CN102060318B - Terbium (Tb) doped Y7O6F9 nanobelt and preparation method thereof - Google Patents

Terbium (Tb) doped Y7O6F9 nanobelt and preparation method thereof Download PDF

Info

Publication number
CN102060318B
CN102060318B CN2010105501821A CN201010550182A CN102060318B CN 102060318 B CN102060318 B CN 102060318B CN 2010105501821 A CN2010105501821 A CN 2010105501821A CN 201010550182 A CN201010550182 A CN 201010550182A CN 102060318 B CN102060318 B CN 102060318B
Authority
CN
China
Prior art keywords
tb3
nanobelt
y7o6f9
nanoribbons
tb
Prior art date
Application number
CN2010105501821A
Other languages
Chinese (zh)
Other versions
CN102060318A (en
Inventor
于文生
侯远
刘桂霞
王进贤
董相廷
赵恩贵
Original Assignee
长春理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春理工大学 filed Critical 长春理工大学
Priority to CN2010105501821A priority Critical patent/CN102060318B/en
Publication of CN102060318A publication Critical patent/CN102060318A/en
Application granted granted Critical
Publication of CN102060318B publication Critical patent/CN102060318B/en

Links

Abstract

The invention relates to a terbium (Tb) doped Y7O6F9 nanobelt and a preparation method thereof, belonging to the technical field of nano material preparation. Rare-earth fluoride nanobelts are prepared by the existing electrospinning technology. The method comprises the following three steps: (1) preparing a Y2O3:5%Tb3+nanobelt: preparing a composite PVP/[Y(NO3)3+Tb(NO3)3] nanobelt by adopting the electrospinning technology and then carrying out heat treatment on the composite nanobelt to obtain the Y2O3:5%Tb3+nanobelt; (2) preparing a YF3:5%Tb3+nanobelt: taking ammonium bifluoride as a fluorinating reagent and fluorinating the Y2O3:5%Tb3+nanobelt by a double crucible method to obtain the YF3:5%Tb3+nanobelt; and (3) preparing a Y7O6F9:5%Tb3+nanobelt: placing the YF3:5%Tb3+nanobelt into a muffle furnace and heating the YF3:5%Tb3+nanobelt in air atmosphere at the temperature of 580 DEG C for 9 hours to obtain the Y7O6F9:5%Tb3+nanobelt. The Y7O6F9:5%Tb3+nanobelt has the width of 4.5-8.5 mu m, thickness of 126nm and length of more than 300 mu m. The Tb doped Y7O6F9 nanobelt is a novel important green nano luminescent material and has broad application prospect.

Description

掺铽Y7O6F9纳米带及其制备方法 Terbium-doped nanoribbons and preparation method Y7O6F9

技术领域 FIELD

[0001] 本发明涉及纳米材料制备技术领域,具体说涉及掺铽Y7O6F9纳米带及其制备方法。 [0001] The present invention relates to the field of nano-materials preparation, particularly, to Y7O6F9 terbium doped nanoribbons their preparation. 背景技术 Background technique

[0002] 无机物纳米带的制备与性质研究目前是材料科学、凝聚态物理、化学等学科研究的前沿热点之一。 [0002] Preparation and properties of inorganic compounds is currently one of the leading edge with the hot materials science research disciplines, condensed matter physics, chemistry. 纳米带是一种用人工方法合成的呈带状结构的纳米材料,它的横截面是一个矩形结构,其厚度在纳米量级,宽度可达到微米级,而长度可达几百微米,甚至几毫米。 Nanoribbons zonal structure is a synthetic nanomaterials artificially, which is a cross section of rectangular configuration, having a thickness in the order of nanometers, up to micron width and a length up to several hundreds of micrometers, even a few mm. 纳米带由于其不同于管、线材料的新颖结构以及独特的光、电、磁等性能而引起人们的高度重视。 Since the band which is different from the nano tube, the wire material and the novel structure unique optical, electrical and magnetic properties caused people's attention.

[0003] 稀土氟氧化物声子能量低,有较高的发光量子效率,具有良好的热稳定性和环境稳定性,被广泛用做发光材料基质。 [0003] The rare earth oxyfluoride low phonon energy, a higher quantum efficiency of light emission, having good thermal and environmental stability, is widely used as a light emitting material substrate. 掺铽氟氧化钇(Y7O6F9 = Tb3+)是重要的绿色荧光材料。 Fluoro terbium-doped yttrium oxide (Y7O6F9 = Tb3 +) is important for the green fluorescent material. 目前,未见有Y7O6F9 : Tb3+纳米材料的相关报道。 Currently, there are no Y7O6F9: Tb3 + reports nanomaterials. Y7O6F9: Tb3+纳米带是一种重要的新型绿色纳米发光材料,将在发光与显示、防伪、生物标记、纳米器件等领域得到重要应用,具有广阔的应用前景。 Y7O6F9: Tb3 + nanoribbons is an important new nano-green light emitting material, obtained with important applications in the field emission display, security, biomarker, nano-devices, has broad application prospects. 目前未IY7O6F9: Tb3+纳米带的报道。 Currently not IY7O6F9: Tb3 + nanoribbons were reported.

