nano-red light emitting material, obtained with important applications in the field emission display, security, biomarker, nano-devices, has broad application prospects. 目前未见Y7O6F9 : Eu3+纳米带的报道。 Currently no Y7O6F9: Eu3 + reported nanoribbons.

[0004] 专利号为1975504的美国专利公开了一项有关静电纺丝方法(electrospirming) 的技术方案,该方法是制备连续的、具有宏观长度的微纳米纤维的一种有效方法,由i^ormhals于1934年首先提出。 [0004] U.S. Patent No. 1,975,504 discloses an electrostatic spinning process about (electrospirming) technical solution, which is prepared in a continuous method, to a micro macroscopic nanofiber length effective method by i ^ ormhals first proposed in 1934. 这一方法主要用来制备高分子纳米纤维,其特征是使带电的高分子溶液或熔体在静电场中受静电力的牵引而由喷嘴喷出,投向对面的接收屏,从而实现拉丝,然后,在常温下溶剂蒸发,或者熔体冷却到常温而固化,得到微纳米纤维。 This method is mainly used polymer nanofibers, wherein the charged polymer solution or melt in the electrostatic field by the traction force of the ejection power by the nozzles, toward the opposite receiving screen, in order to achieve wire drawing, and then , the solvent was evaporated at normal temperature, or the melt is cooled down to room temperature and solidified to obtain micro and nano fibers. 近10年来,在无机纤维制备技术领域出现了采用静电纺丝方法制备无机化合物如氧化物纳米纤维的技术方案,所述的氧化物包括Ti02、ZrO2, Y2O3> Y2O3:RE3+(RE3+ = Eu3+、Tb3+、Er3+、 Yb3+/Er3+)、NiO、Co3O4, Mn2O3> Mn3O4, CuO, SiO2, A1203、V2O5, ZnO, Nb2O5, MoO3> CeO2, LaMO3 (Μ =Fe、Cr、Mn、Co、Ni、Al)、Y3Al5O12, La2Zr2O7等金属氧化物和金属复合氧化物。 The past 10 years, appear in the inorganic fibers produced Field of the electrospinning process for preparing an inorganic compound such as an oxide nanofibers aspect, the oxides include Ti02, ZrO2, Y2O3> Y2O3: RE3 + (RE3 + = Eu3 +, Tb3 + , Er3 +, Yb3 + / Er3 +), NiO, Co3O4, Mn2O3> Mn3O4, CuO, SiO2, A1203, V2O5, ZnO, Nb2O5, MoO3> CeO2, LaMO3 (Μ = Fe, Cr, Mn, Co, Ni, Al), Y3Al5O12 , La2Zr2O7 metal oxide and a metal composite oxide. 已有人利用静电纺丝技术成功制备了高分子纳米带(Materials Letters, 2007,61 =2325-2328 ; Journal of PolymerScience =Part B =Polymer Physics,2001,39 :2598-2606)。 It has been successfully prepared using high molecular nanoribbons electrospinning (Materials Letters, 2007,61 = 2325-2328; Journal of PolymerScience = Part B = Polymer Physics, 2001,39: 2598-2606). 有人禾Ij 用锡的有机化合物,使用静电纺丝技术与金属有机化合物分解技术相结合制备了多孔SnA 纳米带(Nanotechnology,2007,18 :435704);有人利用静电纺丝技术首先制备了PEO/氢氧化锡复合纳米带,将其焙烧得到了多孔SnO2纳米带(J. Am. Ceram. Soc. ,2008,91(1): 257-262)。 It was Ij organic compound of tin, and the metal using an electrostatic spinning technique combined organic decomposition porous SnA nanoribbons prepared (Nanotechnology, 2007,18: 435704); the PEO was first prepared by electrospinning / hydrogen with tin oxide composite nanoparticles, which was obtained by firing porous SnO2 nanoribbons (J. Am Ceram Soc, 2008,91 (1):... 257-262). 董相廷等采用静电纺丝技术制备了稀土氟化物纳米带(中国发明专利,申请号: 201010108039. 7)、二氧化钛纳米带(中国发明专利,ZL200810050948. 2)和Gd3Ga5O12 = Eu3+ 多孔纳米带(高等学校化学学报,2010,31(7),1291-1四6)。 Dong phase ting the like by electrospinning a rare earth fluoride nanoribbons (Chinese patent application number: 201010108039.7) was prepared, (chemical Universities titania nanoribbons (Chinese patent, ZL200810050948 2.) And Gd3Ga5O12 = Eu3 + porous nanobelts Technology, 2010,31 (7), 1291-1 four 6). 目前,未见Y7O6F9 = Eu3+纳米带的报道。 Currently, no Y7O6F9 = Eu3 + nanoribbons were reported.

[0005] 利用静电纺丝技术制备纳米材料时,原料的种类、高分子模板剂的分子量、纺丝液的组成、纺丝过程参数和热处理工艺对最终产品的形貌和尺寸都有重要影响。 [0005] When prepared using electrostatic spinning in nanotechnology, have a significant impact type of raw material, the molecular weight of the polymer template, the composition of the spinning solution, spinning process and heat treatment parameters on the morphology and size of the final product. 本发明先采用静电纺丝技术,以氧化钇α203)和氧化铕(Eu2O3)为原料,用稀硝酸溶解后蒸发,得到Y (NO3) 3和Eu (NO3) 3混合晶体,加入溶剂N,N- 二甲基甲酰胺(DMF)和高分子模板剂聚乙烯吡咯烷酮(PVP分子量为1300000),得到纺丝液后进行静电纺丝,在最佳的实验条件下,制备出PVP/[Y(NO3)3+Eu(NO3)3]原始纳米带,将其在空气中进行热处理,得到Y2O3 = Eu3+纳米带,采用双坩埚法氟化得到了纯相的YF3 = Eu3+纳米带;再在空气中进行热处理,制备出了结构新颖WY7O6F9 = Eu3+纳米带。 To the present invention by electrospinning, yttrium oxide α203) and europium oxide (Eu2O3) as a raw material, dissolved with dilute nitric acid and evaporated to give 3 mixed crystal Y (NO3) 3 and Eu (NO3), adding a solvent N, N - after electrospinning dimethylformamide (DMF) and high molecular templating agent polyvinylpyrrolidone (PVP molecular weight of 1,300,000), to give a spinning solution, in the best experimental conditions to prepare the PVP / [Y (NO3 ) 3 + Eu (NO3) 3] original nanoribbons, which was heat treated in air to give Y2O3 = Eu3 + nanoribbons, double crucible method fluorination of YF3 = Eu3 + nanoribbons phase pure; then in air heat treatment, a new structure was prepared WY7O6F9 = Eu3 + nanoribbons.

发明内容 SUMMARY

[0006] 在背景技术中的使用静电纺丝技术制备了金属氧化物、金属复合氧化物纳米纤维、高分子纳米带、SnO2纳米带、TiO2纳米带、Gd3Ga5O12 = Eu3+多孔纳米带和稀土氟化物纳米带。 [0006] electrospinning technique in the background art metal oxide, metal composite oxide nanofibers, nanoribbons prepared polymer, SnO2 nanoribbons, - TiO2 nanoribbons, Gd3Ga5O12 = Eu3 + and the rare earth fluoride porous nano nanobelts band. 为了在纳米带领域提供一种以稀土氟氧化物为基质的新型红色发光纳米带,我们发明了Y7O6F9 = Eu3+纳米带及其制备方法。 To provide a substrate for the rare earth oxyfluoride luminescent nano with new red band in the field of nanotechnology, we invented Y7O6F9 = Eu3 + nanoribbons their preparation.

[0007] 本发明是这样实现的,首先制备出用于静电纺丝的具有一定粘度的纺丝液,应用静电纺丝技术进行静电纺丝,在最佳的实验条件下,制备出PVP/[Y (NO3) 3+Eu (NO3)3]原始纳米带,将其在空气中进行热处理,得到Y2O3 = Eu3+纳米带,采用双坩埚法氟化制备了纯相的YF3:Eu3+纳米带;再在空气中进行热处理,制备出结构新颖的纯相的Y7O6F9 = Eu3+纳米带,在本发明中,掺杂的铕离子的摩尔百分数为5%,标记为Y706F9:5%Eu3+,即本发明所制备的是Y7O6F9:5% Eu3+纳米带。 [0007] The present invention is achieved, firstly prepare a spinning solution for electrospinning electrospinning technique has certain viscosity electrostatic spinning, under the best experimental conditions to prepare the PVP / [ Y (NO3) 3 + Eu (NO3) 3] original nanoribbons, which was heat treated in air to give Y2O3 = Eu3 + nanoribbons, the YF3 phase pure fluorinated prepared using the double crucible method: Eu3 + nanoribbons; then in the the air is heat-treated to prepare a novel structure phase pure Y7O6F9 = Eu3 + nanoribbons, in the present invention, the doped mole percent europium ions is 5%, labeled Y706F9: 5% Eu3 +, i.e., the present invention is prepared is Y7O6F9: 5% Eu3 + nanoribbons. 其步骤为: The steps are as follows:

[0008] (1)制备^O3 : 5 % Eu3+ 纳米带 [0008] (1) Preparation of ^ O3: 5% Eu3 + nanoribbons

[0009] 钇源和铕源使用的是氧化钇(Y2O3)和氧化铕(Eu2O3),高分子模板剂采用聚乙烯吡咯烷酮(PVP,分子量为1300000),采用N,N-二甲基甲酰胺(DMF)为溶剂。 [0009] The source of yttrium and europium source used is yttrium oxide (Y2O3) and europium oxide (Eu2O3), the polymer template polyvinylpyrrolidone (of PVP, molecular weight 1,300,000), using N, N- dimethylformamide ( DMF) as solvent. 称取一定量的氧化钇和氧化铕,两者的摩尔比为19 : 1,即铕离子的摩尔百分数为5%,用稀硝酸溶解后蒸发,得到Y (NO3) 3和Eu (NO3) 3混合晶体,加入适量的DMF溶剂中,再称取一定量的PVP加入到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液。 Weigh a certain amount of europium oxide, yttrium oxide and a molar ratio of 19: 1, i.e., mole percent europium ions is 5%, dissolved with dilute nitric acid and evaporated to give Y (NO3) 3 and Eu (NO3) 3 mixed crystal, an appropriate amount of DMF solvent, re-weighed amount of PVP was added to the solution, magnetically stirred at room temperature for 4h, and allowed to stand for 2h, i.e. form a spinning solution. 该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量18%,PVP含量18%,溶剂DMF含量64%。 Mass percentage of the components of the spinning solution was: 18% Rare Earth nitrate content, of PVP content of 18%, a solvent content of 64% DMF. 将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝,喷嘴口径0. 7mm,调整喷嘴与水平面的夹角为15°,施加13kV的直流电压,固化距离15cm,室温18〜25°C,相对湿度为50%〜70%,得至IJ PVP/[Y(NO3)3+Eu(NO3)3]复合纳米带。 The prepared spinning solution added to the spinning stock solution tube apparatus, electrostatic spinning, nozzle diameter 0. 7mm, the angle adjustment of the nozzle and the horizontal plane is 15 °, the DC voltage of 13kV is applied, cured distance 15cm, rt 18~25 ° C, relative humidity of 50% ~ 70%, to obtain IJ PVP / [Y (NO3) 3 + Eu (NO3) 3] nano composite tape. 将所述的PVP/[Y(NO3)3+Eu(NO3)3]复合纳米带放到程序控温炉中进行热处理,升温速率为1°C /min,在700°C恒温他,之后随炉体自然冷却至室温,即得到^O3:5% Eu3+纳米带。 To the PVP / [Y (NO3) 3 + Eu (NO3) 3] nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, at 700 ° C thermostat him, then with furnace cooled to room temperature, to obtain ^ O3: 5% Eu3 + nanoribbons.

