CN102359972A - Full-elemental analysis method for stainless steel sample - Google Patents

Full-elemental analysis method for stainless steel sample Download PDF

Info

Publication number
CN102359972A
CN102359972A CN2011102007266A CN201110200726A CN102359972A CN 102359972 A CN102359972 A CN 102359972A CN 2011102007266 A CN2011102007266 A CN 2011102007266A CN 201110200726 A CN201110200726 A CN 201110200726A CN 102359972 A CN102359972 A CN 102359972A
Authority
CN
China
Prior art keywords
ray fluorescence
analysis
fluorescence analyzer
stainless steel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102007266A
Other languages
Chinese (zh)
Other versions
CN102359972B (en
Inventor
芦飞
曹吉祥
郑效东
张爽
王瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Taigang Stainless Steel Co Ltd
Original Assignee
Shanxi Taigang Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Taigang Stainless Steel Co Ltd filed Critical Shanxi Taigang Stainless Steel Co Ltd
Priority to CN 201110200726 priority Critical patent/CN102359972B/en
Publication of CN102359972A publication Critical patent/CN102359972A/en
Application granted granted Critical
Publication of CN102359972B publication Critical patent/CN102359972B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The invention relates to a full-elemental analysis method for a stainless steel sample, and belongs to the field of metallurgical analysis. According to the method, a direct reading spectrometry method and a X-ray fluorescence analysis method are respectively adopted to analyze elements of C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn and Pb; the analysis result of the direct reading spectrometry method and the analysis result of the X-ray fluorescence analysis method are subjected to a correlation treatment; concentration input ports corresponding to the elements of C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn and Pb are added to a X-ray fluorescence analyzer; a direct reading spectrometer is adopted to analyze the elements of C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn and Pb; the X-ray fluorescence analyzer is adopted to analyze the elements of Cr, Ni and Fe; the direct reading spectrometer transmits the analysis result to the X-ray fluorescence analyzer by network to perform interference correction calculations of the elements of Cr, Ni and Fe; the full-elemental analysis result of the stainless steel sample is reported after all the data are merged. With the present invention, the full elements of the stainless steel sample can be rapidly analyzed, and the analysis time is 5 minutes.

Description

A kind of stainless steel sample full elemental analysis method
Technical field
The invention belongs to the metallurgical analysis field, be specifically related to a kind of stainless steel sample full elemental analysis method.
Background technology
For the sample analysis of stainless steel smelting, adopt direct reading spectrometry method and X-ray fluorescence method at present.The direct reading spectrometry method is analyzed the accuracy of chrome-nickel alloy element can only satisfy general requirement; X-ray fluorescence method can satisfy the requirement of chrome-nickel alloy ultimate analysis accuracy in the stainless steel; But, can not in the sample analysis of stokehold, play a role because analysis time is long.
If can combine full element of direct reading spectrometry express-analysis and x-ray fluorescence method high-load alloying element characteristics with high accuracy; The full element in the analysis of stainless steel quick and precisely just; Improve the alloying element accuracy of analysis, reach the purpose of cost control.
Summary of the invention
In order to improve the accuracy that stokehold stainless steel sample chromium nickel element is analyzed, the present invention combines direct reading spectrometry and x-ray fluorescence method analysis characteristic separately, and two kinds of analytic approachs are united use, realizes the purpose of the accurate express-analysis of the full element of stainless steel sample.
Technical scheme of the present invention is: use the milling machine rotating speed to be 300r/min, feed velocity is the sample preparation condition of 250mm/min, carries out the processing on analytic sample surface.
It is 50kV/50mA that the pipe of x-ray fluorescence analyzer is pressed pipe flow analysis condition; Use fixedly trace analysis chromium, nickel element; Scanning trace analysis iron-based element, be 20 seconds the analysis time of x-ray fluorescence analyzer chromium, nickel, ferro element, drawing curve under the analysis condition of confirming.
Analyze C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element with direct reading spectrometry and x-ray fluorescence method respectively; Direct reading spectrometry analysis result and x-ray fluorescence method analysis result are carried out the correlativity processing, be about to each related coefficient and be kept in the response curve coefficient table of x-ray fluorescence analyzer corresponding element.
In x-ray fluorescence analyzer, add C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, the corresponding concentration of Pb element input port; (fluorescence analyser is only when setting up working curve; In order to seek the correlationship coefficient of above-mentioned element fluorescence analysis value and spectrometer analysis value, so analyze the concentration of above-mentioned element respectively.After the correlationship of above-mentioned element is confirmed; The correlationship coefficient just is stored in the routine analyzer of fluorescence analyser; Fluorescence analyser is just no longer analyzed C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element when analytic sample, but spectroanalysis instrument is analyzed above-mentioned element.But for the result accurately; When fluorescence analyser is analyzed chromium, nickel element; Need carry out the interference correction of above-mentioned element; Must the result of spectroanalysis instrument will be analyzed data through Network Transmission is that concentration of element imports in the fluorescence analyser, and the concentration input window that in the routine analyzer that fluorescence analyser uses, adds above-mentioned element is exactly the reception for the spectroanalysis instrument data, after the data dependence conversion, carries out the correction of fluorescence analyser chromium nickel element analysis result then.)
With analysis condition and the working curve deletion that above-mentioned element is corresponding in the x-ray fluorescence analyzer, only keep the x-ray fluorescence method analysis condition and the working curve of chromium, nickel, ferro element, keep chromium, nickel, ferro element elements corresponding interference coefficient and correction coefficient.
Analyze C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element with direct-reading spectrometer; Analyze Cr, Ni, Fe element with x-ray fluorescence analyzer; Direct-reading spectrometer imports analysis result into carry out chromium, nickel, ferro element in the x-ray fluorescence analyzer interference correction automatically through network and calculates, and quotes the full elemental analysis result of stainless steel sample after afterwards total data being merged.
Adopt the process measurement ability of chromium, nickel element in the analysis of stainless steel of the present invention obviously to improve.The present invention and X-ray fluorescence method compare on the stainless steel sample analysis time, add up the analysis time of 16 elements in two kinds of methods analyst stainless steel samples respectively.The result shows that be approximately 14 minutes the analysis time of X-ray fluorescence method, and be approximately 5 minutes analysis time of the present invention.Explain and adopt analysis of stainless steel sample of the present invention than X-ray fluorescence method weak point analysis time.
Embodiment:
Embodiment:Use the milling machine rotating speed to be 300r/min, feed velocity is the sample preparation condition of 250mm/min, carries out the processing on sample analysis surface.
To pass through the stainless steel sample that above-mentioned steps was handled; Put into x-ray fluorescence analyzer and carry out the analysis (this analytic process is that x-ray fluorescence analyzer is analyzed automatically) of chromium, nickel, ferro element; Wherein the pipe of x-ray fluorescence analyzer pressure pipe flow analysis condition is 50kV/50mA, uses fixedly trace analysis chromium, nickel element, scanning trace analysis iron-based element; Be respectively the analysis time of x-ray fluorescence analyzer chromium, nickel, ferro element 20 seconds; Drawing curve under the analysis condition of confirming, the drawing process of working curve is a known technology, no longer does detailed description in the present embodiment; Be about to a series of standard model carries out intensity under the duty that fluorescence analyser is set absorption; Fluorescence analyser will absorb the intensity level of the whole elements of all standard models, at first uses fluorescence analyser to accomplish the recurrence of whole element-intensities and concentration relationship, sets up the luminoscope analytical work curve of whole elements.
Analyze the concentration value of C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element then with spectroanalysis instrument; The concentration value of two kinds of analytical instrument is carried out the correlativity recurrence; Find the spectral analysis result to convert the fluorescence analysis related coefficient that correction needs as a result the time into; Just each interference element is carried out correlativity and handle, related coefficient is kept in the fluorescence analyser program.
Add the concentration input port of C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element, delete the luminoscope analytical work curve of these elements then, only keep itself and spectrometer analysis result's relative coefficient.
The disturbing effect that when the intensity of the Cr of fluorescence analyser analysis, Ni, Fe element and concentration return, will add above-mentioned element is preserved separately interference coefficient and the regression equation coefficient of Cr, Ni, Fe element, has just accomplished the drafting of working curve at this moment.
After working curve is set up, need to use some samples to carry out the checking of analysis result, after the checking result met the permissible variation of analysis result, working curve just can be used and carry out sample analysis.
The fluorescence intensity of analytical instrument sample obtains the concentration of analytic sample through the corresponding relation of working curve.The sample of variable concentrations scope need be set up the working curve of different range, but employed method is identical.
Good working curve is analyzed sample to utilize foundation, and Cr, Ni results of elemental analyses are respectively 17.32% and 8.02%; Sample is placed on and carries out full elemental analysis (this analytic process is that direct-reading spectrometer is analyzed automatically) on the direct-reading spectrometer after in x-ray fluorescence analyzer, analyzing and accomplishing; After analyzing completion; The sample analysis result of direct-reading spectrometer (C:0.05%, Si:0.056%, Mn:0.89%, P:0.027%, S:0.002%, Cu:0.037%, Al:0.0045%, Mo:0.10%, V:0.001%, Ti:0.001%, Co:0.13%, As:0.0034%, Sn:0.016%, Pb:0.0020%) is imported in the x-ray fluorescence analyzer automatically; The interference correction of accomplishing Cr, Ni, Fe element calculates; The interference correction of Cr, Ni, Fe element is that fluorescence analyser is accomplished automatically; The interference of Cr and Ni element uses the TL pattern to proofread and correct, and the computing formula of TL pattern is:
Figure 669918DEST_PATH_IMAGE001
The interference of Fe element has used the COLA pattern to proofread and correct.The computing formula of COLA pattern is:
Figure 400108DEST_PATH_IMAGE002
The computing formula of these two kinds of patterns is to be the calculation procedure that is provided with in the fluorescence analyser equipment, and only conduct is used in present patent application.In the fluorescence analyser program, preserve multiple interference element updating formula; When the standard model of use some carries out the working curve drafting; Program can calculate the interference coefficient of different element different mode formula automatically behind the recurrence interference element; As long as coefficient is preserved, when carrying out the analysis of similar sample, can be used.
Cr after will proofreading and correct afterwards, Ni results of elemental analyses 17.15% and 8.06% and the direct-reading spectrometer analysis result merge, the analysis result of direct-reading spectrometer imports in the fluorescence analyser through network automatically, preserve on the backstage.In the program of fluorescence analyser, recomputate function; According to what set in advance in the fluorescence analyser program; In the chosen spectrum analyser in the assay value of C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element and the fluorescence analyser assay value of Cr, Ni, Fe element carry out merger and reorganization automatically on the backstage of fluorescence analyser, the full elemental analysis result after will merging then shows.Result's merging is to accomplish automatically through the Application Software Program of fluorescence analyser.
On x-ray fluorescence analyzer, quote full elemental analysis result (C:0.05%, Si:0.056%, Mn:0.89%, P:0.027%, S:0.002%, Cr:17.15%, Ni:8.06%, Cu:0.037%, Al:0.0045%, Mo:0.10%, V:0.001%, Ti:0.001%, Co:0.13%, As:0.0034%, Sn:0.016%, Pb:0.0020%) automatically, finish to this stainless steel sample analysis.

Claims (1)

1. a stainless steel sample full elemental analysis method comprises and uses the milling machine rotating speed to be 300r/min, and feed velocity is the surface treatment of the sample preparation condition of 250mm/min, it is characterized in that comprising the steps:
(1) pipe of x-ray fluorescence analyzer pressure pipe flow analysis condition is 50kV/50mA; Use fixedly trace analysis chromium, nickel element; Scanning trace analysis iron-based element, be 20 seconds the analysis time of x-ray fluorescence analyzer chromium, nickel, ferro element, analysis condition under the drawing curve;
(2), analyze C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element with direct reading spectrometry and x-ray fluorescence method respectively; Direct reading spectrometry analysis result and x-ray fluorescence method analysis result are carried out the correlativity processing, be about to each related coefficient and be kept in the response curve coefficient table of x-ray fluorescence analyzer corresponding element;
(3), in x-ray fluorescence analyzer, add C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, the corresponding concentration of Pb element input port;
(4), above-mentioned element is corresponding in the x-ray fluorescence analyzer analysis condition and working curve are deleted; The x-ray fluorescence method analysis condition and the working curve that only keep chromium, nickel, ferro element keep chromium, nickel, ferro element elements corresponding interference coefficient and correction coefficient;
(5), analyze C, Si, Mn, P, S, Cu, Al, Mo, V, Ti, Co, As, Sn, Pb element with direct-reading spectrometer; Analyze Cr, Ni, Fe element with x-ray fluorescence analyzer; Direct-reading spectrometer imports analysis result into carry out chromium, nickel, ferro element in the x-ray fluorescence analyzer interference correction automatically through network and calculates, and quotes the full elemental analysis result of stainless steel sample after afterwards total data being merged.
CN 201110200726 2011-07-18 2011-07-18 Full-elemental analysis method for stainless steel sample Active CN102359972B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110200726 CN102359972B (en) 2011-07-18 2011-07-18 Full-elemental analysis method for stainless steel sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110200726 CN102359972B (en) 2011-07-18 2011-07-18 Full-elemental analysis method for stainless steel sample

Publications (2)

Publication Number Publication Date
CN102359972A true CN102359972A (en) 2012-02-22
CN102359972B CN102359972B (en) 2013-07-10

Family

ID=45585333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110200726 Active CN102359972B (en) 2011-07-18 2011-07-18 Full-elemental analysis method for stainless steel sample

Country Status (1)

Country Link
CN (1) CN102359972B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879414A (en) * 2012-10-15 2013-01-16 贵州天义电器有限责任公司 Determination method of content of lead in tin lead alloy coating
CN103460030A (en) * 2011-01-31 2013-12-18 新日铁住金株式会社 Steel type assessment method for steel material
CN104390945A (en) * 2014-11-07 2015-03-04 沈阳黎明航空发动机(集团)有限责任公司 Element content fluorescence analysis method of iron-base alloy
CN105004710A (en) * 2015-07-27 2015-10-28 山西太钢不锈钢股份有限公司 Analysis and calibration method for stainless steel chromium and nickel elements
CN105866156A (en) * 2016-04-22 2016-08-17 苏州三值精密仪器有限公司 Method for quickly determining trace elements in salt with X-ray fluorescence spectrometry
CN106226340A (en) * 2016-08-31 2016-12-14 广西出入境检验检疫局危险品检测技术中心 A kind of measure the method for copper content in fireworks and firecrackers copper sulfate
CN106370686A (en) * 2016-08-31 2017-02-01 广西出入境检验检疫局危险品检测技术中心 Method for determining copper content in basic copper carbonate for fireworks and firecrackers
CN106596613A (en) * 2017-02-16 2017-04-26 武汉泛洲中越合金有限公司 Method for detecting element content by using scanning channel of X-ray fluorescence spectrometer
CN107314999A (en) * 2017-06-20 2017-11-03 重庆邮电大学 Liquid cathode Glow Discharge Spectrometry method based on multiple linear regression method
CN107807097A (en) * 2017-10-16 2018-03-16 山西太钢不锈钢股份有限公司 A kind of bearing calibration of high-carbon alloy steel spectrum analysis
CN108254361A (en) * 2017-12-29 2018-07-06 柳州钢铁股份有限公司 The analysis method of phosphorus content in phosphoric pig iron
CN110426408A (en) * 2019-07-24 2019-11-08 包头钢铁(集团)有限责任公司 The method that Xray fluorescence spectrometer detects arsenic in the pig iron, tin element content
CN110441340A (en) * 2019-07-16 2019-11-12 天津钢管制造有限公司 Measuring method based on Ta element in X-ray fluorescence spectra analysis steel alloy
CN110646454A (en) * 2019-10-11 2020-01-03 马鞍山钢铁股份有限公司 Method for measuring contents of aluminum element, iron element, cadmium element and lead element in zinc liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127888A (en) * 1995-08-22 1996-07-31 杭州钢铁集团公司 Quick iron and steel component response technique for steel smelting platform
CN1831521A (en) * 2006-01-27 2006-09-13 向良鑫 Combined analytical method for 8-element in aluminium alloy
CN200958995Y (en) * 2006-07-20 2007-10-10 朱明� Microelement analyzer
CN102121909A (en) * 2010-12-07 2011-07-13 中国航空工业集团公司北京航空材料研究院 Method for rapidly and nondestructively identifying metal material marks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127888A (en) * 1995-08-22 1996-07-31 杭州钢铁集团公司 Quick iron and steel component response technique for steel smelting platform
CN1831521A (en) * 2006-01-27 2006-09-13 向良鑫 Combined analytical method for 8-element in aluminium alloy
CN200958995Y (en) * 2006-07-20 2007-10-10 朱明� Microelement analyzer
CN102121909A (en) * 2010-12-07 2011-07-13 中国航空工业集团公司北京航空材料研究院 Method for rapidly and nondestructively identifying metal material marks

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张志刚 等: "X射线荧光光谱法测定不锈钢中15种元素", 《冶金分析》 *
戚佳琳 等: "直读光谱法测定铬不锈钢中的元素含量", 《化学分析计量》 *
萧民强 等: "X射线荧光仪FP法测定生铁中多元素", 《现代仪器》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460030B (en) * 2011-01-31 2015-12-02 新日铁住金株式会社 The type assessment method for steel material of steel
CN103460030A (en) * 2011-01-31 2013-12-18 新日铁住金株式会社 Steel type assessment method for steel material
CN102879414A (en) * 2012-10-15 2013-01-16 贵州天义电器有限责任公司 Determination method of content of lead in tin lead alloy coating
CN104390945B (en) * 2014-11-07 2017-03-29 沈阳黎明航空发动机(集团)有限责任公司 A kind of constituent content fluorescence analysis method of ferrous alloy
CN104390945A (en) * 2014-11-07 2015-03-04 沈阳黎明航空发动机(集团)有限责任公司 Element content fluorescence analysis method of iron-base alloy
CN105004710B (en) * 2015-07-27 2017-09-01 山西太钢不锈钢股份有限公司 A kind of stainless steel chromium, nickel element analytic set method
CN105004710A (en) * 2015-07-27 2015-10-28 山西太钢不锈钢股份有限公司 Analysis and calibration method for stainless steel chromium and nickel elements
CN105866156A (en) * 2016-04-22 2016-08-17 苏州三值精密仪器有限公司 Method for quickly determining trace elements in salt with X-ray fluorescence spectrometry
CN106370686A (en) * 2016-08-31 2017-02-01 广西出入境检验检疫局危险品检测技术中心 Method for determining copper content in basic copper carbonate for fireworks and firecrackers
CN106226340A (en) * 2016-08-31 2016-12-14 广西出入境检验检疫局危险品检测技术中心 A kind of measure the method for copper content in fireworks and firecrackers copper sulfate
CN106596613A (en) * 2017-02-16 2017-04-26 武汉泛洲中越合金有限公司 Method for detecting element content by using scanning channel of X-ray fluorescence spectrometer
CN106596613B (en) * 2017-02-16 2019-08-27 武汉泛洲中越合金有限公司 A method of road detection elements content is scanned using Xray fluorescence spectrometer
CN107314999A (en) * 2017-06-20 2017-11-03 重庆邮电大学 Liquid cathode Glow Discharge Spectrometry method based on multiple linear regression method
CN107807097A (en) * 2017-10-16 2018-03-16 山西太钢不锈钢股份有限公司 A kind of bearing calibration of high-carbon alloy steel spectrum analysis
CN108254361A (en) * 2017-12-29 2018-07-06 柳州钢铁股份有限公司 The analysis method of phosphorus content in phosphoric pig iron
CN110441340A (en) * 2019-07-16 2019-11-12 天津钢管制造有限公司 Measuring method based on Ta element in X-ray fluorescence spectra analysis steel alloy
CN110426408A (en) * 2019-07-24 2019-11-08 包头钢铁(集团)有限责任公司 The method that Xray fluorescence spectrometer detects arsenic in the pig iron, tin element content
CN110646454A (en) * 2019-10-11 2020-01-03 马鞍山钢铁股份有限公司 Method for measuring contents of aluminum element, iron element, cadmium element and lead element in zinc liquid

Also Published As

Publication number Publication date
CN102359972B (en) 2013-07-10

Similar Documents

Publication Publication Date Title
CN102359972B (en) Full-elemental analysis method for stainless steel sample
CN104697966A (en) Method for quantitatively analyzing chromium and manganese in steel based on least square support vector machine algorithm combined with laser-induced breakdown spectroscopy
CN105044050A (en) Rapid quantitative analysis method for metallic elements in crop straw
CN111488926A (en) Soil organic matter measuring method based on optimization model
CN103063732A (en) Method for measuring contents of chromium, nickel, arsenic, selenium, cadmium, mercury and lead in urine
CN111398254B (en) Rice leaf heavy metal copper element quantitative detection method and system
CN106770197B (en) A kind of detection method of soil available lead
Saçmaci et al. Determination of Cr (III), Fe (III), Ni (II), Pb (II) and Zn (II) ions by FAAS in environmental samples after separation and preconcentration by solvent extraction using a triketone reagent
CN103575707B (en) Photo-electric direct reading spectrometer is used to measure the method for nickel base superalloy composition of steel
CN108872198A (en) The effect of fertilizer cadmium detection method of laser induced breakdown spectroscopy based on ar gas environment
CN103217404A (en) Method for identifying affiliations of spectrum lines of elements by laser-induced breakdown spectroscopy
CN103398988B (en) A kind of LIBS metallic element quantivative approach based on not same element polyion state contrast correction
CN108414500B (en) Quantitative analysis method for sulfur and phosphorus in steel
CN100437089C (en) Multi-component analysis method for spectrum
CN104316511B (en) Spectral line interference bearing calibration in spark source atomic emission spectrometry analysis
Muklis et al. Transformational leadership, work motivation on job satisfaction, employee performance at national Amil Zakat Institution
CN103792214A (en) Method for improving carbon content measuring accuracy in steel
CN109668871A (en) The direct-reading spectrometer analysis method of trace amount Ti in a kind of steel
CN101324520B (en) Method for rapidly detecting micro trace quantity lead in ship hull steel with graphite oven atomic absorption
CN105486707B (en) A kind of quantitative fluorescence analysis method of cobalt-base alloys
CN104655783B (en) The GC-NCI-MS assay method of metrafenone residual quantity in a kind of fruits and vegetables
CN103678921A (en) Method for analyzing influence of texture on magnetic performance of non-oriented silicon steel based on principal component regression analysis
CN103632013A (en) Method for analyzing influences of grain sizes on magnetic performance of non-oriented silicon steel on basis of principal components regression analysis
CN102706811A (en) Method for identifying sugar quality of cigarette by utilizing near infrared light spectral analysis technique
CN105021532B (en) A kind of quick detection X70 metallographic structures and the method for tissue content

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant