CN102339953B - 能量收集装置 - Google Patents

能量收集装置 Download PDF

Info

Publication number
CN102339953B
CN102339953B CN201010232334.3A CN201010232334A CN102339953B CN 102339953 B CN102339953 B CN 102339953B CN 201010232334 A CN201010232334 A CN 201010232334A CN 102339953 B CN102339953 B CN 102339953B
Authority
CN
China
Prior art keywords
ferroelectric material
collecting device
energy collecting
energy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010232334.3A
Other languages
English (en)
Other versions
CN102339953A (zh
Inventor
方华斌
茅昕辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to CN201010232334.3A priority Critical patent/CN102339953B/zh
Publication of CN102339953A publication Critical patent/CN102339953A/zh
Application granted granted Critical
Publication of CN102339953B publication Critical patent/CN102339953B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本文公开了能量收集装置和形成能量收集装置的方法。一个或多个装置实施例包括铁电材料、与铁电材料相邻的第一电极和与铁电材料相邻的第二电极。

Description

能量收集装置
技术领域
本发明涉及能量收集装置以及形成能量收集装置的方法。
背景技术
在环境内可以存在多种外界能源,例如振动、光变(light variation)、温变、和/或动能,以及其它类型的外界能源。能量收集装置能够将来自一种或多种这些外界能源的能量转换成电能。也就是说,能量收集装置能够是电源,用于从(例如,在能量收集装置周围的环境内)一种或多种外界能源产生电能。
由于能量收集装置可以从外界能源产生电能,所以能量收集装置与例如电池这样的其它电源相比使用寿命更长。此外,与维护所述能量收集装置相关联的成本、时间和/或劳动的量,能够低于与维护其它电源相关联(例如,与电池替换和/或处置相关联的)成本、时间和/或劳动。另外,在(诸如野外工作、无线感测、和/或嵌入式网络、以及其它应用这样的)其中对于电源的可接入性(accessibility)可能受到限制和/或难以进行的应用中,能量收集装置可以用作电源。
能量收集装置的类型例如包括电磁式装置、电容式装置、光电式装置、热电式装置和压电式装置。压电式能量收集装置例如能够将来自环境的动能转换成电能。
压电式能量收集装置能够包括诸如锆钛酸铅(PZT)和/或聚偏氟乙烯(PVDF)这样的压电材料。然而,压电材料可能是易碎的,和僵硬或非柔性的,这会对压电式能量收集装置的性能产生不利影响。
例如,由于这些特性,会降低由压电式能量收集装置进行的动能到电能的转换的效率。另外,压电式能量收集装置可能耐用性较差,和/或可能不适用于多种环境。此外,与制造压电式能量收集装置相关联的成本、时间量和/或困难程度很高,这不适用于一些应用。
发明内容
附图说明
图1示出了根据本发明的一个或多个实施例的能量收集装置的一部分。;
图2示出了根据本发明的一个或多个实施例的能量收集装置的一部分;
图3示出了根据本发明的一个或多个实施例的能量收集装置的一部分;
图4是示出形成根据本发明的一个或多个实施例的能量收集装置的方法的流程图。
具体实施方式
本文描述了能量收集装置和形成能量收集装置的方法。一个或多个装置实施例包括铁电材料、与铁电材料相邻的第一电极、和与铁电材料相邻的第二电极。
