CN102354510A - 一种有机光致聚合物全息存储材料的光敏剂浓度序列 - Google Patents

一种有机光致聚合物全息存储材料的光敏剂浓度序列 Download PDF

Info

Publication number
CN102354510A
CN102354510A CN2011101860270A CN201110186027A CN102354510A CN 102354510 A CN102354510 A CN 102354510A CN 2011101860270 A CN2011101860270 A CN 2011101860270A CN 201110186027 A CN201110186027 A CN 201110186027A CN 102354510 A CN102354510 A CN 102354510A
Authority
CN
China
Prior art keywords
photosensitizer
photosensitizer concentration
layer
exp
storage medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101860270A
Other languages
English (en)
Other versions
CN102354510B (zh
Inventor
孙秀冬
王珩
王健
姜永远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201110186027.0A priority Critical patent/CN102354510B/zh
Publication of CN102354510A publication Critical patent/CN102354510A/zh
Application granted granted Critical
Publication of CN102354510B publication Critical patent/CN102354510B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Holo Graphy (AREA)

Abstract

一种有机光致聚合物全息存储材料的光敏剂浓度序列,根据Beer定律,一定光强的入射光通过存储材料后,得出第一层材料吸收的光强的关系式,进而得出经过第一层材料后的透射光强的关系式,当材料分成s层,则得出第s层的吸收光强关系式为了克服传统材料中沿厚度方向的光栅衰减情况,使每层材料吸收光强相等,能够得到一个材料中的各个层光敏剂浓度关系式,当给出第一层存储材料的光敏剂浓度值,根据该式能够得到每层存储材料的光敏剂浓度值,即构成了存储材料的光敏剂浓度序列。使用该序列制作出有机光致聚合物全息存储材料克服了传统材料中沿厚度方向的光栅衰减情况,增加了材料的有效光学厚度,优化了材料的存储性能。

Description

一种有机光致聚合物全息存储材料的光敏剂浓度序列
技术领域
本发明涉及的是光学全息存储技术领域,具体地说是一种通过多层膜方式来提高有机光致聚合物全息存储材料有效光学厚度的技术。
背景技术
当前,一些传统的信息存储技术已接近各自的理论极限,光学全息存储以其存储密度高、传输速率快、高冗余度及强抗干扰能力被公认为是下一代的存储技术。全息技术的应用在很大程度上取决于存储介质,光致聚合物材料以其易通过掺杂实现短波长记录,曝光后无需后续处理即可记录永久光栅,价格低廉,能够大规模生产等优点成为人们研究的热点。
如果要实现大容量全息存储,有机聚合物材料的厚度应该高于500μm。但是当材料厚度高于500μm时,由于材料中光敏剂的吸收,入射光沿材料厚度方向逐渐衰减,如Beer定律所述。这样,全息记录过程中形成的折射率光栅沿材料厚度方向逐渐衰减,使得材料的光学厚度大大减小,对全息存储产生不利影响。通过本技术制备的有机聚合物材料,由于在材料厚度方向存在光敏剂浓度值的梯度,所以抑制了光栅衰减的现象,提高了材料的有效光学厚度。
发明内容
本发明的目的在于提供一种通过多层膜方式来提高有机光致聚合物全息存储材料有效光学厚度、从而优化其存储性能的方法。
为了实现以上目的所采用的技术方案如下:
根据Beer定律,一定光强的入射光通过材料后,第一层材料吸收的光强为:I1=I0(1-exp(-ε[YE]1d1)),经过第一层材料后的透射光强为:I′1=I0exp(-ε[YE]1d1),其中I0为初始入射光强,ε为材料摩尔吸收系数,[YE]1为该层材料的光敏剂浓度,d1为该层材料厚度。依此类推,若将材料分成s层,则第s层的吸收光强为:
Is=I0exp(-ε[YE]1d1)exp(-ε[YE]2d2)……exp(-ε[YE]s-1ds-1)(1-exp(-ε[YE]sds))。
为了克服传统材料中沿厚度方向的光栅衰减情况,令每层材料吸收光强相等,可以得到材料中的各个层光敏剂浓度关系式:
[ YE ] 2 = - ln ( 2 exp ( - ϵ [ YE ] 1 d ) - 1 ) ϵd - [ YE ] 1
[ YE ] 3 = - ln ( 2 exp ( - ϵ [ YE ] 2 d ) - 1 ) ϵd - [ YE ] 2
……
[ YE ] s = - ln ( 2 exp ( - ϵ [ YE ] s - 1 d ) - 1 ) ϵd - [ YE ] s - 1
这样,给出第一层材料的光敏剂浓度值,根据上式可以得到每层材料的光敏剂浓度值,即构成了材料的光敏剂浓度序列。
依据该光敏剂浓度序列,进行如下步骤制备出多层膜有机光致聚合物全息存储材料,下面以三层丙烯酰胺-光致聚合物材料,方法如下:
第一步:将聚乙烯醇均匀溶解在去离子水中,制成一定浓度的粘稠溶液,分别取适量的丙烯酰胺,亚甲基双丙烯酰胺和三乙醇胺加入上述粘稠溶液,制成混合溶液;
第二步:根据上面计算过程中求得的光敏剂浓度[YE]1、[YE]2和[YE]3,分别取适量的光敏剂曙红加入上述混合液中,制备出含不同光敏剂浓度的混合溶液;
第三步:首先将光敏剂浓度为[YE]3的相应混合液涂抹在玻璃片上,移至暗室数小时,待材料干燥至一定程度后,将光敏剂浓度为[YE]2相应混合溶液涂抹在第一层材料上,于暗室干燥一定程度后,再将光敏剂浓度为[YE]1的相应混合溶液涂抹在第二层材料上,于暗室干燥成膜后即可进行全息记录。
该制备技术工艺简单,实施方便,应用广泛,多种光致聚合物全息存储材料可用此技术制备,如材料光敏剂可选用藻红、赤藓红、刚果红、亚甲基蓝和罗丹明等等,而成膜物质也可为聚醋酸乙烯酯、醋酸纤维素、聚甲基丙烯酸甲酯、醋酸丁酸纤维素和聚苯乙烯等。
使用该序列制作出的有机光致聚合物全息存储材料克服了传统材料中沿厚度方向的光栅衰减情况,增加了材料的有效光学厚度,优化了材料的存储性能。
附图说明
图1是多层膜材料示意图。
图2是传统材料内的折射率光栅三维分布图。
图3是多层膜材料内的折射率光栅三维分布图。
图4使三种不同材料的Bragg角度选择性曲线图:210μm和540μm厚的是传统材料;510μm厚的是三层膜材料。
具体实施方式
如图1所示,根据Beer定律,一定光强的入射光通过材料后,第一层材料吸收的光强为:I1=I0(1-exp(-ε[YE]1d1)),经过第一层材料后的透射光强为:I′1=I0exp(-ε[YE]1d1),其中I0为初始入射光强,ε为材料摩尔吸收系数,[YE]1为该层材料的光敏剂浓度,d1为该层材料厚度。依此类推,若将材料分成s层,则第s层的吸收光强为:
Is=I0exp(-ε[YE]1d1)exp(-ε[YE]2d2)……exp(-ε[YE]s-1ds-1)(1-exp(-ε[YE]sds))。
为了克服传统材料中沿厚度方向的光栅衰减情况,令每层材料吸收光强相等,可以得到材料中的各个层光敏剂浓度关系式:
[ YE ] 2 = - ln ( 2 exp ( - ϵ [ YE ] 1 d ) - 1 ) ϵd - [ YE ] 1
[ YE ] 3 = - ln ( 2 exp ( - ϵ [ YE ] 2 d ) - 1 ) ϵd - [ YE ] 2
……
[ YE ] s = - ln ( 2 exp ( - ϵ [ YE ] s - 1 d ) - 1 ) ϵd - [ YE ] s - 1
这样,给出第一层材料的光敏剂浓度值,根据上式可以得到每层材料的光敏剂浓度值,即构成了材料的光敏剂浓度序列。
下面以有机光致聚合物全息存储材料-丙烯酰胺聚合物材料(三层膜)为例,对本技术作更详细的描述:
实施例1
1、根据光敏剂浓度序列公式和丙烯酰胺材料的相关参数,计算出该材料的光敏剂浓度序列值:5.32×10-4mol/L,6.21×10-4mol/L和7.43×10-4mol/L:
第一步:将聚乙烯醇均匀溶解在去离子水中,制成乙烯醇质量分数为10%的粘稠溶液,分别取适量的丙烯酰胺,亚甲基双丙烯酰胺和三乙醇胺加入上述粘稠溶液,制成混合溶液,该混合液中含有:丙烯酰胺的浓度为0.4mol/L,亚甲基双丙烯酰胺的浓度为0.04mol/L,三乙醇胺的浓度为0.2mol/L;
第二步:根据光敏剂浓度序列公式求得的光敏剂浓度5.32×10-4mol/L,6.21×10-4mol/L和7.43×10-4mol/L,将上述混合液分成三份,取适量的光敏剂曙红分别加入上述三份混合液中,制备出含有上述求得的三种不同光敏剂浓度的混合溶液;
第三步:首先将光敏剂浓度为7.43×10-4mol/L的相应混合液涂抹在玻璃片上,移至暗室数小时,待材料干燥至一定程度后,将光敏剂浓度为6.21×10-4mol/L的相应混合溶液涂抹在第一层材料上,于暗室干燥一定程度后,再将光敏剂浓度为5.32×10-4mol/L的相应混合溶液涂抹在第二层材料上,于暗室干燥成膜后即可进行全息记录。
实施例2
2、根据光敏剂浓度序列公式和丙烯酰胺材料的相关参数,计算出该材料的光敏剂浓度序列值:5.89×10-4mol/L,6.98×10-4mol/L和8.58×10-4mol/L:
第一步:将聚乙烯醇均匀溶解在去离子水中,制成乙烯醇质量分数为10%的粘稠溶液,分别取适量的丙烯酰胺,亚甲基双丙烯酰胺和三乙醇胺加入上述粘稠溶液,制成混合溶液,该混合液中含有:丙烯酰胺的浓度为0.5mol/L,亚甲基双丙烯酰胺的浓度为0.05mol/L,三乙醇胺的浓度为0.25mol/L;
第二步:根据光敏剂浓度序列公式求得的光敏剂浓度5.89×10-4mol/L,6.98×10-4mol/L和8.58×10-4mol/L,将上述混合液分成三份,取适量的光敏剂曙红分别加入上述三份混合液中,制备出含有上述求得的三种不同光敏剂浓度的混合溶液;
第三步:首先将光敏剂浓度为8.58×10-4mol/L的相应混合液涂抹在玻璃片上,移至暗室数小时,待材料干燥至一定程度后,将光敏剂浓度为6.98×10-4mol/L的相应混合溶液涂抹在第一层材料上,于暗室干燥一定程度后,再将光敏剂浓度为5.89×10-4mol/L的相应混合溶液涂抹在第二层材料上,于暗室干燥成膜后即可进行全息记录。
我们实验上测量了该多层膜材料的Bragg角度选择性曲线,同时作为对比,我们也测量了传统材料的Bragg曲线,如图4所示:210μm和540μm厚度的材料是传统材料,510μm厚度的材料是三层膜材料。210μm和540μm厚度的材料的角度选择性曲线宽度没有明显差别,说明尽管其物理厚度有很大差别,但他们却有相似的有效光学厚度,这是由于沿材料厚度方向的光栅衰减现象所致;而采用多层膜技术制备的510μm三层膜材料却展示了更窄的角度选择性宽度,在采用多层膜技术制备的材料中,由于多层膜技术有效克服了沿材料厚度方向的光栅衰减现象,从而在材料内部形成了更加均匀的折射率光栅,提高了材料的有效光学厚度,优化了材料存储性能。

Claims (2)

1.一种有机光致聚合物全息存储材料的光敏剂浓度序列,该光敏剂浓度序列用于制备出多层膜有机光致聚合物全息存储材料,其特征在于:根据Beer定律,一定光强的入射光通过存储材料后,第一层材料吸收的光强为:I1=I0(1-exp(-ε[YE]1d1)),经过第一层材料后的透射光强为:I′1=I0exp(-ε[YE]1d1),其中I0为初始入射光强,ε为材料摩尔吸收系数,[YE]1为该层材料的光敏剂浓度,d1为该层存储材料厚度;依此类推,当材料分成s层,则第s层的吸收光强为:
Is=I0exp(-ε[YE]1d1)exp(-ε[YE]2d2)……exp(-ε[YE]s-1ds-1)(1-exp(-ε[YE]sds));
为了克服传统材料中沿厚度方向的光栅衰减情况,使每层材料吸收光强相等,能够得到材料中的各个层光敏剂浓度关系式:
[ YE ] 2 = - ln ( 2 exp ( - ϵ [ YE ] 1 d ) - 1 ) ϵd - [ YE ] 1
[ YE ] 3 = - ln ( 2 exp ( - ϵ [ YE ] 2 d ) - 1 ) ϵd - [ YE ] 2
……
[ YE ] s = - ln ( 2 exp ( - ϵ [ YE ] s - 1 d ) - 1 ) ϵd - [ YE ] s - 1
综上,给出第一层存储材料的光敏剂浓度值,根据上式能够得到每层存储材料的光敏剂浓度值,即构成了存储材料的光敏剂浓度序列。
2.一种使用如权利要求1所述的一种有机光致聚合物全息存储材料的光敏剂浓度序列而得出的制备一种三层有机光致聚合物全息存储材料的方法,其特征在于,步骤如下:
第一步:将聚乙烯醇均匀溶解在去离子水中,制成一定浓度的粘稠溶液,分别取适量的丙烯酰胺,亚甲基双丙烯酰胺和三乙醇胺加入上述粘稠溶液,制成混合溶液;
第二步:根据光敏剂浓度序列计算出光敏剂浓度[YE]1、[YE]2和[YE]3,分别取适量的光敏剂曙红加入上述混合液中,制备出含不同光敏剂浓度的混合溶液;
第三步:首先将光敏剂浓度为[YE]3的相应混合液涂抹在玻璃片上,移至暗室数小时,待材料干燥至一定程度后,将光敏剂浓度为[YE]2相应混合溶液涂抹在第一层材料上,于暗室干燥一定程度后,再将光敏剂浓度为[YE]1的相应混合溶液涂抹在第二层材料上,于暗室干燥成膜后进行全息记录。
CN201110186027.0A 2011-07-05 2011-07-05 一种有机光致聚合物全息存储材料的光敏剂浓度序列 Expired - Fee Related CN102354510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110186027.0A CN102354510B (zh) 2011-07-05 2011-07-05 一种有机光致聚合物全息存储材料的光敏剂浓度序列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110186027.0A CN102354510B (zh) 2011-07-05 2011-07-05 一种有机光致聚合物全息存储材料的光敏剂浓度序列

Publications (2)

Publication Number Publication Date
CN102354510A true CN102354510A (zh) 2012-02-15
CN102354510B CN102354510B (zh) 2014-04-23

Family

ID=45578058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110186027.0A Expired - Fee Related CN102354510B (zh) 2011-07-05 2011-07-05 一种有机光致聚合物全息存储材料的光敏剂浓度序列

Country Status (1)

Country Link
CN (1) CN102354510B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247387A (zh) * 2017-07-06 2017-10-13 沈阳航空航天大学 一种无基底丙烯酰胺光致聚合全息存储材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504828A (zh) * 2002-11-28 2004-06-16 中国科学院理化技术研究所 高折射率环氧树脂和低折射率烯类单体组成的光致聚合物体全息存储材料及其制备方法
US20100086859A1 (en) * 2008-10-08 2010-04-08 Tdk Corporation Hologram recording material and hologram recording medium
CN102054498A (zh) * 2009-11-09 2011-05-11 中国科学院理化技术研究所 光致聚合物型全息存储光盘的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504828A (zh) * 2002-11-28 2004-06-16 中国科学院理化技术研究所 高折射率环氧树脂和低折射率烯类单体组成的光致聚合物体全息存储材料及其制备方法
US20100086859A1 (en) * 2008-10-08 2010-04-08 Tdk Corporation Hologram recording material and hologram recording medium
CN102054498A (zh) * 2009-11-09 2011-05-11 中国科学院理化技术研究所 光致聚合物型全息存储光盘的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247387A (zh) * 2017-07-06 2017-10-13 沈阳航空航天大学 一种无基底丙烯酰胺光致聚合全息存储材料及其制备方法

Also Published As

Publication number Publication date
CN102354510B (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
Zhan et al. A butterfly‐inspired hierarchical light‐trapping structure towards a high‐performance polarization‐sensitive perovskite photodetector
Wang et al. Bioinspired water‐vapor‐responsive organic/inorganic hybrid one‐dimensional photonic crystals with tunable full‐color stop band
Yamada et al. Optimization of anti‐reflection moth‐eye structures for use in crystalline silicon solar cells
CN102792456A (zh) 太阳能电池、太阳能电池板和具备太阳能电池的装置
Jiang et al. Laser Interference Lithography for the Nanofabrication of Stimuli‐Responsive Bragg Stacks
CN102608688A (zh) 一种纳米金属掺杂的聚合物分散液晶材料电控高效全息光栅及其制备方法
CN104199137A (zh) 一种胆甾相液晶偏光增亮膜及其制备方法
JP2010107996A5 (zh)
Lin et al. Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures
CN107262079B (zh) 一种用于同时监测和去除铀酰离子的智能光子晶体材料
JP2008152041A (ja) ホログラム記録媒体およびその製造方法
Zhou et al. Research progress of cholesteric liquid crystals with broadband reflection
Wang et al. Study of effective optical thickness in photopolymer for application
CN102354510B (zh) 一种有机光致聚合物全息存储材料的光敏剂浓度序列
JP6065528B2 (ja) 遷移金属酸化物及び水溶性高分子化合物を含有する複合膜
DE10350526A1 (de) Schichtstruktur und optischer Wellenleiter-Sensor basierend auf photoadressierbaren Polymeren
WO2019000849A1 (zh) 一种具有方向性发光的光子晶体闪烁体器件
CN108803182B (zh) 一种激光防护薄膜及包含该激光防护薄膜的激光防护设备
CN106981295B (zh) 一种可抗紫外线擦除的全息存储材料及其制备方法
Christenson et al. Nonlinear fluorescence modulation of an organic dye for optical data storage
CN111025849A (zh) 水溶性光致聚合物及全息记录材料
Yu et al. Dual‐mode color‐changing pH sensor based on fluorescent MOF embedded photonic crystal hydrogel
Yuan et al. Light output enhancement of scintillators by using mixed-scale microstructures
Kim et al. Inverse opal photonic gel containing charge stabilized boronate anions for glucose sensing at physiological pH
CN105247690B (zh) 聚光设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140423

Termination date: 20150705

EXPY Termination of patent right or utility model