[0010] (2)制备YF3 : 5 % Eu3+ 纳米带 Preparation of [0010] (2) YF3: 5% Eu3 + nanoribbons

[0011 ] 氟化试剂使用氟化氢铵,采用双坩埚法,将所述的IO3 : 5 % Eu3+纳米带放入内坩埚中,在内外坩埚间加过量的氟化氢铵,在外坩埚上加上坩埚盖子进行氟化处理,在^(TC保温2h,再升温到450°C热处理3h,升温速率为2V /min,获得YF3:5% Eu3+纳米带。 [0011] The fluorinating reagent used ammonium bifluoride, double crucible method, according to IO3: 5% Eu3 + nanoribbons into the crucible, the inner and outer crucibles plus an excess of ammonium bifluoride, with crucible lid outer crucible fluorination treatment, in ^ (TC incubated 2h, then heated to 450 ° C heat treatment 3h, a heating rate of 2V / min, to obtain YF3: 5% Eu3 + nanoribbons.

[0012] (3)制备Y7O6F9 : 5 % Eu3+ 纳米带 Preparation of [0012] (3) Y7O6F9: 5% Eu3 + nanoribbons

[0013] 将YF3 : 5 % Eu3+纳米带放在马福炉中,在空气气氛中于580°C加热9h,得到Y7O6F9:5% Eu3+纳米带,带宽为1. 9〜3. 7 μ m,厚度为185nm,长度大于300 μ m。 [0013] The YF3: 5% Eu3 + nanoribbons in a muffle furnace in air atmosphere at 580 ° C heating 9H, obtained Y7O6F9:. 5% Eu3 + nanoribbons, a bandwidth of 1. 9~3 7 μ m, a thickness of 185nm, length greater than 300 μ m.

[0014] 在上述过程中所述的Y706F9:5% Eu3+纳米带的带宽为1.9〜3.7μπι,厚度为185nm,长度大于300 μ m,实现了发明目的。 [0014] In the process according to Y706F9: 5% Eu3 + Bandwidth nanobelt 1.9~3.7μπι, a thickness of 185nm, length greater than 300 μ m, to achieve the object of the invention. 附图说明 BRIEF DESCRIPTION

[0015] 图1是Y7O6F9 : 5 % Eu3+纳米带的XRD谱图; [0015] FIG. 1 is a Y7O6F9: 5% Eu3 + XRD spectra nanoribbons;

[0016] 图2是\06&:5% Eu3+纳米带的SEM照片,该图兼作摘要附图; [0016] FIG. 2 is \ 06 &: 5% Eu3 + SEM photograph nanoribbons, which serves FIG summary drawings;

[0017] 图3是Y7O6F9 : 5 % Eu3+纳米带的EDS谱图; [0017] FIG. 3 is Y7O6F9: 5% Eu3 + EDS spectra nanoribbons;

[0018] 图4是Y7O6F9 : 5 % Eu3+纳米带的激发光谱图; [0018] FIG. 4 is Y7O6F9: 5% Eu3 + excitation spectra nanoribbons;

[0019] 图5是Y7O6F9:5% Eu3+纳米带的发射光谱图。 [0019] Figure 5 is Y7O6F9: 5% Eu3 + emission spectra nanoribbons.

具体实施方式 Detailed ways

[0020] 本发明所选用的氧化钇氏03)和氧化铕(Eu2O3)的纯度为99. 99%,聚乙烯吡咯烷酮(PVP,分子量1300000)、N,N-二甲基甲酰胺(DMF)、氟化氢铵(NH4HF2)和硝酸(HNO3)均为市售分析纯产品;所用的玻璃仪器和设备是实验室中常用的仪器和设备。 [0020] The present invention is selected purity yttria-03's), and europium oxide (Eu2O3) was 99.99%, polyvinylpyrrolidone (of PVP, molecular weight 1300000), N, N- dimethylformamide (DMF), ammonium bifluoride (of NH4HF2) and nitric acid (of HNO3) were commercially available analytical grade products; glassware and equipment used are commonly used in laboratory equipment and instruments.

[0021] 实施例:称取Ig Y2O3和0.0820g Eu2O3,两者的摩尔比为19 : 1,即铕离子的摩尔百分数为5%,用稀硝酸溶解后蒸发,得到Y(NO3)3和Eu(NO3)3混合晶体,加入9. 2178g DMF溶剂,再加入2. 5925g PVP到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液。 [0021] Example: Ig Y2O3 and weighed 0.0820g Eu2O3, a molar ratio of 19: 1, i.e., mole percent europium ions is 5%, dissolved with dilute nitric acid and evaporated to give Y (NO3) 3, and Eu (NO3) 3 mixed crystal, 9. 2178g DMF solvent was added, 2. 5925g PVP was added to the solution, magnetically stirred at room temperature for 4h, and allowed to stand for 2h, i.e. form a spinning solution. 该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量18%,PVP含量18%,溶剂DMF含量64%。 Mass percentage of the components of the spinning solution was: 18% Rare Earth nitrate content, of PVP content of 18%, a solvent content of 64% DMF. 将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝,喷嘴口径0. 7mm,调整喷嘴与水平面的夹角为15°,施加13kV的直流电压,固化距离15cm,室温18〜 25°C,相对湿度为50%〜70%,得到PVP/[Y(NO3) 3+Eu (NO3)3]复合纳米带。 The prepared spinning solution added to the spinning stock solution tube apparatus, electrostatic spinning, nozzle diameter 0. 7mm, the angle adjustment of the nozzle and the horizontal plane is 15 °, the DC voltage of 13kV is applied, cured distance 15cm, rt 18~ 25 ° C, relative humidity of 50% ~ 70%, to give PVP / [Y (NO3) 3 + Eu (NO3) 3] nano composite tape. 将所述的PVP/ [Y(NO3)3+Eu(NO3)3]复合纳米带放到程序控温炉中进行热处理,升温速率为1°C /min,在700°C恒温他,之后随炉体自然冷却至室温,即得到Eu3+纳米带。 To the PVP / [Y (NO3) 3 + Eu (NO3) 3] nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, at 700 ° C thermostat him, then with furnace cooled to room temperature, to obtain Eu3 + nanoribbons. 氟化试剂使用氟化氢铵,采用双坩埚法,将所述的IO3: 5 % Eu3+纳米带放入内坩埚中,在内外坩埚间加过量的氟化氢铵,在外坩埚上加上坩埚盖子进行氟化处理,在^(TC保温2h,再升温到450°C热处理3h,升温速率为2°C /min,获得YF3:5% Eu3+纳米带。将YF3:5% Eu3+纳米带放在马福炉中,在空气气氛中于580°C加热9h,得到Y706F9:5% Eu3+纳米带。所述的Y706F9:5% Eu3+ 纳米带具有良好的结晶性,其衍射峰的d值和相对强度与Y7O6F9的PDF标准卡片(80-11¾) 所列的d值和相对强度一致,属于正交晶系,见图1所示。所述的Y706F9:5%Eu3+纳米带的带宽为1. 9〜3. 7 μ m,厚度为185nm,长度大于300μπι,见图2所示。Y7O6F9:5% Eu3+纳米带由Y、0、F和Eu元素组成(Au来自于SEM制样时表面镀的Au导电层),见图3所示。当监测波长为615nm时,Y706F9:5% Eu3+纳米带的激发光谱最强峰位于254nm处,属于02_-Eu3+ 之间的电 Fluorinating reagent ammonium bifluoride, double crucible method, according to IO3: 5% Eu3 + nanoribbons into the crucible, the inner and outer crucibles plus an excess of ammonium bifluoride, with crucible lid fluorination treatment on the outer crucible in ^ (TC incubated 2h, then heated to 450 ° C heat treatment 3h, heating rate of 2 ° C / min, to obtain YF3: 5% Eu3 + nanoribbons will YF3:. 5% Eu3 + nanoribbons placed in a muffle furnace in air at 580 ° C heating atmosphere 9h, to give Y706F9: 5% Eu3 + nanoribbons according Y706F9:. 5% Eu3 + nanoribbon has good crystallinity, d values ​​of the diffraction peaks and the PDF standard card relative intensities Y7O6F9 of ( 80-11¾) consistent with d-values ​​and relative intensities listed, orthorhombic, as shown in Figure 1 according Y706F9:. 5% Eu3 + Bandwidth nanobelt 1. 9~3 7 μ m, thickness. is of 185 nm, a length greater than 300μπι, shown in Figure 2. .Y7O6F9: 5% Eu3 + nanoribbons of Y, 0, F, and Eu elements (Au Au conductive layer from SEM sample preparation of the surface coating) composition, see Figure 3 when the monitoring shows wavelength of 615nm, Y706F9:. 5% Eu3 + nanoribbons excitation spectrum peak at 254nm at the most, between 02_-Eu3 + belong electrical 迁移带,见图4所示。在254nm的紫外光激发下,Y7O6F9:5% Eu3+纳米带发射出主峰位于615nm的明亮红光,它对应于Eu3+离子的5Dtl — 7F2跃迁,属于Eu3+的强迫电偶极跃迁,见图5所示。 Migrating band, as shown in Figure 4 under 254nm UV excitation, Y7O6F9:. 5% Eu3 + nanoribbons main peak 615nm emits bright red light, which corresponds to the ions Eu3 + 5Dtl - 7F2 transition of Eu3 + belonging electrically forced dipole transition, as shown in Figure 5.

[0022] 当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 [0022] Of course, the present invention may have various other embodiments without departing from the spirit and the essence of the present invention, those skilled in the art can be made when various corresponding modifications and variations according to the present invention, these corresponding modifications and variations shall fall within the scope of the appended claims.

Claims (1)

1.铕离子掺杂Y7O6F9纳米带的制备方法,其特征在于,采用静电纺丝技术,使用聚乙烯吡咯烷酮(PVP)为高分子模板剂,采用N,N-二甲基甲酰胺(DMF)为溶剂,氟化试剂使用氟化氢铵,制备产物为铕离子掺杂Y7O6F9纳米带,其步骤为:(1) Y2O3 :5% Eu3+纳米带钇源和铕源使用的是氧化钇氏03)和氧化铕(Eu2O3),高分子模板剂采用聚乙烯吡咯烷酮,采用N,N- 二甲基甲酰胺为溶剂,称取一定量的氧化钇和氧化铕,两者的摩尔比为19 : 1,即铕离子的摩尔百分数为5%,用稀硝酸溶解后蒸发,得到Y(NO3)3和Eu(NO3)3混合晶体,加入适量的DMF溶剂中,再称取一定量的PVP加入到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液,该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量18%,PVP含量18 %,溶剂DMF含量64%,将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝 1. Preparation Y7O6F9 Europium doped nanoribbons, wherein the electrospinning technique, polyvinyl pyrrolidone (PVP) as a polymer template, using N, N- dimethylformamide (DMF) is solvents, hydrogen fluoride, ammonium fluoride reagent, the product of preparation europium ion doping Y7O6F9 nanoribbons, comprising the steps of: (1) Y2O3: 5% Eu3 + nanoribbons source of yttrium and europium source used is yttrium oxide apos 03), and europium oxide (Eu2O3), polyvinylpyrrolidone polymer template, using N, N- dimethylformamide as solvent, said certain amount of europium oxide, yttrium oxide and a molar ratio of 19: 1, i.e. europium the molar percentage of 5%, after dissolving in dilute nitric acid and evaporated to give Y (NO3) 3, and 3 mixed crystal of Eu (NO3), adding an appropriate amount of DMF solvent, re-weighed amount of PVP was added to the above solution at magnetic stirring at room temperature for 4h, and allowed to stand for 2h, i.e. formed spinning solution, the quality of the components of the dope percentages: 18% of rare earth nitrate content, of PVP content of 18%, a solvent content of 64% DMF, formulated good the spinning solution was added spinning apparatus reservoir tube electrospinning ,喷嘴口径0.7mm,调整喷嘴与水平面的夹角为15°,施加13kV的直流电压,固化距离15cm,室温18〜25°C,相对湿度为50%〜70%,得到PVP/[Y (NO3) 3+Eu (NO3) 3]复合纳米带,将所述的PVP/[Y(NO3)3+Eu(NO丄]复合纳米带放到程序控温炉中进行热处理,升温速率为1°C /min,在700°C恒温他,之后随炉体自然冷却至室温,即得到^O3 :5% Eu3+纳米带,所述的PVP分子量Mr = 1300000 ;(2)制备YF3 :5% Eu3+纳米带氟化试剂使用氟化氢铵,采用双坩埚法,将所述的IO3 Eu3+纳米带放入内坩埚中, 在内外坩埚间加过量的氟化氢铵,在外坩埚上加上坩埚盖子进行氟化处理,在观01:保温2h,再升温到450°C热处理3h,升温速率为2V /min,获得YF3 :5% Eu3+纳米带;(3)制备 Y7O6F9 :5% Eu3+纳米带将YF3 :5% Eu3+纳米带放在马福炉中,在空气气氛中于580°C加热9h,得到Y7O6F9 :5% Eu3+纳米带,带宽为1. 9〜3. 7 μ m,厚度为185nm , Nozzle diameter 0.7mm, the angle adjustment of the nozzle and the horizontal plane is 15 °, the DC voltage of 13kV is applied, cured distance 15cm, at room temperature 18~25 ° C, relative humidity of 50% ~ 70%, to give PVP / [Y (NO3 ) 3 + Eu (NO3) 3] nano composite tape according to the PVP / [Y (NO3) 3 + Eu (NO Shang] Nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, at 700 ° C thermostat him, then with the furnace cooled to room temperature, to obtain ^ O3: 5% Eu3 + nanoribbons, the PVP molecular weight Mr = 1300000; (2) preparation of YF3: 5% Eu3 + nanoribbons fluorinating reagent ammonium bifluoride, double crucible method, according to IO3 Eu3 + nanoribbons into the crucible, with crucible lid on the inner and outer crucibles plus excess hydrogen fluoride, ammonium outer crucible fluorination treatment, the concept of 01: heat 2h, then heated to 450 ° C heat treatment 3h, a heating rate of 2V / min, to obtain YF3: 5% Eu3 + nanoribbons; (3) preparation Y7O6F9: 5% Eu3 + nano tape of YF3: with 5% Eu3 + nano discharge in a muffle furnace and heated in an air atmosphere at 580 ° C 9h, to give Y7O6F9: 5% Eu3 + nanoribbons, a bandwidth of 1. 9~3 7 μ m, a thickness of 185nm. ,长度大于300 μ m。 , Length greater than 300 μ m.
CN2010105502152A 2010-11-19 2010-11-19 Europium (Eu) ion doped Y7O6F9 nanobelt and preparation method thereof CN102061172B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105502152A CN102061172B (en) 2010-11-19 2010-11-19 Europium (Eu) ion doped Y7O6F9 nanobelt and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105502152A CN102061172B (en) 2010-11-19 2010-11-19 Europium (Eu) ion doped Y7O6F9 nanobelt and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102061172A CN102061172A (en) 2011-05-18
CN102061172B true CN102061172B (en) 2012-05-23

Family

ID=43996680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105502152A CN102061172B (en) 2010-11-19 2010-11-19 Europium (Eu) ion doped Y7O6F9 nanobelt and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102061172B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605470A (en) * 2012-02-24 2012-07-25 长春理工大学 Preparation method of europium-doped Y4Al2O9 red light-emitting nanobelt
CN102660803B (en) * 2012-02-24 2014-01-15 长春理工大学 Method for preparing europium-doped yttrium lithium tetrafluoride (YLF) nanobelt
CN102618969B (en) * 2012-02-24 2014-02-12 长春理工大学 Preparation method of europium-doped sodium tetrafluoro gadolinium red luminescent nanobelt
CN102605469A (en) * 2012-02-24 2012-07-25 长春理工大学 Method for preparing Eu (europium)-doped Y4Al2O9 red luminescent nano fiber
CN102660806B (en) * 2012-02-24 2014-06-25 长春理工大学 Method for preparing europium-doped LiYF4 nanofiber
CN102817113B (en) * 2012-08-10 2014-07-02 长春理工大学 Preparation method of terbium-doped octafluoro yttrium barium green luminescent nano-fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348951A (en) 2008-07-11 2009-01-21 长春理工大学 Preparation of rare earth fluoride/rare earth oxyfluoride composite nano fibre
CN101798056A (en) 2010-02-10 2010-08-11 长春理工大学 Rare earth fluoride nanobelt and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057072A (en) * 2006-08-31 2008-03-13 Teijin Ltd Rare earth metal element-containing crystalline metal oxide fiber and method for producing the same
WO2009140381A1 (en) * 2008-05-13 2009-11-19 Research Triangle Institute Porous and non-porous nanostructures and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348951A (en) 2008-07-11 2009-01-21 长春理工大学 Preparation of rare earth fluoride/rare earth oxyfluoride composite nano fibre
CN101798056A (en) 2010-02-10 2010-08-11 长春理工大学 Rare earth fluoride nanobelt and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2008-57072A 2008.03.13
刘莹 等.静电纺丝技术制备Gd3Ga5O12∶Eu3+多孔发光纳米带.《高等学校化学学报》.2010,第31卷(第7期),1291-1296.

Also Published As

Publication number Publication date
CN102061172A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
Tu et al. Breakdown of Crystallographic Site Symmetry in Lanthanide‐Doped NaYF4 Crystals
Cao et al. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers
Wang et al. Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors
Yang et al. In (OH) 3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties
Jia et al. Synthesis and characterization of YAG: Ce3+ LED nanophosphors
Li et al. Electrospinning derived one‐dimensional LaOCl: Ln3+ (Ln= Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor‐tunable emission properties
Chen et al. Preparation and characterization of ZrO2: Eu3+ phosphors
Zhang et al. Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods
Zhang et al. Synthesis and photoluminescence of the Y2O3: Eu3+ phosphor nanowires in AAO template
Wu et al. Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires
Wang et al. A sol-gel method to prepare pure and gold colloid doped ZnO films
Quan et al. Synthesis and characterization of spherical ZrO2: Eu3+ phosphors by spray pyrolysis process
Luo et al. Vacuum electron field emission from SnO2 nanowhiskers synthesized by thermal evaporation
Zhou et al. Photoluminescence characteristics of pure and Dy-doped ZnNb2O6 nanoparticles prepared by a combustion method
Chang et al. Preparation and characterization of rod-like Eu: Gd2O3 phosphor through a hydrothermal routine
CN101348951B (en) Preparation of rare earth fluoride/rare earth oxyfluoride composite nano fibre
Wu et al. Nanosized LiSrPO4: Eu2+ phosphor with blue-emission synthesized by the sol–gel method
Chen et al. Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method
Yang et al. Synthesis of Y 2 O 2 S: Eu 3+ luminescent nanobelts via electrospinning combined with sulfurization technique
Zhao et al. Synthesis and optical properties of Mg-doped ZnO nanofibers prepared by electrospinning
CN100378192C (en) Luminescent material converted in nano level with yttrium oxide as matrix and its preparation method
Gouveia-Neto et al. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application
Chai et al. Phase transformation and intense 2.7 μm emission from Er 3+ doped YF 3/YOF submicron-crystals
Hassanzadeh-Tabrizi Synthesis and luminescence properties of YAG: Ce nanopowder prepared by the Pechini method
Raju et al. Synthesis and luminescent properties of low concentration Dy3+: GAP nanophosphors

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C17 Cessation of patent right