[0004] 专利号为1975504的美国专利公开了一项有关静电纺丝方法(electrospirming) 的技术方案,该方法是制备连续的、具有宏观长度的微纳米纤维的一种有效方法,由i^ormhals于1934年首先提出。 [0004] U.S. Patent No. 1,975,504 discloses an electrostatic spinning process about (electrospirming) technical solution, which is prepared in a continuous method, to a micro macroscopic nanofiber length effective method by i ^ ormhals first proposed in 1934. 这一方法主要用来制备高分子纳米纤维,其特征是使带电的高分子溶液或熔体在静电场中受静电力的牵引而由喷嘴喷出,投向对面的接收屏,从而实现拉丝,然后,在常温下溶剂蒸发,或者熔体冷却到常温而固化,得到微纳米纤维。 This method is mainly used polymer nanofibers, wherein the charged polymer solution or melt in the electrostatic field by the traction force of the ejection power by the nozzles, toward the opposite receiving screen, in order to achieve wire drawing, and then , the solvent was evaporated at normal temperature, or the melt is cooled down to room temperature and solidified to obtain micro and nano fibers. 近10年来,在无机纤维制备技术领域出现了采用静电纺丝方法制备无机化合物如氧化物纳米纤维的技术方案,所述的氧化物包括Ti02、ZrO2, Y2O3> Y2O3:RE3+(RE3+ = Eu3+、Tb3+、Er3+、 Yb3+/Er3+)、NiO、Co3O4, Mn2O3> Mn3O4, CuO, SiO2, A1203、V2O5, ZnO, Nb2O5, MoO3> CeO2, LaMO3 (Μ =Fe、Cr、Mn、Co、Ni、Al)、Y3Al5O12, La2Zr2O7等金属氧化物和金属复合氧化物。 The past 10 years, appear in the inorganic fibers produced Field of the electrospinning process for preparing an inorganic compound such as an oxide nanofibers aspect, the oxides include Ti02, ZrO2, Y2O3> Y2O3: RE3 + (RE3 + = Eu3 +, Tb3 + , Er3 +, Yb3 + / Er3 +), NiO, Co3O4, Mn2O3> Mn3O4, CuO, SiO2, A1203, V2O5, ZnO, Nb2O5, MoO3> CeO2, LaMO3 (Μ = Fe, Cr, Mn, Co, Ni, Al), Y3Al5O12 , La2Zr2O7 metal oxide and a metal composite oxide. 已有人利用静电纺丝技术成功制备了高分子纳米带(Materials Letters, 2007,61 =2325-2328 ; Journal of PolymerScience =Part B =Polymer Physics,2001,39 :2598-2606)。 It has been successfully prepared using high molecular nanoribbons electrospinning (Materials Letters, 2007,61 = 2325-2328; Journal of PolymerScience = Part B = Polymer Physics, 2001,39: 2598-2606). 有人禾Ij 用锡的有机化合物,使用静电纺丝技术与金属有机化合物分解技术相结合制备了多孔SnA 纳米带(Nanotechnology,2007,18 :435704);有人利用静电纺丝技术首先制备了PEO/氢氧化锡复合纳米带,将其焙烧得到了多孔SnO2纳米带(J. Am. Ceram. Soc. ,2008,91(1): 257-262)。 It was Ij organic compound of tin, and the metal using an electrostatic spinning technique combined organic decomposition porous SnA nanoribbons prepared (Nanotechnology, 2007,18: 435704); the PEO was first prepared by electrospinning / hydrogen with tin oxide composite nanoparticles, which was obtained by firing porous SnO2 nanoribbons (J. Am Ceram Soc, 2008,91 (1):... 257-262). 董相廷等采用静电纺丝技术制备了稀土氟化物纳米带(中国发明专利,申请号: 201010108039. 7)、二氧化钛纳米带(中国发明专利,ZL200810050948. 2)和Gd3Ga5O12 = Eu3+ 多孔纳米带(高等学校化学学报,2010,31(7),1291-1四6)。 Dong phase ting the like by electrospinning a rare earth fluoride nanoribbons (Chinese patent application number: 201010108039.7) was prepared, (chemical Universities titania nanoribbons (Chinese patent, ZL200810050948 2.) And Gd3Ga5O12 = Eu3 + porous nanobelts Technology, 2010,31 (7), 1291-1 four 6). 目前,未见Y7O6F9 = Tb3+纳米带的报道。 Currently, no Y7O6F9 = Tb3 + nanoribbons were reported.

[0005] 利用静电纺丝技术制备纳米材料时,原料的种类、高分子模板剂的分子量、纺丝液的组成、纺丝过程参数和热处理工艺对最终产品的形貌和尺寸都有重要影响。 [0005] When prepared using electrostatic spinning in nanotechnology, have a significant impact type of raw material, the molecular weight of the polymer template, the composition of the spinning solution, spinning process and heat treatment parameters on the morphology and size of the final product. 本发明先采用静电纺丝技术,以氧化钇α2ο3)和氧化铽(Tb4O7)为原料,用稀硝酸溶解后蒸发,得到Y (NO3)3和Tb (NO3)3混合晶体,加入溶剂N,N-二甲基甲酰胺(DMF)和高分子模板剂聚乙烯吡咯烷酮(PVP分子量为1300000),得到纺丝液后进行静电纺丝,在最佳的实验条件下,制备出PVP/[Y(NO3) 3+Tb (NO3)3]原始纳米带,将其在空气中进行热处理,得到Y2O3 = Tb3+纳米带,采用双坩埚法氟化得到了纯相的YF3 = Tb3+纳米带;再在空气中进行热处理,制备出了结构新颖WY7O6F9 = Tb3+纳米带。 To the present invention by electrospinning, yttrium oxide α2ο3) and terbium oxide (Tb4O7) as raw material, after dissolution in dilute nitric acid and evaporated to give 3 mixed crystal Y (NO3) 3 and Tb (NO3), adding a solvent N, N - after electrospinning dimethylformamide (DMF) and high molecular templating agent polyvinylpyrrolidone (PVP molecular weight of 1,300,000), to give a spinning solution, in the best experimental conditions to prepare the PVP / [Y (NO3 ) 3 + Tb (NO3) 3] original nanoribbons, which was heat treated in air to give Y2O3 = Tb3 + nanoribbons, double crucible method fluorination of YF3 = Tb3 + nanoribbons phase pure; then in air heat treatment, a new structure was prepared WY7O6F9 = Tb3 + nanoribbons.

发明内容 SUMMARY

[0006] 在背景技术中的使用静电纺丝技术制备了金属氧化物、金属复合氧化物纳米纤维、高分子纳米带、SnO2纳米带、TiO2纳米带、Gd3Ga5O12 = Eu3+多孔纳米带和稀土氟化物纳米带。 [0006] electrospinning technique in the background art metal oxide, metal composite oxide nanofibers, nanoribbons prepared polymer, SnO2 nanoribbons, - TiO2 nanoribbons, Gd3Ga5O12 = Eu3 + and the rare earth fluoride porous nano nanobelts band. 为了在纳米带领域提供一种以稀土氟氧化物为基质的新型绿色发光纳米带,我们发明了Y7O6F9 = Tb3+纳米带及其制备方法。 To provide a substrate for the rare earth oxyfluoride new green luminescent band nanoribbons in the field of nanotechnology, we invented nanoribbons Y7O6F9 = Tb3 + and its preparation method.

[0007] 本发明是这样实现的,首先制备出用于静电纺丝的具有一定粘度的纺丝液,应用静电纺丝技术进行静电纺丝,在最佳的实验条件下,制备出PVP/[Y (NO3) 3+Tb (NO3)3]原始纳米带,将其在空气中进行热处理,得到Y2O3 = Tb3+纳米带,采用双坩埚法氟化制备了纯相的YF3 = Tb3+纳米带;再在空气中进行热处理,制备出结构新颖的纯相的Y7O6F9 = Tb3+纳米带,在本发明中,掺杂的铽离子的摩尔百分数为5%,标记为Y706F9:5%Tb3+,即本发明所制备的是Y7O6F9:5% Tb3+纳米带。 [0007] The present invention is achieved, firstly prepare a spinning solution for electrospinning electrospinning technique has certain viscosity electrostatic spinning, under the best experimental conditions to prepare the PVP / [ Y (NO3) 3 + Tb (NO3) 3] original nanoribbons, which was heat treated in air to give Y2O3 = Tb3 + nanoribbons, the YF3 = Tb3 + nanoribbons phase pure fluorinated prepared using the double crucible method; then in the the air is heat-treated to prepare a novel structure phase pure Y7O6F9 = Tb3 + nanoribbons, in the present invention, the doped mole percent Tb 5%, labeled Y706F9: 5% Tb3 +, i.e., the present invention is prepared is Y7O6F9: 5% Tb3 + nanoribbons. 其步骤为: The steps are as follows:

[0008] (1)制备^O3 : 5 % Tb3+ 纳米带 [0008] (1) Preparation of ^ O3: 5% Tb3 + nanoribbons

[0009] 钇源和铽源使用的是氧化钇(Y2O3)和氧化铽(Tb4O7),高分子模板剂采用聚乙烯吡咯烷酮(PVP,分子量为1300000),采用N,N-二甲基甲酰胺(DMF)为溶剂。 [0009] The source of yttrium and terbium source used is yttrium oxide (Y2O3), and terbium oxide (Tb4O7), template polyvinylpyrrolidone polymer (of PVP, molecular weight 1,300,000), using N, N- dimethylformamide ( DMF) as solvent. 称取一定量的氧化钇和氧化铽,钇离子与铽离子的摩尔比为19 : 1,即铽离子的摩尔百分数为5%,用稀硝酸溶解后蒸发,得到Y (NO3) 3和Tb (NO3) 3混合晶体,加入适量的DMF溶剂中,再称取一定量的PVP加入到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液。 Weigh a quantity of yttrium oxide and terbium molar ratio of yttrium ions and Tb ions is 19: 1, i.e., mole percent Tb 5%, After dissolving in dilute nitric acid and evaporated to give Y (NO3) 3 and Tb ( NO3) 3 mixed crystal, an appropriate amount of DMF solvent, re-weighed amount of PVP was added to the solution, magnetically stirred at room temperature for 4h, and allowed to stand for 2h, i.e. form a spinning solution. 该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量15%,PVP含量20%,溶剂DMF含量65%。 Mass percentage of the components of the spinning solution is: a rare earth nitrate content 15%, PVP content of 20%, a solvent content of 65% DMF. 将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝,喷嘴口径0. 7mm,调整喷嘴与水平面的夹角为15°,施加14kV的直流电压,固化距离15cm,室温18〜25°C,相对湿度为50%〜 70 %,得到PVP/ [Y (NO3) 3+Tb (NO3) 3]复合纳米带。 The prepared spinning solution added to the spinning stock solution tube apparatus, electrostatic spinning, nozzle diameter 0. 7mm, the angle adjustment of the nozzle and the horizontal plane is 15 °, the DC voltage of 14kV is applied, cured distance 15cm, rt 18~25 ° C, relative humidity of 50% to 70%, to give PVP / [Y (NO3) 3 + Tb (NO3) 3] nano composite tape. 将所述的PVP/ [Y (NO3) 3+Tb (NO3) 3]复合纳米带放到程序控温炉中进行热处理,升温速率为1°C /min,在700°C恒温他,之后随炉体自然冷却至室温,即得到Tb3+纳米带。 To the PVP / [Y (NO3) 3 + Tb (NO3) 3] nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, at 700 ° C thermostat him, then with furnace cooled to room temperature, to obtain Tb3 + nanoribbons.

[0010] (2)制备YF3 : 5 % Tb3+ 纳米带 Preparation of [0010] (2) YF3: 5% Tb3 + nanoribbons

[0011 ] 氟化试剂使用氟化氢铵,采用双坩埚法,将所述的IO3 : 5 % Tb3+纳米带放入内坩埚中,在内外坩埚间加过量的氟化氢铵,在外坩埚上加上坩埚盖子进行氟化处理,在^(TC保温2h,再升温到450°C热处理3h,升温速率为2V /min,获得YF3:5% Tb3+纳米带。 [0011] The fluorinating reagent used ammonium bifluoride, double crucible method, according to IO3: 5% Tb3 + nanoribbons into the crucible, the inner and outer crucibles plus an excess of ammonium bifluoride, with crucible lid outer crucible fluorination treatment, in ^ (TC incubated 2h, then heated to 450 ° C heat treatment 3h, a heating rate of 2V / min, to obtain YF3: 5% Tb3 + nanoribbons.

[0012] (3)制备Y7O6F9 : 5 % Tb3+ 纳米带 Preparation of [0012] (3) Y7O6F9: 5% Tb3 + nanoribbons

[0013] 将YF3:5% Tb3+纳米带放在马福炉中,在空气气氛中于580°C加热9h,得到Y7O6F9:5% Tb3+纳米带,带宽为4. 5〜8. 5 μ m,厚度为U6nm,长度大于300 μ m。 [0013] The YF3: 5% Tb3 + nanoribbons in a muffle furnace in air atmosphere at 580 ° C heating 9H, obtained Y7O6F9:. 5% Tb3 + nanoribbons, bandwidth 4. 5~8 5 μ m, a thickness of U6nm, length greater than 300 μ m.