根据本发明的一个或多个实施例的能量收集装置(例如,包括铁电材料的能量收集装置)可以是极度柔性的,这能够提高能量收集装置的性能。例如,根据本发明的一个或多个实施例的能量收集装置能够以高效方式将例如动能的能量转换成例如电能的能量。另外,根据本发明的一个或多个实施例的能量收集装置可具有高度耐用性和/或可适用于各种环境。此外,与制造根据本发明的一个或多个实施例的能量收集装置相关联的成本、时间量和/或困难程度可以是低的。
在本发明的下面详细描述中,参照附图,附图形成了本文的一部分并且在附图中以图解方式示出了如何实践本发明的一个或多个实施例。充分详细描述这些实施例从而使得本领域技术人员可以实践本发明的一个或多个实施例,并且应该明白,在不脱离本发明的范围的情况下可以利用其它实施例并且可以进行工艺、电气和/或结构变化。
应该明白,可以添加、更换和/或删除本文各个实施例中所示的元素以便形成本发明的大量的附加实施例。此外,应该明白,附图中所提供的元素的比率和相对尺度/比例旨在图解本发明的实施例而不应该理解为限制性意义。
本文所用的“一个”或“多个/一定数目的”事物能够指代一个或更多这种东西。例如,多个空隙可以指代一个或更多空隙。
图1示出了根据本发明的一个或多个实施例的能量收集装置100的一部分。如图1所示,能量收集装置100包括铁电材料110、与铁电材料110相邻的第一电极112、和与铁电材料110相邻的第二电极114。
尽管在图1中示出了一个铁电材料和两个电极,但是本发明的实施例不限于铁电材料或电极的特定数目。也就是说,能量收集装置100可以包括附加的铁电材料和/或附加的电极。例如,能量收集装置100可以包括与电极112和/或114相邻的第二铁电材料、与第二铁电材料相邻的第三电极、与第三电极相邻的第三铁电材料、与第三铁电材料相邻的第四电极,等等。
第一电极112和第二电极114可以包括一个或多个金属材料(例如,铝)。然而,本发明的实施例不限于特定电极材料。
在图1所示的实施例中,第一电极112与铁电材料110的第一表面相邻,并且第二电极114与铁电材料110的与第一表面相对着的第二表面相邻。也就是说,第一电极112与铁电材料110的顶部相邻,并且第二电极114与铁电材料110的底部相邻,如图1所示。
铁电材料110例如能够具有1厘米×1厘米×0.01厘米的尺寸。然而,本发明的实施例不限于针对铁电材料110的特定尺寸。
铁电材料110可以包括聚合物泡沫,例如聚丙烯(PP)、聚四氟乙烯(PTFE)、多孔环烯(cellular cycloolefine)、和/或乙烯丙烯氟化物或氟化乙丙烯(FEP)等等。例如,铁电材料110可以包括一定数目的交替的PTFE和FEP层。然而,本发明的实施例不限于这些材料。
如图1所示,铁电材料110还可以包括例如气隙这样的一定数目的空隙116。如图1所示,每个空隙116具有正电表面和与正电表面相对着的负电表面。也就是说,在图1所示的实施例中,铁电材料110被极化,例如电荷没有均匀分布在整个铁电材料110中。
例如,通过对铁电材料110施加电场,能够对铁电材料110进行极化。也就是说,如图1所示,通过向铁电材料110施加电场,可以产生具有正电表面和与正电表面相对着的负电表面的每个空隙116。本领域技术人员应该明白,可以采用多种方法向铁电材料110施加电场。例如,可通过使用用以产生2.5到4.0MV/m场的高直流(DC)电压供应器,来向铁电材料110施加电场。
由于铁电材料110被极化,例如由于每个空隙116具有正电表面和与正电表面相对着的负电表面(可以形成准偶极),所以响应于在与铁电材料110的顶和底表面相垂直的方向上对能量收集装置100例如对铁电材料110施加的力(由图1所示的箭头表示),能量收集装置100能够产生电能。这个力例如可以是由能量收集装置100的环境中的外界例如外部动能(诸如,机器、车辆、人员、气体、流体和/或动物的运动)产生的对能量收集装置100的周期性挤压。
例如,能量收集装置100能够安置在振动机器下方、道路下方、和/或人和/或动物的脚下方。机器的振动、在道路上行进的车辆、和/或人和/或动物的步伐可以产生周期性的力,例如,在例如大致与铁电材料110的顶和底表面相垂直的方向上施加给能量收集装置100的周期性压力。
由于铁电材料110被极化,所以能量收集装置100能够响应于周期性的力产生电能。然而,本发明的实施例不限于:能量收集装置100的特定位置、或者施加给能量收集装置100的特定力源。另外,多个力源可以对能量收集装置100施加力。
由能量收集装置100产生的电能例如可以是由图1所示的AC符号117表示的交流(AC)电能。如图1所示,能量装置100可以包括与第一电极112和第二电极114进行耦联的整流器电路118(例如,全桥整流器电路)。整流器电路118能够将产生的AC电能转换成直流(DC)电能。
