CN102373156B - 一种用于微藻工业化生产的半干固态培养方法 - Google Patents

一种用于微藻工业化生产的半干固态培养方法 Download PDF

Info

Publication number
CN102373156B
CN102373156B CN201010250866.XA CN201010250866A CN102373156B CN 102373156 B CN102373156 B CN 102373156B CN 201010250866 A CN201010250866 A CN 201010250866A CN 102373156 B CN102373156 B CN 102373156B
Authority
CN
China
Prior art keywords
algae
micro
microalgae
carbon source
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010250866.XA
Other languages
English (en)
Other versions
CN102373156A (zh
Inventor
刘天中
王俊峰
张维
陈晓琳
彭小伟
陈昱
陈林
高莉丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Original Assignee
Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Institute of Bioenergy and Bioprocess Technology of CAS filed Critical Qingdao Institute of Bioenergy and Bioprocess Technology of CAS
Priority to CN201010250866.XA priority Critical patent/CN102373156B/zh
Priority to PCT/CN2011/078198 priority patent/WO2012019539A1/zh
Publication of CN102373156A publication Critical patent/CN102373156A/zh
Application granted granted Critical
Publication of CN102373156B publication Critical patent/CN102373156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种用于微藻工业化生产的半干固态培养方法,具体步骤为:首先,将微藻细胞接种于固态材料,并通过补充液体使细胞群体保持湿润;接着,在光照条件下,向细胞群添加无机碳源;然后,通过控制润湿液组分、光照强度、碳源浓度等各参数调控微藻细胞的生长与代谢,实现微藻生物量和/或次生代谢物的累积。本发明摒弃了传统液体浸没式培养方法以大量水作为支撑介质的做法,减少了培养体系的体积和重量,从而彻底解决了微藻光生物反应器因材料强度限制难于大型化和空间利用率低的问题,降低了设备成本和运行成本。本发明中,微藻对营养、光能、碳源的利用效率高,且次生代谢物的诱导快速,从而大幅提高了单位占地面积生物量产量和次生代谢物产量。