[0014] 在上述过程中所述的Y7O6F9:5%Tb3+纳米带的带宽为4.5〜8.5μπι,厚度为126nm,长度大于300 μ m,实现了发明目的。 [0014] In the process according to Y7O6F9: 5% Tb3 + Bandwidth nanobelt 4.5~8.5μπι, a thickness of 126nm, length greater than 300 μ m, to achieve the object of the invention.

附图说明[0015] 图1是Y7O6F9 : 5 % Tb3+纳米带的XRD谱图; BRIEF DESCRIPTION [0015] FIG. 1 is a Y7O6F9: 5% Tb3 + XRD spectra nanoribbons;

[0016] 图2是\06&:5% Tb3+纳米带的SEM照片,该图兼作摘要附图; [0016] FIG. 2 is \ 06 &: 5% Tb3 + SEM photograph nanoribbons, which serves FIG summary drawings;

[0017] 图3是Y7O6F9 : 5 % Tb3+纳米带的EDS谱图; [0017] FIG. 3 is Y7O6F9: 5% Tb3 + EDS spectra nanoribbons;

[0018] 图4是Y7O6F9 : 5 % Tb3+纳米带的激发光谱图; [0018] FIG. 4 is Y7O6F9: 5% Tb3 + band excitation spectra nanometers;

[0019] 图5是Y7O6F9:5% Tb3+纳米带的发射光谱图。 [0019] Figure 5 is Y7O6F9: 5% Tb3 + emission spectra nanoribbons.

具体实施方式 Detailed ways

[0020] 本发明所选用的氧化钇氏03)和氧化铽(Tb4O7)的纯度为99. 99%,聚乙烯吡咯烷酮(PVP,分子量1300000)、N,N-二甲基甲酰胺(DMF)、氟化氢铵(NH4HF2)和硝酸(HNO3)均为市售分析纯产品;所用的玻璃仪器和设备是实验室中常用的仪器和设备。 [0020] The present invention is selected purity yttria-03's), and terbium oxide (Tb4O7) was 99.99%, polyvinylpyrrolidone (of PVP, molecular weight 1300000), N, N- dimethylformamide (DMF), ammonium bifluoride (of NH4HF2) and nitric acid (of HNO3) were commercially available analytical grade products; glassware and equipment used are commonly used in laboratory equipment and instruments.

[0021] 实施例:称取Ig Y2O3和0. 1743g Tb4O7,钇离子与铽离子的摩尔比为19 : 1,即铽离子的摩尔百分数为5%,用稀硝酸溶解后蒸发,得到Y(NO3)3和Tb(NO3)3混合晶体,力口入11.9454g DMF溶剂,再加入3. 6755g PVP到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液。 [0021] Example: Weigh Ig Y2O3 and 0. 1743g Tb4O7, terbium molar ratio of yttrium ions and ions is 19: 1, i.e., mole percent Tb 5%, dissolved with dilute nitric acid and evaporated to give Y (NO3 ) 3 and Tb (NO3) 3 mixed crystal, force mouth 11.9454g DMF solvent, 3. 6755g PVP was added to the solution, magnetically stirred at room temperature for 4h, and allowed to stand for 2h, i.e. form a spinning solution. 该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量15%,PVP含量20%,溶剂DMF含量65%。 Mass percentage of the components of the spinning solution is: a rare earth nitrate content 15%, PVP content of 20%, a solvent content of 65% DMF. 将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺丝,喷嘴口径0. 7mm,调整喷嘴与水平面的夹角为15°,施加14kV的直流电压,固化距离15cm,室温18〜25°C,相对湿度为50 %〜70 %,得到PVP/ [Y (NO3) 3+Tb (NO3) 3]复合纳米带。 The prepared spinning solution added to the spinning stock solution tube apparatus, electrostatic spinning, nozzle diameter 0. 7mm, the angle adjustment of the nozzle and the horizontal plane is 15 °, the DC voltage of 14kV is applied, cured distance 15cm, rt 18~25 ° C, relative humidity of 50% ~ 70%, to give PVP / [Y (NO3) 3 + Tb (NO3) 3] nano composite tape. 将所述的PVP/[Y (NO3) 3+Tb (NO3)3]复合纳米带放到程序控温炉中进行热处理,升温速率为1°C /min, 在700°C恒温8h,之后随炉体自然冷却至室温,即得到IO3:5% Tb3+纳米带。 To the PVP / [Y (NO3) 3 + Tb (NO3) 3] nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, at 700 ° C temperature 8h, then with furnace cooled to room temperature, to obtain IO3: 5% Tb3 + nanoribbons. 氟化试剂使用氟化氢铵,采用双坩埚法,将所述的Tb3+纳米带放入内坩埚中,在内外坩埚间加过量的氟化氢铵,在外坩埚上加上坩埚盖子进行氟化处理,在观0°C保温池,再升温到450°C 热处理汕,升温速率为2V /min,获得YF3:5% Tb3+纳米带。 Fluorinating reagent ammonium bifluoride, double crucible method, the Tb3 + Ion nanoribbons placed in a crucible, adding an excess of the inner and outer crucible ammonium bifluoride, with the outer crucibles cover fluorination treatment, the concept 0 ° C incubation tank, and then heated to 450 ° C heat treatment Shan, a heating rate of 2V / min, to obtain YF3: 5% Tb3 + nanoribbons. 将YF3:5% Tb3+纳米带放在马福炉中,在空气气氛中于580°C加热9h,得到Y7O6F9:5% Tb3+纳米带。 The YF3: 5% Tb3 + nanoribbons in a muffle furnace at 580 ° C 9h heated in an air atmosphere, to obtain Y7O6F9: 5% Tb3 + nanoribbons. 所述的Y7O6F9: 5% Tb3+ 纳米带具有良好的结晶性,其衍射峰的d值和相对强度与Y7O6F9的PDF标准卡片(80-11¾) 所列的d值和相对强度一致,属于正交晶系,见图1所示。 Said Y7O6F9: 5% Tb3 + nanoribbon has excellent crystallinity, whose d values ​​and relative intensities of the diffraction peaks with the PDF standard Y7O6F9 card (80-11¾) consistent with d-values ​​and relative intensities listed, crystallizes in the orthorhombic system, as shown in Figure 1. 所述的Y7O6F9:5% Tb3+纳米带的带宽为4. 5〜8. 5 μ m,厚度为U6nm,长度大于300 μ m,见图2所示。 Said Y7O6F9: 5% Tb3 + Bandwidth nanobelt 4. 5~8 5 μ m, a thickness of U6nm, length greater than 300 μ m, as shown in Figure 2. Y7O6F9:5% Tb3+纳米带由Y、0、F和Tb元素组成(Au来自于SEM制样时表面镀的Au导电层),见图3所示。 Y7O6F9: 5% Tb3 + nanoribbons of Y, 0, F, and Tb elements (SEM made from Au Au plated conductive layer of the sample time), as shown in Figure 3. 当监测波长为M3nm时,Y7O6F9:5% Tb3+纳米带的激发光谱主峰位于230nm处的强谱带,见图4所示。 When the monitor wavelength M3nm, Y7O6F9: excitation spectrum peak 5% Tb3 + nanoribbons strong band located at 230nm, as shown in Figure 4. 在230nm的紫外光激发下,Y7O6F9:5% Tb3+纳米带发射出主峰位于M3nm的明亮绿光,它对应于Tb3+离子的5D4 — 7F5跃迁,见图5所示。 UV excitation at 230nm, Y7O6F9: 5% Tb3 + nanoribbons emits bright green light located M3nm peak, which corresponds to the ion Tb3 + 5D4 - 7F5 transition, as shown in Figure 5.

[0022] 当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 [0022] Of course, the present invention may have various other embodiments without departing from the spirit and the essence of the present invention, those skilled in the art can be made when various corresponding modifications and variations according to the present invention, these corresponding modifications and variations shall fall within the scope of the appended claims.

Claims (1)

1.掺铽Y7O6F9纳米带的制备方法,其特征在于,采用静电纺丝技术,使用聚乙烯吡咯烷酮(PVP)为高分子模板剂,采用N,N-二甲基甲酰胺(DMF)为溶剂,氟化试剂使用氟化氢铵, 制备产物为掺铽Y7O6F9纳米带,其步骤为:(1) Y2O3 :5% Tb3+纳米带钇源和铽源使用的是氧化钇氏03)和氧化铽(Tb4O7),高分子模板剂采用聚乙烯吡咯烷酮,采用N,N-二甲基甲酰胺为溶剂,称取一定量的氧化钇和氧化铽,钇离子与铽离子的摩尔比为19 : 1,即铽离子的摩尔百分数为5%,用稀硝酸溶解后蒸发,得到Y(NO3)3和Tb (NO3) 3混合晶体,加入适量的DMF溶剂中,再称取一定量的PVP加入到上述溶液中,于室温下磁力搅拌4h,并静置2h,即形成纺丝液,该纺丝液各组成部分的质量百分数为:稀土硝酸盐含量15 %,PVP含量20 %,溶剂DMF含量65 %,将配制好的纺丝液加入纺丝装置的储液管中,进行静电纺 1. The method of preparing nano Y7O6F9 terbium-doped zone, characterized in that, by electrospinning, polyvinyl pyrrolidone (PVP) as a polymer template, using N, N- dimethylformamide (DMF) as solvent, fluorinating reagent ammonium bifluoride, the product of preparation of doped terbium Y7O6F9 nanoribbons, comprising the steps of: (1) Y2O3: 5% Tb3 + nanoribbons source of yttrium and terbium source used is yttrium oxide apos 03), and terbium oxide (Tb4O7), polyvinylpyrrolidone polymer template, using N, N- dimethylformamide as the solvent, the weighed amount of yttrium oxide, terbium oxide, yttrium ions with a molar ratio of Tb is 19: 1, i.e., terbium ions molar percentage of 5%, after dissolving in dilute nitric acid and evaporated to give 3 mixed crystal Y (NO3) 3 and Tb (NO3), adding an appropriate amount of DMF solvent, re-weighed amount of PVP was added to the solution at room temperature under magnetic stirring for 4h, and allowed to stand for 2h, i.e. formed spinning solution, the quality of the components of the dope percentages: rare earth nitrate content 15%, PVP content of 20%, a solvent content of 65% DMF, the prepared It was added to the spinning stock solution spinning apparatus tube, electrostatic spinning ,喷嘴口径0.7mm,调整喷嘴与水平面的夹角为15°,施加14kV的直流电压,固化距离15cm,室温18〜25°C,相对湿度为50%〜70%,得到PVP/ [Y (NO3) 3+Tb (NO3) 3] 复合纳米带,将所述的PVP/[Y (NO3) 3+Tb (NO丄]复合纳米带放到程序控温炉中进行热处理, 升温速率为1°C /min,在700°C恒温汕,之后随炉体自然冷却至室温,即得到^O3 :5% Tb3+ 纳米带,所述的PVP的分子量Mr = 1300000 ;(2)制备YF3 :5% Tb3+纳米带氟化试剂使用氟化氢铵,采用双坩埚法,将所述的IO3 Tb3+纳米带放入内坩埚中, 在内外坩埚间加过量的氟化氢铵,在外坩埚上加上坩埚盖子进行氟化处理,在观01:保温2h,再升温到450°C热处理3h,升温速率为2V /min,获得YF3 :5% Tb3+纳米带;(3)制备 Y7O6F9 :5% Tb3+纳米带将YF3 :5% Tb3+纳米带放在马福炉中,在空气气氛中于580°C加热9h,得到Y7O6F9 :5% Tb3+纳米带,带宽为4. 5〜8. 5 μ m,厚 , Nozzle diameter 0.7mm, the angle adjustment of the nozzle and the horizontal plane is 15 °, the DC voltage of 14kV is applied, cured distance 15cm, at room temperature 18~25 ° C, relative humidity of 50% ~ 70%, to give PVP / [Y (NO3 ) 3 + Tb (NO3) 3] nano composite tape according to the PVP / [Y (NO3) 3 + Tb (NO Shang] Nanocomposite with temperature programmed into the heat treatment furnace, a heating rate of 1 ° C / min, at 700 ° C thermostat Shan, then with the furnace cooled to room temperature, to obtain ^ O3: 5% Tb3 + nanoribbons, the molecular weight of the PVP, Mr = 1300000; (2) preparation of YF3: 5% Tb3 + nano with a fluorinating agent using ammonium bifluoride, double crucible method, according to IO3 Tb3 + nanoribbons placed in a crucible, adding an excess of ammonium bifluoride between the inside and outside of the crucible, with crucible lid outer crucible fluorination treatment, in View 01: heat 2h, then heated to 450 ° C heat treatment 3h, a heating rate of 2V / min, to obtain YF3: 5% Tb3 + nanoribbons; (3) preparation Y7O6F9: 5% Tb3 + nanoribbons will YF3: 5% Tb3 + nanoribbons placed in a muffle furnace and heated in an air atmosphere at 580 ° C 9h, to give Y7O6F9: 5% Tb3 + nanoribbons, bandwidth 4. 5~8 5 μ m, thick. 度为126nm,长度大于300 μ m。 Degree 126nm, length greater than 300 μ m.
CN2010105501821A 2010-11-19 2010-11-19 Terbium (Tb) doped Y7O6F9 nanobelt and preparation method thereof CN102060318B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105501821A CN102060318B (en) 2010-11-19 2010-11-19 Terbium (Tb) doped Y7O6F9 nanobelt and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105501821A CN102060318B (en) 2010-11-19 2010-11-19 Terbium (Tb) doped Y7O6F9 nanobelt and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102060318A CN102060318A (en) 2011-05-18
CN102060318B true CN102060318B (en) 2012-05-23

Family

ID=43995849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105501821A CN102060318B (en) 2010-11-19 2010-11-19 Terbium (Tb) doped Y7O6F9 nanobelt and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102060318B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660804B (en) * 2012-02-24 2014-06-25 长春理工大学 Method for preparing terbium doped yttrium lithium tetrafluoride nano-fiber
CN102605471B (en) * 2012-02-24 2013-10-23 长春理工大学 Method for preparing Tb (terbium)-doped sodium yttrium tetrafluoride green luminescent nanometer fiber
CN102660805B (en) * 2012-02-24 2014-06-25 长春理工大学 Method for preparing terbium-doped yttrium lithium tetrafluoride nanobelts
CN102605472B (en) * 2012-02-24 2013-10-23 长春理工大学 Method for preparing terbium-doped sodium yttrium tetrafluoride green light-emitting nanobelts
CN102817113B (en) * 2012-08-10 2014-07-02 长春理工大学 Preparation method of terbium-doped octafluoro yttrium barium green luminescent nano-fiber
CN106006704B (en) * 2016-05-27 2017-06-30 温州医科大学 A kind of rare earth material micron tube and preparation method thereof
KR101804682B1 (en) 2016-06-17 2017-12-04 신라대학교 산학협력단 Multi-color tunable Ce3+ - Mn2+ cooperative Y7O6F9 vernier phosphors
KR101820597B1 (en) 2016-07-18 2018-01-19 신라대학교 산학협력단 Y7O6F9:Ce3+ - Tb3+ Phosphors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348951A (en) 2008-07-11 2009-01-21 长春理工大学 Preparation of rare earth fluoride/rare earth oxyfluoride composite nano fibre
CN101798056A (en) 2010-02-10 2010-08-11 长春理工大学 Rare earth fluoride nanobelt and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057072A (en) * 2006-08-31 2008-03-13 Teijin Ltd Rare earth metal element-containing crystalline metal oxide fiber and method for producing the same
US8714776B2 (en) * 2008-05-13 2014-05-06 Research Triangle Institute Porous and non-porous nanostructures and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101348951A (en) 2008-07-11 2009-01-21 长春理工大学 Preparation of rare earth fluoride/rare earth oxyfluoride composite nano fibre
CN101798056A (en) 2010-02-10 2010-08-11 长春理工大学 Rare earth fluoride nanobelt and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ElisabethAntic-Fidancevetal..CrystalfieldsinROF:Tb3+(R=La Gd).《Journal of Alloys and Compounds》.2004
JP特开2008-57072A 2008.03.13
侯远 等.稀土氟化物微纳米材料制备方法的研究进展.《中国稀土学报》.2010,第28卷(第5期),515-524.

Also Published As

Publication number Publication date
CN102060318A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
Cao et al. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers
Lin et al. Sol–gel deposition and characterization of Mn2+-doped silicate phosphor films
Wang et al. Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors
Yang et al. In (OH) 3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties
Li et al. Redox luminescence switch based on energy transfer in CePO4: Tb3+ nanowires
Tu et al. Breakdown of Crystallographic Site Symmetry in Lanthanide‐Doped NaYF4 Crystals
Chen et al. Preparation and characterization of ZrO2: Eu3+ phosphors
Li et al. Electrospinning derived one‐dimensional LaOCl: Ln3+ (Ln= Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor‐tunable emission properties
Zhang et al. Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods
Wu et al. Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires
Chang et al. Preparation and characterization of rod-like Eu: Gd2O3 phosphor through a hydrothermal routine
Quan et al. Synthesis and characterization of spherical ZrO2: Eu3+ phosphors by spray pyrolysis process
Zhao et al. Synthesis and optical properties of Mg-doped ZnO nanofibers prepared by electrospinning
CN101348951B (en) Preparation of rare earth fluoride/rare earth oxyfluoride composite nano fibre
Yang et al. Synthesis of Y 2 O 2 S: Eu 3+ luminescent nanobelts via electrospinning combined with sulfurization technique
Gouveia-Neto et al. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application
CN100378192C (en) Luminescent material converted in nano level with yttrium oxide as matrix and its preparation method
Saif Synthesis of down conversion, high luminescent nano-phosphor materials based on new developed Ln3+: Y2Zr2O7/SiO2 for latent fingerprint application
Hassanzadeh-Tabrizi Synthesis and luminescence properties of YAG: Ce nanopowder prepared by the Pechini method
Chai et al. Phase transformation and intense 2.7 μm emission from Er 3+ doped YF 3/YOF submicron-crystals
Zeng et al. Strong photoluminescence emission of Eu: TiO2 nanotubes
Chen et al. Synthesis and characterization of La0. 825Sr0. 175MnO3 nanowires
An et al. Preparation and upconversion properties of Yb3+, Ho3+: Lu2O3 nanocrystalline powders
Liu et al. Fabrication of highly a-axis-oriented Gd2O3: Eu3+ thick film and its luminescence properties
Xia et al. Sol–gel combustion synthesis and luminescent properties of nanocrystalline YAG: Eu3+ phosphors

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C17 Cessation of patent right