在一个或多个实施例中,能量收集装置100响应于以大约50Hz的频率施加到能量收集装置100的大约9.8N的力,能够产生大约3.0μW的电能。然而,本发明的实施例不限于特定量的电能、特定量的力和/或频率。例如,在能量收集装置100包括附加的铁电材料和/或附加的电极的实施例中,能量收集装置100响应于以大约50Hz的频率施加到能量收集装置100的大约9.8N的力能够产生超过3.0μW的电能。
在一些实施例中,铁电材料110可以是高柔性的。例如,铁电材料110的密度可以近似为330kg/m3,弹性模量可以为0.01GPa。相比较而言,诸如锆钛酸铅(PZT)或聚偏氟乙烯(PVDF)这样的压电材料可能是僵硬或非柔性的。例如,压电材料的密度可以近似为4000到8000kg/m3,弹性模量可以近似为50GPa。
由于铁电材料110可以比压电材料更加柔性,所以能量收集装置100的柔性会大于包括压电材料的能量收集装置。因此,与包括压电材料的能量收集装置相比,能量收集装置100的耐用性更高和/或可适用于更宽范围的环境。此外,与制造能量收集装置100相关联的成本、时间量和/或困难程度可能要低于与制造包括压电材料的能量收集装置相关联的成本、时间量和/或困难程度。
铁电材料110还可以具有高的压电(D33)系数(例如,由铁电材料110产生的电荷与垂直于铁电材料110的表面所施加的力的高比率)。例如,铁电材料110可以具有大约2000皮库/牛顿(pC/N)的D33系数。相比较,诸如PZT或PVDF这样的压电材料可以具有低D33系数(例如,由压电材料产生的电荷与垂直于压电材料的表面所施加的力的低比率)。例如,压电材料通常具有大约70到600pC/N的D33系数。
由于与压电材料相比铁电材料110通常可具有更大的D33系数;所以与包括压电材料的能量收集装置相比,能量收集装置100可以更加有效地将例如动能的能量转换成例如电能的能量。例如,如果对能量收集装置100和包括压电材料的能量收集装置二者均施加相同量的力,则与包括压电材料的能量收集装置相比,能量收集装置100响应于力能够产生更多电能。
图2示出了根据本发明的一个或多个实施例的能量收集装置201的一部分。如图2所示,能量收集装置201包括铁电材料220、与铁电材料220相邻的第一电极222、和与铁电材料220相邻的第二电极224。
第一电极222和第二电极224可以包括一个或多个金属材料(例如,铝)。然而,本发明的实施例不限于特定电极材料。
在图2所示的实施例中,第一电极222与铁电材料220的表面相邻,且第二电极224是与第一电极222所毗邻着的铁电材料220的表面相邻的。也就是说,如图2所示,第一电极222和第二电极224二者均与铁电材料220的顶部相邻。
在图2所示的实施例中,第一电极222和第二电极224互相交叉例如互锁。此外,如图2所示,第一电极222和第二电极224各自部分地覆盖着与第一电极222和第二电极224相邻的铁电材料220的表面。也就是说,如图2所示,铁电材料220的顶部的一部分既不由第一电极222又不由第二电极224进行覆盖。
铁电材料220可以包括聚合物泡沫,例如聚丙烯(PP)、聚四氟乙烯(PTFE)、多孔环烯、和/或乙烯丙烯氟化物或氟化乙丙烯(FEP)等等。例如,铁电材料220可以包括一定数目的交替的PTFE和FEP层。然而,本发明的实施例不限于这些材料。
如图2所示,铁电材料220还可以包括例如气隙这样的多个空隙226。如图2所示,每个空隙226具有正电表面和与正电表面相对着的负电表面。也就是说,在图2所示的实施例中,铁电材料220被极化,例如电荷没有均匀分布在整个铁电材料220内。
例如,通过对铁电材料220施加电场,能够对铁电材料220进行极化。例如,电场可以与铁电材料220的顶部平行。如图2所示,通过对铁电材料220施加这种电场,可以产生各自具有正电表面和与正电表面相对着的负电表面的每个空隙226。可以采用多种方法以与结合图1所述相似的方式对铁电材料220施加电场。
由于铁电材料220被极化,例如由于每个空隙226具有正电表面和与正电表面相对着的负电表面,所以能量收集装置201可以响应于施加到该能量收集装置201(例如,施加到铁电材料220)的横向应力(由图2中所示的箭头表示)而产生电能。能量收集装置201的环境内(例如,诸如风、水等流动的流体)的外界动能可以导致横向应力。
例如,能量收集装置201可以安置在暴露于风中的位置。可以对能量收集装置201进行定向以使得风能够施加力从而产生施加到能量收集装置201的横向应力。
由于铁电材料220被极化,所以能量收集装置能够响应于横向应力产生电能。将会结合图3进一步描述:使用能量装置响应于由风产生的施加到能量收集装置的横向应力而产生电能。
由能量收集装置201产生的电能例如可以是由图2所示的AC符号227所表示的AC电能。如图2所示,能量装置201可以包括与第一电极222和第二电极224进行耦联的整流器电路228(例如,全桥整流器电路)。整流器电路228能够将产生的AC电能转换成DC电能。
在一些实施例中,铁电材料220可以是高柔性的,其方式与结合图1描述的铁电材料110类似。相比较而言,如结合图1所述,诸如锆钛酸铅(PZT)或聚偏氟乙烯(PVDF)这样的压电材料可以是僵硬或非柔性的。由于铁电材料220可以比压电材料更柔软,所以能量收集装置201的柔性会大于包括压电材料的能量收集装置,其方式与结合图1所述的能量收集装置100类似。
铁电材料220也可以具有高D33系数(例如,由铁电材料220产生的电荷与垂直于铁电材料220的表面施加的力的高比率),其方式与结合图1描述的铁电材料110类似。如先前本文所述,通过对其上具有互相交叉的电极222和224的、经极化的铁电材料220施加横向应力,能够利用铁电材料220的这个属性。
相比较而言,如结合图1所述,诸如PZT或PVDF这样的压电材料可以具有低的D33系数。由于铁电材料220的D33系数可大于压电材料;所以与包括压电材料的能量收集装置相比,能量收集装置201可以更加有效地将例如动能的能量转换成例如电能的能量,其方式与结合图1描述的能量收集装置100类似。
图3示出了根据本发明的一个或多个实施例的能量收集装置302的一部分。如图3所示,能量收集装置302包括固定基座331、与基座331相邻的柔性柄333、和与柔性柄333相邻的叶335。尽管图3示出了矩形的基座331和柔性柄333,以及三角形的叶335,但是本发明的实施例不限于基座331、柔性柄333或叶335的特定形状。另外,在三维方面,这些实施例可以具有任何适宜的截面形状。
在图3所示的实施例中,叶335邻近着与基座331所毗邻着的柄333的表面相对着的柄333的另一表面。然而,本发明的实施例不限于此。例如,叶333可以安置成邻近着与基座331相垂直的柄333的一表面,例如叶333可以安置为与柄333的顶部或底部相邻。
在一个或多个实施例中,柄333和/或叶335可以包括结合图2所述的能量收集装置201的部分。例如,柄333可以包括经极化的铁电材料、与经极化的铁电材料的表面相邻的第一电极、和邻近着与第一电极所毗邻的经极化的铁电材料的表面的第二电极。在一个或多个实施例中,基座331和/或叶335可以是塑料和/或金属材料。
在一个或多个实施例中,能量收集装置302可以安置在暴露于流体中(例如,诸如风这样的气体、和/或诸如水这样的液体)的位置。流体能够使得柄333进行运动(例如,振动)。例如,当流体通过基座331(这会导致柄333进行振动)时,在左到右方向上(例如,在垂直于与柄333所邻近着的基座331的表面相对着的基座331的表面的方向上)行进的流体能够在能量收集装置302的两侧上交替产生涡旋脱落。另外,在顶到底或底到顶方向上(例如,在垂直于不与基座331或叶335相邻的柄333的任意表面的方向上)行进的流体可以直接对柄333施加力,这会使得柄333进行振动。然而,本发明的实施例不限于特定方向,例如在任何方向上行进的流体可以使得柄333进行振动。
作为柄333的运动(例如,振动)的结果,横向应力可施加给柄333。响应于横向应力,柄333可以产生电能(例如,AC电能)。
叶335可以增加由柄333产生的电量。例如,叶335可以用作摆和/或帆,从而与能量收集装置302仅仅包括基座331和柄333的情况相比,能够使能量收集装置302捕获更多的流体。捕获更多的流体能够增加柄333的运动(例如,振动)量,这会增大施加到柄333的横向应力。施加给柄333的横向应力增大,也会使得由柄333产生的电量增大。
在一个或多个实施例中,能量收集装置302可以包括整流器电路336(例如,设置在基座331内和/或基座331上的全桥整流器电路)。如图3所示,整流器电路336可以耦联到柄333(例如,柄333的第一和第二电极)。整流器电路336可以将产生的AC电能转换成DC电能。也就是说,整流器电路336与结合图1描述的整流器电路118和/或结合图2描述的整流器电路228类似。
如图3所示,能量收集装置302还可以包括电容器337,电容器337设置在基座331内和/或基座331上。如图3所示,电容器337可以耦联到整流器电路336和/或柄333。电容器337可以存储由柄333和/或叶335产生的电能。例如,电容器337可以存储所转换的DC电能。
在一个或多个实施例中,能量收集装置302可以包括例如充电电池(图3中未示出)这样的电池,该电池设置在基座331内和/或基座331上。电池可以耦联到整流器电路336和/或柄333,并且能够存储由柄333和/或叶335产生的电能。除了电容器337以外还可以使用电池,或者使用电池替代电容器337。
图4是示出形成根据本发明的一个或多个实施例的能量收集装置(例如,结合图2描述的能量收集装置201和/或结合图3描述的能量收集装置302)的方法403的流程图。
在步骤442,形成具有一定数目的交替聚四氟乙烯(PTFE)层和乙烯丙烯氟化物或氟化乙丙烯(FEP)层的铁电材料。铁电材料可以与结合图2描述的铁电材料220相似。
在一个或多个实施例中,形成该一定数目的交替PTFE层和FEP层可以包括:形成具有交替PTFE和FEP层的层合物或堆叠(stack)。也就是说,该层合物例如可以包括:第一FEP层、位于第一FEP层上的第一PTFE层、位于第一PTFE层上的第二FEP层、位于第二FEP层上的第二PTFE层等等。本发明的实施例不限于层合物或堆叠中的特定数目的PTFE层或FEP层。
具有例如大约1mm的线间距离或线距的金属丝网可以安置为与该层合物或堆叠相接触。当金属丝网位于层合物或堆叠上时,例如大约20N的力可以施加到层合物或堆叠、并且同时层合物或堆叠的温度升至例如大约280℃。然而,本发明的实施例不限于特定线距、力或温度。例如,能够在加热器炉内对层合物或堆叠进行加热。
在一些实施例中,当层合物或堆叠在升高的温度(例如,280℃)、在大约5到15分钟内,层合物或堆叠的层会退火(例如,熔合在一起)。然而,本发明的实施例不限于进行退火和/或特定退火时间。在这些实施例中,在对层合物或堆叠的层进行退火之后,能够对层合物或堆叠进行冷却,并且能够从层合物或堆叠去除丝网。
根据先前描述的步骤形成铁电材料可以在铁电材料中形成空隙(例如,气隙)。铁电材料中的空隙可以与结合图2描述的空隙226类似,并且可以均匀或不均匀地分布在整个铁电材料中。
在一些实施例中,如果铁电材料中的空隙不均匀分布在整个铁电材料中,则空隙可以进行膨胀从而使得它们变得均匀分布在整个铁电材料中。可以采用多种方法实现在铁电材料中对空隙进行膨胀。例如,通过使用氮气将铁电材料上的压力增加到1.5Mpa、并将铁电材料在室温下安置大约三小时、且然后在大约一个小时内将铁电材料加热至近似180℃,则能够对空隙进行膨胀。该压力然后可以释放到大气,这能够导致空隙的膨胀。
然而,本发明的实施例不限于特定压力、压力气体、室温时间、加热温度或加热时间。例如,可以在高压加压釜内增加铁电材料上的压力。
在步骤444,与铁电材料的表面相邻而形成互相交叉的电极。互相交叉的电极可以与结合图2描述的电极222和224类似。例如,可以与铁电材料的顶部相邻而形成互相交叉的电极。然而,本发明的实施例不限于铁电材料的特定表面。例如,可使用电极蒸发设备来形成互相交叉的电极。
在步骤446,铁电材料被极化。通过对铁电材料施加电场,可以对铁电材料进行极化。在一些实施例中,电场可以与铁电材料的顶部平行。这种平行电场可以导致:铁电材料中的每个空隙具有正电表面和与正电表面相对着的负电表面,其方式与结合图2描述的空隙226类似。然而,本发明的实施例不限于电场的特定定向。
例如,可以使用一种用以产生2.5到4.0MV/m的高DC电压供应器在150到200℃的温度对铁电材料施加电场。然而,本发明的实施例不限于特定电压供应器、温度或场强。
尽管在本文中示出和描述了特定实施例,但是本领域技术人员应该明白,经计算用以实现相同技术的任何布置能够替代所示的特定实施例。本发明旨在覆盖本发明的各个实施例的任何和所有的改动和变化。
应该明白,已经以示意性方式而非以限制性方式进行以上描述。当检查以上描述时,对于本领域技术人员显而易见的是:没有在本文中具体描述以上实施例的组合以及其它实施例。
本发明的各种实施例的范围包括使用以上结构和方法的任何其它应用。因此,应该参照所附权利要求及其等同物的全范围来确定本发明的各种实施例的范围。
在具体实施方式中,为了使本发明简化且更有效率,在附图所示的实例实施例中,各种特征集合在一起。本发明的这个方法不应该解释为反映出以下意图:本发明的实施例要求比在每个权利要求中特别引用的特征要多的更多特征。况且,如下面权利要求反映,本发明主题针对少于单个所披露的实施例中的所有特征。因此,下面的权利要求并入具体实施方式中,每个权利要求自身作为独立实施例存在。

Claims (7)

1.一种能量收集装置(302),包括:
基座(331);
与基座相邻的柔性柄(333),其中柔性柄(333)包括:
铁电材料(220),其中铁电材料(220)包括:
聚四氟乙烯(PTFE)泡沫;和
分布在整个铁电材料(220)的聚四氟乙烯泡沫中的多个气隙(226),每个气隙(226)具有正电表面和与正电表面相对着的负电表面,其中每个气隙(226)的正电表面和负电表面仅与铁电材料(220)的聚四氟乙烯泡沫接触;
第一电极(222),与铁电材料(220)的表面相邻;以及
第二电极(224),该第二电极(224)与第一电极(222)所相邻的铁电材料(220)的所述表面相邻;以及
与柔性柄(333)相邻的叶(335)。
2.根据权利要求1的能量收集装置(302),其中,第一和第二电极(222,224)部分地覆盖着与第一和第二电极(222,224)相邻的铁电材料(220)的表面。
3.根据权利要求1的能量收集装置(302),其中,铁电材料(220)被极化。
4.根据权利要求1的能量收集装置(302),其中,第一电极(222)和第二电极(224)耦联到整流器电路(336)。
5.根据权利要求1的能量收集装置(302),其中,铁电材料(220)还包括聚丙烯层。
6.根据权利要求1的能量收集装置(302),其中,装置(302)被构造为响应于施加到柔性柄(333)的横向应力而产生电能。
7.根据权利要求1的能量收集装置(302),其中,第一和第二电极(222,224)互相交叉。
CN201010232334.3A 2010-07-16 2010-07-16 能量收集装置 Expired - Fee Related CN102339953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010232334.3A CN102339953B (zh) 2010-07-16 2010-07-16 能量收集装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010232334.3A CN102339953B (zh) 2010-07-16 2010-07-16 能量收集装置

Publications (2)

Publication Number Publication Date
CN102339953A CN102339953A (zh) 2012-02-01
CN102339953B true CN102339953B (zh) 2017-08-01

Family

ID=45515552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010232334.3A Expired - Fee Related CN102339953B (zh) 2010-07-16 2010-07-16 能量收集装置

Country Status (1)

Country Link
CN (1) CN102339953B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233106A (zh) * 1998-04-20 1999-10-27 株式会社村田制作所 压电元件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO321280B1 (no) * 2004-07-22 2006-04-18 Thin Film Electronics Asa Organisk, elektronisk krets og fremgangsmate til dens fremstilling
JP4651015B2 (ja) * 2005-07-11 2011-03-16 太平洋セメント株式会社 風力発電装置
JP2007028538A (ja) * 2005-07-21 2007-02-01 Tdk Corp 弾性表面波装置
US7732974B1 (en) * 2006-11-15 2010-06-08 Justin Boland Electrostatic power generator cell and method of manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1233106A (zh) * 1998-04-20 1999-10-27 株式会社村田制作所 压电元件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《three-layer ferroelectrets from perforated teflon-PTFE films fused between two homogeneous TEFLON-FEP films》;H.C.Basso, et al.;《2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena》;20071017;453-456 *

Also Published As

Publication number Publication date
CN102339953A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
Ahmed et al. A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity
Jung et al. Flexible piezoelectric polymer-based energy harvesting system for roadway applications
RU2459735C2 (ru) Устройство, система и способ сбора энергии с железнодорожных путей
Bowen et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications
Ahmad et al. Review of vibration‐based electromagnetic–piezoelectric hybrid energy harvesters
McKay et al. Dielectric elastomer generators that stack up
KR101398708B1 (ko) 강유전 특성이 커플링된 정전기 에너지 발전 소자
Kim et al. A review of piezoelectric energy harvesting based on vibration
Kuo et al. Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting
EP2672538A1 (en) Power generating device and power generating module using same
CN101621258B (zh) 基于压电晶体频率转换机构的微型发电装置
TWI463783B (zh) A wireless power supply device and a wireless power supply method
CN108429428B (zh) 电磁摩擦复合式多方向振动能量采集器及其制造方法
CN105978395B (zh) 无基底电极驻极体静电直线发电机和制造该驻极体的方法
KR101727252B1 (ko) 압전 에너지 하베스팅 장치
US8269401B1 (en) Graphene power-mill system
Kumar et al. Piezoelectric energy harvester design and power conditioning
JP2014207391A (ja) 発電素子、発電デバイス、発電ユニット及び発電素子の設置方法
Quintero et al. Design optimization of vibration energy harvesters fabricated by lamination of thinned bulk-PZT on polymeric substrates
CN104011889A (zh) 压电能量采集装置或致动器
CN105915114A (zh) 一种基于压电发电的能量收集装置及控制系统和控制方法
KR101072302B1 (ko) 자가발전 매트
KR101135878B1 (ko) 미세압전진동자와 열전소자를 포함하는 하이브리드 구조의 에너지 하베스팅 시스템 및 이를 제조하는 방법
CN102339953B (zh) 能量收集装置
JP6868613B2 (ja) 発電装置および発電方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170801

Termination date: 20200716