Description

一种用于微藻工业化生产的半干固态培养方法
技术领域
本发明属于工业化生产微藻及微藻产品的领域,具体地涉及一种用于大规模生产微藻生物量及次生代谢物的半干固态培养方法。
背景技术
微藻是指能够进行光合作用的水生浮游藻类。某些微藻本身富含蛋白质,可以作为水产饵料或畜禽饲料(如螺旋藻);更重要的,某些微藻在特定条件下能够大量合成次生代谢物,如油脂、类胡萝卜素、多糖等,这些物质往往是具有极高经济价值的生物活性物质,可以被用在功能食品、食品添加剂、制药、生物能源等领域。特别是通过微藻大规模培养提取微藻油脂,进而转化生产生物柴油被认为是解决生物能源生产与固碳减排的最重要途径之一。目前,在全球范围内,微藻生物技术已经迅速形成了一条规模巨大的完整产业链,其中的规模培养是重要环节。
目前的工业化微藻培养均采用液体浸没式培养,其特征在于藻细胞分散于大量培养基水中。主要包括开放式培养池与密闭式光生物反应器(photobioreactor,PBR)两种形式。开放式培养池的优点在于建造和运行的成本较低。但由于开放池的光照面积/体积比较小,液体表面与下部混合较差,只有表层藻细胞能够接受较充足的光照,池底细胞往往难以接受到充分光照;其次,开放池培养运行水深较浅,一般只有5-30厘米,使得通气补碳时气液接触时间短,补碳效率低,培养液中溶解二氧化碳(CO2)的不足使光合作用受到限制。因此开放池培养的细胞生长速度与培养密度均较低。PBR一般是采用透光材料(如玻璃、有机玻璃、塑料薄膜等)制成的细薄结构,由于光径小、培养体系光照面积/体积比较大,所以细胞光照较充分。同时,补碳气体与液体接触时间长,培养液溶解CO2浓度较高,因而细胞生长速度与培养密度均较开放培养池高。但PBR通常造价昂贵、运行成本高、维护困难、难于大型化。
与陆生植物相比,微藻光合效率高、生长速度快,这是微藻作为最有潜力的新型生物质资源之一的重要优势,也是发展微藻产业(食品、饲料、化学品、生物能源等)的基础。然而,尽管理论上微藻的光合效率是陆生高等植物的10倍左右,但迄今为止即使是利用最高效的PBR,在自然光照且不外加光源的情况下最高生物量浓度也仅能达到10gL-1左右,如果考虑占地面积与实际情况,最高生物量年产量一般不到200吨/公顷,与高等植物接近。所以,传统培养方式下微藻的光合作用潜力远未得到充分发挥。
工业生产中,为了得到大量生物量,通常做法是加大培养体积,但在不增加占地面积的情况下(例如仅仅增加开放池的深度或PBR的光径),增大培养液体积势必造成单个藻细胞吸收光能总量的降低,从而使单位体积培养效率大大下降;反过来,如果要保证单位体积培养效率不降低,则必须成比例增加占地面积,这会加大固定投资。另外,增大培养液体积会导致控温、搅拌、通气、采收、营养盐、废水处理等投入增加。
针对微藻规模培养效率低的问题,人们对传统培养方式作了许多改进。例如开放池的浅池运行、拆流档板强化混合、补碳强化(丛威等,用于大规模培养微藻的补碳装置及其使用方法,中国专利200510126465.2;李夜光等,微藻养殖池补充二氧化碳的装置,中国专利200610018771),螺旋管式、管道式、气升式等各种密闭式光生物反应器结构改进,以及开放式跑道池与密闭式光生物反应器的耦联组合(刘天中等,一种用于微藻规模培养的装置和培养方法,中国专利2010101363004)等,在一定程度上改善了培养效率,但都未能在大幅度提高微藻光合利用效率、单位面积产率和降低成本上获得根本性突破。可见,传统液体浸没式培养方法不能最大程度的利用太阳光能,已经难于支撑工业化大规模微藻生物质资源的低成本供给。革新培养技术,在提高光能、CO2、营养物质的利用效率的基础上实现微藻细胞的高密度培养,同时降低建造、运行成本,减少物耗能耗,减少占地,提高空间利用率是推进微藻产业化深入发展的迫切要求。
传统液体浸没式培养中,占培养液比重最大的部分是水。水在微藻培养中的作用主要表现为:1)作为各种营养物质(包括CO2、无机盐)的溶剂和传递介质,促进微藻细胞和营养物质的有效接触;2)作为调控环境的缓冲体系,稳定培养液pH、温度、渗透压等环境参数。3)作为微藻细胞的支撑体系,扩展微藻细胞的生存空间,以利细胞更充分接受光照。原则上,完成前两种功能所需水量很少,只要水层能保持藻细胞润湿即可。而作为支撑介质,水由于自身性质的限制表现出弊大于利的特征,主要为1)光通过水体时会发生能量衰减,光径越大衰减越严重。2)控温过程中绝大部分能量消耗用于水体,而非藻细胞本身。3)通常情况下,微藻密度大于水,所以必须不停搅动水体来避免藻细胞沉降,此过程耗能较大;同时,水体搅动会导致细胞所处光环境波动剧烈,可能会影响生物量积累。4)水体过大导致只有增大营养盐和CO2消耗量才能维持必要浓度。5)微藻的生长(生物量积累)和代谢物的产生(如油脂)一般是两个分开的过程,对环境的要求不相同。例如细胞生长需要高氮环境,而油脂积累则需要低氮等胁迫环境。大水体培养极大增加了这两种环境切换的困难。目前传统的方法等到培养基体系内原有氮源消耗完毕时才逐步转化为缺氮诱导环境,而这一过程往往需要10~15天。若想快速切换,只有先从高氮培养基中将藻细胞采集收来后再转入低氮或无氮培养基中进行油脂代谢,工作量大、能耗高。6)大水体带来的大体积、大重量、大压强是在目前技术条件下实现传统培养装备大型化和提高空间利用率难于克服的障碍。例如传统光生物反应器采用的玻璃、有机玻璃、塑料薄膜等透明材质,因其机械强度低,不适合大尺寸和空间高度上的放大,只能是低矮细薄结构,占地大,光能利用率低,而这是微藻大规模培养实现产业化最重要的直接制约因素。
事实上,微藻细胞可以在不依赖于水作为支撑体系的条件下生长。利用琼脂固态培养基制成培养皿平板或试管斜面用于微藻的培养在实验室中已有应用,但该方法一般是将培养皿或试管斜面放置于光照培养箱内培养,主要用作藻种筛选或保藏。同时该过程一般只利用自然空气中的CO2,不需要额外引入人工CO2气体环境,也不采用改变培养基组分、pH值、光照等方法来实现生物量或次生代谢产物合作的调控,因此其不以获得大规模微藻生物量或次生代谢产物为目的,也不适用用于微藻的工业化生产。另有文献(Cao J,Yuan WQ.,Pei ZJ.,et al.,2009,A Preliminary Studyof the Effect of Surface Texture on Algae Cell Attachment for aMechanical-Biological Energy Manufacturing System,Journal ofManufacturing Science andEngineering,131:64505-64508)报道了微藻细胞可以附着在粗糙不锈钢表面并生长。据此结果,该文作者提出了一种由风能或其它可再生能源驱动,漂浮在水面上的传送带微藻培养系统,并设想用该系统解决微藻生物柴油生产领域低产量和采收干燥过程高能耗的问题。但该文献只检验了藻细胞能否在粗糙的不锈钢表面附着和生长,没有提出如何有效控制环境因子(光照、温度、营养元素等);同时传送带装置漂浮在水面上,仍然需要大量的水体支撑,与传统液体浸没式培养差别不大,无法从根本上解决传统微藻培养大水体带来的问题,因此无法实现规模生产。文献(Johnson,M B.Microalgal Biodiesel Production through aNovel attached Culture System and Conversion Parameters[D].Blacksburg:Virginia Polytechnic Institute and State University,2009.)报道了一种在封闭体系内将微藻细胞沉降在多种材料表面,然后通过摆动培养装备使细胞层按一定频率周期性暴露/浸没于液体培养基中,实现生物量增加和油脂积累。该文献虽然提到了将微藻附着于支撑物表面,有利于采收,但由于培养材料仍置于大量液体培养基中,上文中提到的大水体带来的各种问题并没有被排除。甚至生物量产量还低于传统培养方法。例如,该文中在室内110~120μmol m-2s-1光强下生物量产量最高约3.5gm-2d-1,远低于同样条件下传统液体浸没式培养5-30gm-2d-1的平均水平。
综上所述,微藻培养过程中,利用固态材料代替水作为支撑介质是切实可行的,这种方法可以极大减少培养体系的体积和重量,并有效解除大水体带来的多种问题(见前文)。但单纯的固态培养并不能充分发挥微藻的生长优势,只有同时辅以有效的环境调控,并使细胞充分接触生长必需要素(主要是无机盐、CO2和光),才有可能实现微藻细胞的快速生长。
发明内容
本发明的目的在于提供一种用于微藻工业化生产的半干固态培养方法,以解决目前存在的无法工业化生产微藻的难题。
为实现上述目的,本发明提供的培养方法主要具有以下两点:1)半干固态培养2)培养体系的环境控制,两者缺一不可。
本发明提供的培养方法的具体步骤为:首先将微藻细胞接种于固态材料,并通过补充液体使细胞群体保持湿润;接着,在光照条件下,向细胞群添加无机碳源;然后,通过控制润湿液组分、光照强度、碳源浓度等各参数调控微藻细胞的生长与代谢,实现微藻生物量和/或次生代谢物的累积。
本发明中的固态材料是指对微藻细胞无毒或毒性轻微的,具一定存液能力的多孔性吸水材料,包括各类滤纸、滤布、海绵、塑料泡沫、纤维织物材料。
本发明中接种方式可以是任何能够使藻细胞存在于固态材料表面和/或内部的途径、方法,比如但不限于:浸没、喷撒、过滤、涂抹、注射等。
本发明中固态材料的接种表面可以是平面,也可以是任意曲面。
本发明中固态材料可以单层摆放,也可以多层排列摆放形成组合体,根据需求可将层间距调整为任意值。
本发明中补充的液体可以是纯水或各种类型、浓度、组分的微藻培养基,也可以是含有各种胁迫和/或诱导因子的溶液。
本发明中,向细胞群添加无机碳源的方法可以是通过增加细胞所处气体环境的CO2浓度的途径,例如连续或间歇通入含有高于大气CO2浓度的CO2/空气混合气或人工配合气、纯CO2气体、烟道气等;也可以是通过补充含有无机碳源的溶液的方式(包括含碳酸根和/或碳酸氢根的盐溶液,以及CO2溶液),该过程可以单独进行也可以结合补液过程进行。
本发明中实现生物量和/或次生代谢物的快速累积的调节方法包括但不限于调整以下一种或多种参数:润湿液组分和浓度、光波长与光照强度、CO2浓度、温度、pH等。
本发明中积累生物量和积累次生代谢物的过程可以单独进行,也可以顺次进行。
本发明中适用的微藻包括但不限于栅藻、雨生红球藻、小球藻、微拟球藻、三角褐脂藻、杜氏藻、金藻等,所诱导的次生代谢产物包括但不限于:甘油三酯、虾青素、类胡萝卜素等。
本发明的特点是,在保留极少量水溶液作为细胞生长与传质媒介的前提下,抛弃了传统液体浸没式培养方法中作为细胞支撑体系的绝大部分水体,从而大大减少水源、营养盐、收集/干燥步骤的成本消耗;由于本发明的溶液只是使细胞保持润湿,光的传导无需经过较长的水体传输,其路径大幅缩短、光能传输损耗大为减少。同时,细胞也容易与其它吸收各种营养要素(如CO2、无机盐浓度等)充分接触,从而极大的提高了光能、CO2、和营养元素的利用效率;本发明中细胞的游动性减弱,位置相对固定,表面生物膜细胞可经直接与光接触,没有传统方法中光在水体里的严重衰减,所以不需要过高光强就可以使藻细胞持续进行高效光合作用,光能利用率高;本发明中处于分裂、生长最旺盛阶段的藻细胞永远处于群体最顶层,接受的光照充足和营养组分,从而保证快速生长;本发明中由于水体很小,各种胁迫条件易于添加和解除,从而使细胞生长状态易于调控;与传统方法相比,本发明的细胞附着于固态材料表面形成生物膜,可直接采收获得浓藻泥、甚至通过停止补液自然蒸发干燥获得干藻细胞,易于解决传统液体浸没式培养面临的采收困难、干燥能耗高的问题;本发明解决了传统液体浸没式培养大量水体的压力对光反应器大型化、高层化的限制,涉及的反应器重量轻、材料要求低、造价便宜,同时可以多层密集放置,极大提高了空间利用率,从而大大提高了微藻细胞培养效率和单位面积产率,有利于解决微藻技术的产业化瓶颈。
具体实施方式
本发明的培养方法是:
1)是将微藻细胞接种于固态材料。其中固态材料是指对微藻细胞无毒或毒性轻微的,具存液能力的多孔性吸水材料,包括各类滤纸、滤布、有机合成用海绵、塑料泡沫、纤维织物材料。
接种方式可以是任何能够使藻细胞存在于固态材料表面和/或内部的途径、方法,包括但不限于:浸没、喷撒、过滤、真空抽滤、涂抹、注射等。在接种于表面的情况下,该表面可以是平面,也可以是任意曲面;
2)接种后的固态材料可以单层摆放,也可以是多层排列摆放形成组合体,根据需求可将层间距调整为任意值。
3)通过补充液体使藻细胞群保持湿润。补液过程可以是以间歇、半连续或连续方式,具体方法包括但不限于流加、滴加、喷雾等;所补液体可以是纯水或各种类型、浓度、组分的微藻培养基;也可以是含有各种胁迫和/或诱导因子的溶液。
4)调整固态材料所处环境的CO2浓度、光强、温度等参数,使细胞快速生长。
5)根据培养过程需要,通过改变一种或多种环境参数实现藻细胞营养生长和次生代谢生长的快速转换,以及生物量和/或次生代谢物的快速累积。环境参数的改变包括但不限于调整以下一种或多种参数:润湿液组分和浓度、光波长与光照强度、CO2浓度、温度、pH等;积累生物量和积累次生代谢物的过程可以单独进行,也可以顺次进行。
以下列举实施例对本发明作更具体地描述,但这些实施例只用于帮助理解和实施本发明,而不是对本发明保护范围的限制。
实施例1
将长×宽为0.5m×0.5m,厚度0.003m的有机玻璃板用5层医用纱布包裹,表面覆盖一层分析滤纸,然后用1L BG11培养基浸湿。将栅藻细胞培养液通过真空抽滤附着于孔径0.45μm的醋酸纤维素滤膜上,生物量密度20g m-2。将附着有栅藻细胞的醋酸纤维素滤膜平铺在分析滤纸上方,并置于一个玻璃箱体内部(长×宽×高分别0.5m×0.5m×0.03m,材料为厚度0.003m的普通玻璃)。玻璃箱体的一个侧面(0.5m×0.03m)开放,以利于培养板取放,另两个相对侧面的中部分别留有直径为0.003m的圆形开口,开口中插入内径0.003m的硅胶管作为进气口和排气口。进气为混合有1.5%(V/V)二氧化碳的压缩空气,压强0.1Mpa,流速1Lmin-1。将10个相同玻璃箱体置于长×宽×高为0.5m×0.5m×2m的角钢架上,共10层,层高0.2m,各层层顶装有荧光灯作为光源。将细胞表面光强调整为40μmolm-2s-1,环境温度28℃,24小时连续培养,每天以喷雾方式补充BG11培养基并维持细胞群体湿润。结果表明,微藻在每层培养玻璃箱体内的生长速率在10d内稳定在4gm-2d-1,整体培养体系单位占地面积细胞生长速率40gm-2d-1,比传统玻璃平板体系(光径0.05m,表面光强50μmol m-2s-1)单位占地面积细胞生长速率提高456%,比跑道池系统(水深0.2m,表面光强50μmol m-2s-1)提高900%。
培养10天后,将喷雾补液由BG11培养基改为纯水,同时将二氧化碳浓度提高到10%(V/V)、光强提高到200μmol m-2s-1诱导栅藻细胞积累甘油三酯。三天后,藻细胞总脂含量达到52%(以干重记),中性脂含量达到41.6%(以干重记)。与相同条件下以玻璃柱状反应器(光径0.05m)的结果相比(诱导7天),总脂含量提高8.3%,中性脂含量提高73.3%,诱导时间缩短57%。
实施例2
利用类似于实施例1中的装置,但去掉每层顶端的人工光源。在室外条件下一步法培养栅藻并诱导甘油三脂积累。白天通气流速5L min-1,二氧化碳浓度0.5%(V/V);晚间将玻璃箱体内充满纯二氧化碳后,停止通气。白天时段每隔4小时,用BG11对细胞群体喷雾保湿,并在5d内将BG11的氮浓度降到0。结果显示,连续培养10d后,每层培养相体内细胞平均生长速率为15g m-2 d-1,整个培养体系单位占地面积细胞生长速率150g m-2 d-1,细胞总脂含量达到55%(以干重记),中性脂含量达到49.5%(以干重记)。相同时间内,与直立平板式光生物反应器相比(实际占地面积=(高+厚度)×高)生长速率提高275%,总脂含量提高37.5%,中性脂含量提高518.8%,与跑道池相比生长速率提高900%,总脂含量提高57.1%,中性脂含量提高607%。
实施例3
在一长×宽为1m×0.4m,厚度为0.003m的高透光率有机玻璃板的两面分别粘接1m×0.4m,厚度为0.003m的白色海绵。将雨生红球藻藻种用BG11培养基稀释后(生物量浓度0.1g L-1)喷洒在海绵上。将15片接种有藻液的盖有机板固定于一个旋转装置上。该旋转装置结构类似于垂直摆放的传送带。在一个长×宽×高为1.1m×1m×2.2m钢架结构的内,沿中心线布置两个直径0.2m的轴结构,其中下方一个得下切面距离地面0.6m,上方与下方两轴轴距1.3m,两轴间通过变速机构与电机相连,并达到同步同向运动。一条履带与两轴相连。该履带由15片0.5m×0.2m的不锈钢板组成,各片钢板的长边通过铰链结构连接在一起。两个转轴表面有突齿,恰好与铰链咬合,从而带动履带转动。每片履带钢板的长中线上(0.5m)垂直焊接有3个0.1m长的弹性卡,可以使接种有藻种的有机板牢固的卡在钢板上,并与钢板保持垂直。距离地面0.5m处装有喷雾装置,所喷液体为二氧化碳饱和的微藻培养基。该装置通过履带转动使有机板两侧的细胞均可照光,以喷雾方式补充二氧化碳并维持细胞群湿润,通过水分蒸发将细胞群温度维持在20~30℃。室外条件下,调节履带转速为每分钟一周,根据天气情况每隔1~10min向培养板持续喷雾2min。晚间整个装置停机。连续培养10d后,收取藻液,测定雨生红球藻的生长和虾青素含量,结果表明该装置的单位占地面积生物量产量平均约为75g m-2 d-1,类胡萝卜素产量为3.8g m-2 d-1,其中虾青素占类胡萝卜素总量的80%。与直立平板型反应器相比(实际占地面积=(高+厚度)×高=(0.95m+0.05m)×1m),单位占地面积平均生物量产量、类胡萝卜素产量、虾青素占类胡萝卜素总量分别提高427%、1257%和40.4%;与跑道池系统相比(实际占地面积=(长×宽=2×0.5m)(水深0.2m),分别提高650%、3700%和700%。
实施例4
在一白色柱状海绵块(直径0.03m,长度1m)中心处放置一根1m长的木棒(直径0.01m)和两根1m长,末端封闭的硅胶管(直径0.01m)。硅胶管上每隔0.01m在表面四周均匀打4个微孔(直径0.0008m),其中一根作为通气装置,另外一根作为补液装置。将海绵块用浓缩后的雨生红球藻藻种浸湿(生物量浓度1g L-1,1/4浓度BG11培养基)。室外条件下,日间时段以蠕动泵连续补水,根据空气湿度,流速控制在0.001L~0.01Lmin-1之间(以维持海绵块湿润但不滴水为准),并通入二氧化碳含量1.5%(V/V)的压缩空气,流速0.01L min-1。夜间停止补液、通气。100个海绵块悬挂于长宽高均为1m的钢架结构中,相邻两个海绵块的轴距为0.1m。整个系统为开放式结构,通过液体蒸发散热。培养10d后,收集藻细胞,测定其细胞生物量和类胡萝卜素含量。结果表明,单位占地面积生物量产量平均约为40g m-2 d-1,类胡萝卜素产量为2g m-2 d-1,其中虾青素占类胡萝卜素总量的70%。与直立平板型反应器相比(实际占地面积=(高+厚度)×高=(0.95m+0.05m)×1m),单位占地面积生物量产量平均、类胡萝卜素产量、虾青素占类胡萝卜素总量分别提高181%、602%和22.8%;与跑道池系统相比(实际占地面积=(长×宽=2×0.5m)(水深0.2m),分别提高300%、1900%和600%。
以上实施例中,将所用的藻种替换为拟微拟球藻、小球藻、栅藻、三角褐指藻、金藻、杜氏藻等,或将通入的气体改为烟道气重复上述实验,所得结果相似,只是从简明起见不一一重复叙述。

Claims (11)

1.一种用于微藻工业化生产的方法,由微藻半干固态培养和环境调控两部分组成,主要步骤为:
A)将微藻细胞接种于固态多孔性材料表面,通过补充液体使细胞群体保持湿润;所述的固态多孔性材料包括各类滤纸、滤布、海绵、塑料泡沫、纤维织物材料中的一种或几种;
B)在光照条件下,向细胞群添加无机碳源;
C)通过控制润湿液组分、光照强度、碳源浓度各参数调控微藻细胞的生长与代谢,实现微藻生物量和/或次生代谢物的累积。
2.如权利要求1所述的方法,其中,固态多孔性材料为单层摆放或多层排列摆放形成组合体,层间距为任意距离。
3.如权利要求1或2所述的方法,其中,固态多孔性材料表面是平面或任意曲面。
4.如权利要求1所述的方法,其中,接种方式是任何能够使藻细胞存在于固态多孔性材料表面的途径、方法。
5.如权利要求1所述的方法,其中,补充的液体是纯水或各种类型、浓度、组分的微藻培养基;或是含有各种胁迫和/或诱导因子的溶液。
6.如权利要求1所述的方法,其中,向细胞群添加无机碳源的方法是通过增加细胞所处环境的二氧化碳浓度的途径。
7.如权利要求1或6所述的方法,其中,添加无机碳源是连续或间歇通入含有高于大气二氧化碳浓度的二氧化碳/空气混合气、人工配合气、纯二氧化碳气体或/和烟道气;或者通过添加含有无机碳源溶液的方式,添加含有无机碳源溶液的过程可单独进行也可结合补充液体的过程进行。
8.如权利要求7所述的方法,其中,无机碳源溶液包括含有碳酸根和/或碳酸氢根的盐溶液以及CO2溶液。
9.如权利要求1所述的方法,其中,参数是指润湿液组分、光照强度、碳源浓度各项参数中的一种或多种。
10.如权利要求1所述的方法,其中,积累微藻生物量和积累次生代谢物的过程为单独进行,或顺次进行。
11.如权利要求1所述的方法,其中,微藻是指栅藻(Scenedesmus)、雨生红球藻(Haematococcus)、小球藻(Chlorella)、微拟球藻(Nannochloropsis)、三角褐脂藻(Phaeodactylum)、杜氏藻(Dunaliella)、金藻(Chrysophyta);次生代谢产物是指甘油三酯(Triglyceride,TG)、虾青素(Astaxanthin)、类胡萝卜素(Carotenoid)中的一种或几种。
CN201010250866.XA 2010-08-10 2010-08-10 一种用于微藻工业化生产的半干固态培养方法 Active CN102373156B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201010250866.XA CN102373156B (zh) 2010-08-10 2010-08-10 一种用于微藻工业化生产的半干固态培养方法
PCT/CN2011/078198 WO2012019539A1 (zh) 2010-08-10 2011-08-10 一种用于微藻工业化生产的半固态培养方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010250866.XA CN102373156B (zh) 2010-08-10 2010-08-10 一种用于微藻工业化生产的半干固态培养方法

Publications (2)

Publication Number Publication Date
CN102373156A CN102373156A (zh) 2012-03-14
CN102373156B true CN102373156B (zh) 2014-04-30

Family

ID=45567369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010250866.XA Active CN102373156B (zh) 2010-08-10 2010-08-10 一种用于微藻工业化生产的半干固态培养方法

Country Status (2)

Country Link
CN (1) CN102373156B (zh)
WO (1) WO2012019539A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289886B (zh) * 2012-03-01 2014-07-09 中国科学院青岛生物能源与过程研究所 一种明暗交替光照的微藻半干固态贴壁培养装置
US9295206B2 (en) 2012-04-12 2016-03-29 Johna Ltd Method of culturing algae
GB2501101B (en) * 2012-04-12 2014-06-11 Seagrass Ag Sa Ltd Method of culturing algae
CN102630494B (zh) * 2012-04-25 2013-09-18 中国科学院武汉植物园 一种普通念珠藻的培养方法及装置
CN103966074A (zh) * 2013-08-05 2014-08-06 福州大学 箱式微藻固定化培养光生物反应器
CN103966075B (zh) * 2013-08-05 2016-01-06 福州大学 多层式微藻固定化培养光生物反应装置
EP2899281B1 (en) * 2014-01-27 2020-07-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Inhibitors of sterol metabolism for their use to accumulate triglycerides in microalgae, and methods thereof
CN104046559B (zh) * 2014-06-03 2017-03-08 新奥科技发展有限公司 一种微藻养殖装置及养殖方法
CN105505739B (zh) * 2014-09-23 2017-10-27 新奥科技发展有限公司 一种细胞培养装置
CN105733925A (zh) * 2014-12-12 2016-07-06 国家开发投资公司 表面生长式微生物培养板及微生物培养系统
CN104988067A (zh) * 2015-08-06 2015-10-21 哈尔滨工业大学 一种微藻贴壁式培养和液体浸没式培养转换的方法
CN106609245A (zh) * 2015-10-22 2017-05-03 中国科学院青岛生物能源与过程研究所 一种基于固态半干贴壁技术的微藻培养方法
CN105219629A (zh) * 2015-10-23 2016-01-06 厦门大学 一种螺旋藻节水固碳塔式培养装置及其培养方法
CN105462844B (zh) * 2015-12-16 2019-05-03 中国科学院青岛生物能源与过程研究所 一种雨生红球藻细胞周期同步化的调控方法及其应用
CN108728364B (zh) * 2017-04-17 2022-01-04 天津大学 一种基于纸质培养装置的微藻培养方法
CN107326058B (zh) * 2017-08-21 2021-04-20 睿藻生物科技(苏州)有限公司 使用雨生红球藻生产虾青素的方法
CN107384801A (zh) * 2017-08-21 2017-11-24 李彤 用于工业化生产微藻的封闭生物膜式培养方法
CN107460129A (zh) * 2017-08-21 2017-12-12 李彤 生物质与培养液分离的工业化微藻培养方法
CN110846211B (zh) 2019-10-11 2023-09-29 孙旭阳 移动式机械翻搅薄液层微藻附壁培养方法与装置
CN110684667B (zh) * 2019-11-06 2021-12-31 重庆大学 一种能同时提高生物质和油脂产量的微藻生物膜培养方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070155006A1 (en) * 2005-12-30 2007-07-05 Alexander Levin Photobioreactor
WO2008010737A1 (en) * 2006-07-21 2008-01-24 Tecnia Processos E Equipamentos Industriais E Ambintais Photobioreactor for photosynthetic microorganism culture
US9637714B2 (en) * 2006-12-28 2017-05-02 Colorado State University Research Foundation Diffuse light extended surface area water-supported photobioreactor
CN101037661A (zh) * 2007-02-12 2007-09-19 浙江大学 假交替单胞菌及其用途
CN101265449A (zh) * 2007-03-14 2008-09-17 中国科学院大连化学物理研究所 一种藻类细胞快速高密度培养方法
CN101280271A (zh) * 2008-05-27 2008-10-08 蔡志武 一种微藻产业化生产装置及生产微藻的方法

Also Published As

Publication number Publication date
WO2012019539A1 (zh) 2012-02-16
CN102373156A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
CN102373156B (zh) 一种用于微藻工业化生产的半干固态培养方法
CN103289887B (zh) 一种用于微藻工业化生产的半干固态贴壁培养装置
CN103289886B (zh) 一种明暗交替光照的微藻半干固态贴壁培养装置
AU2006324198B2 (en) A carbon supply device for cultivating miro algae in large and its application method and use
CN103834567B (zh) 一种微藻培养方法
Ji et al. Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp.
CN103382443A (zh) 一种培养微藻的新方法
CN104328031A (zh) 表面生长式培养板、培养单元、培养系统及方法
CN103289888A (zh) 一种插板式微藻半干固态贴壁培养装置
CN105331517A (zh) 微藻培养系统、腔体式光生物反应器及微藻培养方法
CN107760586A (zh) 一种固定化培养的微藻生物膜系统
CN204298382U (zh) 覆膜多孔板结构表面生长式培养板、培养单元及培养系统
CN103627623B (zh) 高epa产率的微拟球藻培养系统及培养方法
CN104726321B (zh) 一种适用于阳光工厂化的跑道式生物反应器
CN204298380U (zh) 夹心结构的表面生长式培养板、培养单元及培养系统
CN104328032A (zh) 表面生长式光合微生物培养单元、培养系统及培养方法
CN204265740U (zh) 一种基于毛细管仿生结构的微藻固定化培养装置
CN104328033B (zh) 一种基于毛细管仿生结构的微藻固定化培养装置及其方法
CN204151337U (zh) 核壳结构的表面生长式光合微生物培养板、培养单元及系统
CN103695290B (zh) 微藻立体培养装置
CN105018330B (zh) 一种多层半干贴壁培养装置及培养方法
CN103849547A (zh) 用于微藻规模培养的装置和方法
CN107460129A (zh) 生物质与培养液分离的工业化微藻培养方法
CN103555563A (zh) 一种连续自动采收型微藻混合养殖装置
CN104232471A (zh) 一种培养光合生物的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant