CN102331391B - Method for measuring and calculating aggregation and coarsening degree of multi-phase grain in refractory steel - Google Patents
Method for measuring and calculating aggregation and coarsening degree of multi-phase grain in refractory steel Download PDFInfo
- Publication number
- CN102331391B CN102331391B CN2011101624935A CN201110162493A CN102331391B CN 102331391 B CN102331391 B CN 102331391B CN 2011101624935 A CN2011101624935 A CN 2011101624935A CN 201110162493 A CN201110162493 A CN 201110162493A CN 102331391 B CN102331391 B CN 102331391B
- Authority
- CN
- China
- Prior art keywords
- sample
- area
- precipitated
- photos
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 50
- 239000010959 steel Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004220 aggregation Methods 0.000 title abstract description 9
- 230000002776 aggregation Effects 0.000 title abstract description 9
- 239000000523 sample Substances 0.000 claims abstract description 57
- 239000002245 particle Substances 0.000 claims description 61
- 239000011159 matrix material Substances 0.000 claims description 22
- 238000009826 distribution Methods 0.000 claims description 18
- 238000010586 diagram Methods 0.000 claims description 12
- 238000001556 precipitation Methods 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000005464 sample preparation method Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 abstract 1
- 238000005530 etching Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 abstract 1
- 238000005498 polishing Methods 0.000 abstract 1
- 239000002244 precipitate Substances 0.000 description 10
- 229910001068 laves phase Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
技术领域 technical field
本发明涉及耐热钢的显微组织测定,具体地说,涉及测算耐热钢中各析出相颗粒聚集粗化程度的方法。 The invention relates to the determination of the microstructure of heat-resistant steel, in particular to a method for measuring and calculating the degree of aggregation and coarsening of precipitated phase particles in the heat-resistant steel.
背景技术 Background technique
为了满足超超临界火力发电机组对材料综合性能的要求,新一代耐热钢(如P92, Super304h等)已被广泛运用于该类锅炉的高温部件。研究表明,在高温条件下耐热钢的断裂由穿晶断裂过度为晶间断裂。这种现象在微观上表现为:由于扩散容易在晶界处进行,耐热钢在服役过程中晶界处分布的细小弥散的析出相颗粒会发生聚集、粗化、成链,从而削弱材料晶界处的强韧性能,并最终导致材料的断裂失效;同时扩散的进行使得晶界处容易形成新的析出相,新形成的析出相与聚集、粗化、成链的原始析出相交互作用,从而影响材料晶界处的强韧性能。因此,正确合理的评价耐热钢中析出相颗粒聚集粗化的程度对超超临界火电厂锅炉材料的设计、开发、生产、评估均十分重要。目前,测算耐热钢中多相颗粒粗化程度的方法尚未见报道;只有当钢中存在唯一析出相时,传统的金相法可以对其相颗粒粗化程度进行分析。使用金相法测算需对试样拍摄大量的金相照片,然后利用相关软件对照片中的析出相颗粒着色并计算着色部分不同方向上的尺寸,后取其平均值即为试样中析出相的平均尺寸。使用该方法存在的问题如下:(1)金相显微镜的放大倍数较低,而耐热钢中的主要析出相其尺寸一般介于几十到几百个纳米之间,因此在传统金相显微镜下很难清晰的观察到这些较小的相颗粒,更无法计算其尺寸;(2)当材料中存在多种析出相颗粒时,不同类型的析出相经常聚集在一起,金相照片不能对其进行区分,也无法观察它的分布情况。因此,当钢中存在多种析出相颗粒且聚集粗化时,采用传统的金相法无法测算各相的粗化程度。为了解决以上问题,本方法通过背散射电子图像来区分钢中不同析出相颗粒,根据颗粒簇的尺寸来表征钢中多相颗粒聚集粗化的情况。如何使耐热钢中多相颗粒簇尺寸的定量测算做到准确、简便、省时是本发明的一个关键。 In order to meet the comprehensive performance requirements of ultra-supercritical thermal power generation units, a new generation of heat-resistant steel (such as P92, Super304h, etc.) has been widely used in high-temperature components of this type of boiler. Studies have shown that the fracture of heat-resistant steel transitions from transgranular fracture to intergranular fracture under high temperature conditions. This phenomenon is microscopically manifested as: because the diffusion is easy to proceed at the grain boundary, the fine and dispersed precipitated phase particles distributed at the grain boundary during the service of the heat-resistant steel will aggregate, coarsen, and form chains, thereby weakening the grain boundary of the material. The strength and toughness of the grain boundary, and eventually lead to the fracture failure of the material; at the same time, the diffusion process makes it easy to form new precipitates at the grain boundaries, and the newly formed precipitates interact with the original precipitates that aggregate, coarsen, and form chains. Thus affecting the strength and toughness of the grain boundary of the material. Therefore, it is very important to correctly and reasonably evaluate the aggregation and coarsening degree of precipitated phase particles in heat-resistant steel for the design, development, production and evaluation of boiler materials for ultra-supercritical thermal power plants. At present, there is no report on the method for measuring the coarsening degree of multiphase particles in heat-resistant steel; only when there is a single precipitated phase in the steel, the traditional metallographic method can analyze the coarsening degree of the phase particles. To use the metallographic method to measure and take a large number of metallographic photos of the sample, and then use relevant software to color the precipitated phase particles in the photos and calculate the size of the colored part in different directions, and then take the average value as the average value of the precipitated phase in the sample size. The problems of using this method are as follows: (1) The magnification of the metallographic microscope is low, and the size of the main precipitated phase in heat-resistant steel is generally between tens to hundreds of nanometers, so in the traditional metallographic microscope It is difficult to clearly observe these smaller phase particles, let alone calculate their size; (2) When there are many kinds of precipitated phase particles in the material, different types of precipitated phases often gather together, and metallographic photographs cannot distinguish them. It is impossible to observe its distribution. Therefore, when there are many kinds of precipitated phase particles in the steel and they are aggregated and coarsened, the traditional metallographic method cannot be used to measure the degree of coarsening of each phase. In order to solve the above problems, this method uses backscattered electron images to distinguish different precipitated phase particles in steel, and characterizes the aggregation and coarsening of multiphase particles in steel according to the size of particle clusters. How to make the quantitative calculation of the size of the multiphase particle clusters in the heat-resistant steel accurate, convenient and time-saving is a key of the present invention.
发明内容 Contents of the invention
本发明的目的在于提供一种耐热钢中各析出相颗粒相聚集粗化程度的测算方法,该方法测算结果准确,操作简便、省时。 The object of the present invention is to provide a method for measuring and calculating the aggregation and coarsening degree of particles of precipitated phases in heat-resistant steel. The method has accurate calculation results, simple operation and time-saving.
本发明的目的是这样实现的:首先按常规金相制样方法将被测试样观察面磨光、抛光和浸蚀;然后在电子探针(EPMA)或扫面电镜(SEM)下选择背散射电子成像模式,在2000~5000倍的放大倍率下拍摄试样中析出相的背散射电子照片,每个试样所拍摄的照片数不少于5张;将所得背散射电子照片的标尺涂黑从而得到不含标尺的照片;利用图像定量软件Image pro plus统计出上述所得照片之一(设其编号为1)的像素点明暗分布图,将该图划分为基体区域m和析出相区域a, b, ...。其中,像素点明暗分布图中的波峰个数R即为析出相个数,R从右至左依次为1,2,...R,a对应波峰1以右的区域,b对应波峰1、2之间的区域…,最后一个析出相对应波峰R-1及波峰R右侧面的拐点A之间的区域;A点以左为基体区域;然后计算各析出相区域的面积Aa1, Ab1...,单位为像素,其中下标1表示试样所拍摄照片的编号为1;此外,测定标尺的标称长度L在照片中所包含的像素个数N;根据所获得的各析出相区域的面积Aa1, Ab1…及公式 计算钢中不同析出相颗粒簇的当量尺寸La1, Lb1…,单位为像素,然后利用公式换算出析出相颗粒簇的实际尺寸Da1, Db1…,其中,k=a ,b…代表试样中不同的析出相;对其他照片重复上述步骤,从而获得系列照片中不同析出相颗粒簇的实际尺寸Da2, Db2…,Da3, Db3…,下标2、3表示试样所拍摄照片的编号;然后计算Da1 , Da2 , Da3…,Db1 , Db2 , Db3…的平均值,所得结果Da, Db…即为该试样a, b…析出相颗粒簇的平均尺寸。
The purpose of the present invention is achieved in this way: firstly, according to the conventional metallographic sample preparation method, the observation surface of the test sample is polished, polished and etched; Electronic imaging mode, take backscattered electron photos of the precipitated phase in the sample at a magnification of 2000~5000 times, and the number of photos taken for each sample is not less than 5; blacken the scale of the obtained backscattered electron photos In order to obtain a photo without a ruler; use the image quantitative software Image pro plus to count the light and dark distribution map of the pixels of one of the above photos (set its number as 1), and divide the map into the matrix area m and the precipitated phase area a, b,.... Among them, the number of peaks R in the light and shade distribution diagram of pixels is the number of precipitated phases, and R is 1, 2, ... R from right to left, a corresponds to the area to the right of
本发明方法测算结果准确、操作简便、省时。 The method of the invention has the advantages of accurate measuring and calculating results, simple and convenient operation and time-saving.
附图说明 Description of drawings
图1、图2分别为某厂生产的P92钢625℃持久试样背散射照片的像素点明暗分布图; Figure 1 and Figure 2 are the light and shade distribution diagrams of the pixels of the backscattered photos of the P92 steel 625 °C durable sample produced by a certain factory;
图3为该厂生产的P92钢625℃持久试样的显微组织图; Figure 3 is the microstructure diagram of the P92 steel 625°C durable sample produced by the factory;
图4为某厂生产的Super304h钢700℃持久试样的显微组织图; Figure 4 is a microstructure diagram of a 700°C durable sample of Super304h steel produced by a certain factory;
图5为用本方法测算得到的P92钢625℃持久试样中M23C6和Laves相颗粒簇尺寸图;图6为P92钢625℃持久试样中M23C6和Laves相含量变化图; Fig. 5 is the size diagram of M 23 C 6 and Laves phase particle clusters in P92 steel 625°C durable sample calculated by this method; Fig. 6 is the change diagram of M 23 C 6 and Laves phase content in P92 steel 625°C durable sample ;
图7为本方法测算得到的Super304h钢700℃持久试样中M23C6相颗粒簇尺寸图; Figure 7 is the size diagram of M 23 C 6 phase particle clusters in the Super304h steel 700°C durable sample calculated by this method;
图8为Super304h钢700℃持久试样中M23C6相含量变化图。 Fig. 8 is a graph showing the change of M 23 C 6 phase content in the 700°C durable sample of Super304h steel.
具体实施方式 Detailed ways
本发明的方法,包括以下步骤: The method of the present invention comprises the following steps:
①按常规金相制样方法将被测试样观察面磨光、抛光、浸蚀; ① Grind, polish and etch the observation surface of the test sample according to the conventional metallographic sample preparation method;
②在电子探针(EPMA)或扫面电镜(SEM)下选择背散射电子成像模式,在2000~5000倍的放大倍率下拍摄试样中析出相的背散射电子照片,每一试样所拍摄的背散射电子照片不少于5张(理论上,拍摄照片数越多其结果越准确); ② Select the backscattered electron imaging mode under the electron probe (EPMA) or scanning electron microscope (SEM), and take the backscattered electron photos of the precipitated phase in the sample at a magnification of 2000 to 5000 times. No less than 5 backscattered electron photos (theoretically, the more photos you take, the more accurate the results will be);
③将所得背散射电子照片的标尺涂黑从而得到不含标尺的照片; ③ Blacken the scale of the gained backscattered electron photo to obtain a photo without scale;
④利用图像定量软件Image pro plus统计出步骤③中所得照片之一(设其编号为1)的像素点明暗分布图,将该图划分为基体区域m和析出相区域a, b, ...;其中,像素点明暗分布图中的波峰个数R即为析出相个数,R从右至左依次为1,2,...R,a对应波峰1以右的区域,b对应波峰1、2之间的区域…,最后一个析出相对应波峰R-1及波峰R右侧面的拐点A之间的区域;A点以左为基体区域;然后计算各析出相区域的面积Aa1, Ab1...,单位为像素,其中下标1表示试样所拍摄照片的编号为1;此外,测定标尺的标称长度L在照片中所包含的像素个数N;
④Use the image quantitative software Image pro plus to count the light and shade distribution map of the pixels of one of the photos obtained in step ③ (set its number as 1), and divide the map into matrix region m and precipitated phase regions a, b, ... ; Among them, the number of peaks R in the light and dark distribution diagram of pixels is the number of precipitates, and R is 1, 2, ... R from right to left, a corresponds to the area to the right of
⑤通过步骤④中所得背散射电子照片中各析出相区域的面积Aa1, Ab1…及公式计算钢中不同析出相颗粒簇的当量尺寸La1, Lb1…,单位为像素,然后利用公式换算出析出相颗粒簇的实际尺寸Da1, Db1…,其中,k=a ,b…代表试样中不同的析出相; ⑤According to the area A a1 , A b1... and the formula of each precipitated phase region in the backscattered electron photograph obtained in step ④ Calculate the equivalent size L a1 , L b1 ... of particle clusters of different precipitated phases in steel, the unit is pixel, and then use the formula Convert the actual size D a1 , D b1 ... of the precipitated phase particle clusters, where k=a , b ... represent different precipitated phases in the sample;
⑥重复步骤④和⑤,获得系列照片中不同析出相颗粒簇的实际尺寸Da2, Db2…,Da3, Db3…;然后计算Da1 , Da2 , Da3…,Db1 , Db2 , Db3…的平均值,所得结果Da, Db…即为该试样a, b…析出相颗粒簇的平均尺寸。 ⑥Repeat steps ④ and ⑤ to obtain the actual size D a2 , D b2 ..., D a3 , D b3 ... of different precipitated phase particle clusters in the series of photos; then calculate D a1 , D a2 , D a3 ..., D b1 , D b2 , D b3 ..., the obtained results D a , D b ... are the average size of the precipitated phase particle clusters of the sample a, b....
本发明的技术过程及其特点: Technical process of the present invention and its characteristics:
①制备试样 ①Preparation of samples
本发明按常规金相法制样方式对被测试样进行磨光、抛光及浸蚀。 In the present invention, the test sample is polished, polished and etched according to the conventional metallographic sample preparation method.
②显微组织观测与拍照 ② Microstructure observation and photography
在电子探针(EPMA)或扫描电镜(SEM)的背散射电子成像模式下对试样中的析出相进行观察与拍照。选用拍照的放大倍率为2000~5000,每一试样所拍照片数不少于5张。 The precipitated phase in the sample was observed and photographed under the backscattered electron imaging mode of the electron probe (EPMA) or scanning electron microscope (SEM). The magnification of the selected photo is 2000~5000, and the number of photos taken for each sample is not less than 5.
③照片处理 ③ Photo processing
将所得背散射电子照片的标尺涂黑从而得到不含标尺的照片。 The scale of the resulting backscattered electron photograph was blackened to obtain a scale-free photograph.
④区分试样中不同析出相 ④ Differentiate between different precipitates in the sample
利用图像定量软件Image pro plus统计出步骤③中所得照片之一(设其编号为1)的像素点明暗分布图,将该图划分为基体区域m和析出相区域a, b, ...;其中,像素点明暗分布图中的波峰个数R即为析出相个数,R从右至左依次为1,2,...R,a对应波峰1以右的区域,b对应波峰1、2之间的区域…,最后一个析出相对应波峰R-1及波峰R右侧面的拐点A之间的区域;A点以左为基体区域;然后计算各析出相区域的面积Aa1, Ab1...,单位为像素,其中下标1表示试样所拍摄照片的编号为1;此外,测定标尺的标称长度L在照片中所包含的像素个数N。按本发明的方法容易实现对耐热钢中不同类型的析出相进行区分并测算其颗粒簇的尺寸,从而客观反映钢中各析出相颗粒聚集粗化程度的真实性,这是本发明的核心所在。
Use the image quantitative software Image pro plus to count the light and shade distribution map of the pixels of one of the photos obtained in step ③ (set its number as 1), and divide the map into matrix region m and precipitated phase regions a, b, ...; Among them, the number of peaks R in the light and shade distribution diagram of pixels is the number of precipitated phases, and R is 1, 2, ... R from right to left, a corresponds to the area to the right of
本发明提出,利用图像定量软件Image pro plus统计出背散射电子照片的像素点明暗分布图,从而区分耐热钢中不同类型的析出相。具体区分方法如下: The invention proposes to use the image quantification software Image pro plus to count the light and shade distribution map of the pixel points of the backscattered electron photo, so as to distinguish different types of precipitated phases in the heat-resistant steel. The specific distinction method is as follows:
由于钢中不同析出相中所富集的元素不同,因此各析出相颗粒在背散射电子照片中的明暗程度有所区别:析出相中所富集的元素相对原子质量较大时,其在背散射电子照片中所呈现出来的亮度越大;反之则越小。此外,和析出相相比,基体所含重合金元素相对比例最低,因此亮度最暗。 Because the elements enriched in different precipitates in steel are different, the lightness and darkness of the particles of each precipitate in the backscattered electron photographs are different: when the relative atomic mass of the elements enriched in the precipitate is large, its The larger the brightness shown in the scattered electron photo; the smaller it is vice versa. In addition, compared with the precipitated phase, the relative proportion of heavy alloy elements contained in the matrix is the lowest, so the brightness is the darkest.
如图1、2所示,在试样背散射照片的像素点明暗分布图中,不同析出相对应图中的不同区域,其分界点为基体区域的波峰1右侧面的拐点A及析出相的波峰2。钢中除基体m外还存在a,b两析出相,a相区域为a相析出峰1右侧的部分;b相区域为波峰1与A点之间的部分;基体m为A点以左部分。
As shown in Figures 1 and 2, in the light and shade distribution diagram of the pixel points in the backscattered photos of the sample, different precipitations correspond to different regions in the diagram, and the boundary point is the inflection point A on the right side of
同理,当钢中存在更多析出相时,可根据不同相析出相的波峰和A点的位置判断各析出相在试样背散射照片的像素点明暗分布图中所在的位置。 Similarly, when there are more precipitated phases in the steel, the position of each precipitated phase in the light and shade distribution map of the pixel point of the backscattered photo of the sample can be judged according to the peaks of different phases of precipitated phases and the position of point A.
⑤析出相颗粒簇尺寸的计算 ⑤Calculation of particle cluster size of precipitated phase
通过步骤④中所得背散射电子照片中各析出相区域的面积Aa1, Ab1…及公式 Through the area A a1 , A b1... and the formula of each precipitated phase region in the backscattered electron photograph obtained in step ④
计算钢中不同析出相颗粒簇的当量尺寸La1, Lb1…,单位为像素,然后利用公式 Calculate the equivalent size L a1 , L b1 ... of particle clusters of different precipitated phases in steel, the unit is pixel, and then use the formula
换算出析出相颗粒簇的实际尺寸Da1, Db1…,其中,k=a ,b…代表试样中不同的析出相。 The actual sizes D a1 , D b1 ... of the precipitated phase particle clusters are converted, where k=a , b ... represent different precipitated phases in the sample.
⑥计算析出相颗粒簇尺寸的平均值 ⑥ Calculation of the average size of precipitated phase particle clusters
重复步骤④和⑤,获得系列照片中不同析出相颗粒簇的实际尺寸Da2, Db2…,Da3, Db3…;然后分别计算Da1 , Da2 , Da3…,Db1 , Db2 , Db3…的平均值,所得结果Da, Db…即为该试样a, b…析出相颗粒簇的平均尺寸。 Repeat steps ④ and ⑤ to obtain the actual size D a2 , D b2 ..., D a3 , D b3 ... of different precipitated phase particle clusters in the series of photos; then calculate D a1 , D a2 , D a3 ..., D b1 , D b2 respectively , D b3 ..., the obtained results D a , D b ... are the average size of the precipitated phase particle clusters of the sample a, b....
实例:Example:
实例①:以超超临界锅炉用P92钢的625℃持久试样为例。 Example ①: Take the 625°C durable sample of P92 steel for ultra-supercritical boiler as an example.
图3为P92钢的625℃持久试样的一张背散射电子照片。如图所示,试样的显微组织为板条马氏体基体和原奥氏体晶界上分布的M23C6和Laves相颗粒。其中,Laves相中因为富含W、Mo等重元素而呈现白亮色,M23C6中富含Cr,相对W、Mo而言质量比较轻,因此呈灰色,基体则最暗。对于本方法:首先,按具体实施步骤①~③获得被测试样的背散射电子照片共5张,后按步骤④用图像定量软件Image pro plus统计出上述步骤所得照片之一(设其编号为1)的像素点明暗分布图并根据分布图中波峰位置将该图分为M23C6 ,Laves和基体m三个区域(分别对应该钢中M23C6 ,Laves两个析出相和基体),进而计算出M23C6 和Laves区域的面积A(M23C6)1, A(Laves)1;同时,测定标尺的标称长度L在照片中所包含的像素个数N;然后将步骤④中所得背散射电子照片中M23C6 和Laves区域的面积A(M23C6)1, A(Laves)1通过公式
Figure 3 is a backscattered electron photo of a 625°C durable sample of P92 steel. As shown in the figure, the microstructure of the sample is lath martensite matrix and M 23 C 6 and Laves phase particles distributed on the prior austenite grain boundary. Among them, the Laves phase is white and bright because it is rich in heavy elements such as W and Mo, and M 23 C 6 is rich in Cr, which is lighter than W and Mo, so it is gray, and the matrix is the darkest. For this method: first, according to the
换算为耐热钢中不同析出相颗粒簇的当量尺寸L(M23C6)1, L(Laves)1(单位为像素,Pix),再利用公式 Converted to the equivalent size L (M23C6)1 , L (Laves)1 (unit is pixel, Pix) of different precipitated phase particle clusters in heat-resistant steel, and then use the formula
(k代表钢中不同的析出相,在此例中k=(M 23 C 6 ) ,(Laves)) ( k represents different precipitated phases in steel, in this case k=(M 23 C 6 ),(Laves) )
计算出析出相颗粒簇的实际尺寸D(M23C6)1, D(Laves)1; Calculate the actual size D (M23C6)1 , D (Laves)1 of the precipitated phase particle cluster;
最后重复步骤④和⑤,获得其它4张照片中不同析出相颗粒簇的实际尺寸D(M23C6)2, D(Laves)2;D(M23C6)3, D(Laves)3;D(M23C6)4, D(Laves)4;D(M23C6)5, D(Laves)5,分别计算D(M23C6)1,D(M23C6)2,D(M23C6)3,D(M23C6)4,D(M23C6)5和D(Laves)1,D(Laves)2, D(Laves)3, D(Laves)4, D(Laves)5的平均值,所得结果D(M23C6), D(Laves)即为该试样M23C6, Laves析出相颗粒簇的尺寸。 Finally, repeat steps ④ and ⑤ to obtain the actual size D (M23C6)2 , D (Laves)2 of different precipitated phase particle clusters in the other 4 photos; D (M23C6)3 , D (Laves)3 ; D (M23C6)4 , D (Laves)4 ; D (M23C6)5 , D (Laves)5 , respectively calculate D (M23C6)1 , D (M23C6)2 , D (M23C6)3 , D (M23C6)4 , D (M23C6)5 And the average value of D (Laves)1 , D (Laves)2 , D (Laves)3 , D (Laves)4 , D (Laves)5 , the result D (M23C6) , D (Laves) is the sample M 23 C 6 , the particle cluster size of Laves precipitated phase.
本方法测算结果如表1所示,结果表明本方法的测算结果(图5所示)与该样品M23C6和Laves相含量变化结果(图6所示)有良好的一致性。 The calculation results of this method are shown in Table 1, and the results show that the calculation results of this method (shown in Figure 5) are in good agreement with the change results of the M 23 C 6 and Laves phase content of the sample (shown in Figure 6).
表1 本发明方法所测P92钢 625℃持久试样M23C6和Laves相颗粒簇尺寸 Table 1 M 23 C 6 and Laves phase particle cluster size of P92 steel 625°C durable sample measured by the method of the present invention
实例②:以超超临界锅炉用Super304H钢的700℃持久试样为例。 Example ②: Take the 700°C durable sample of Super304H steel for ultra-supercritical boiler as an example.
图4为Super304H钢的700℃持久试样的一张背散射电子照片。如图所示,试样的显微组织主要为奥氏体基体和原奥氏体晶界上分布的M23C6颗粒。相对于基体而言,M23C6富Cr因此在照片中呈灰白色,基体则较暗。对于本方法:首先,按具体实施步骤①~③获得被测试样的背散射电子照片共5张,后按步骤④用图像定量软件Image pro plus统计出上述步骤所得照片之一(设其编号为1)的像素点明暗分布图并根据分布图中波峰位置将该图分为M23C6和基体(Matrix)两个区域(分别对应该钢中M23C6析出相和基体),进而计算出M23C6区域的面积A(M23C6)1;同时,测定标尺的标称长度L在照片中所包含的像素个数N;然后将步骤④中所得背散射电子照片中M23C6区域的面积A(M23C6)1通过公式:
Figure 4 is a backscattered electron photo of a 700°C durable sample of Super304H steel. As shown in the figure, the microstructure of the sample is mainly austenite matrix and M 23 C 6 particles distributed on the grain boundaries of prior austenite. Compared with the matrix, M 23 C 6 is rich in Cr, so it appears off-white in the photo, and the matrix is darker. For this method: first, according to the
换算为耐热钢中不同析出相颗粒簇的当量尺寸L(M23C6)1(单位为像素,Pix),再利用公式 Converted to the equivalent size L (M23C6)1 (unit is pixel, Pix) of different precipitated phase particle clusters in heat-resistant steel, and then use the formula
(k代表钢中不同的析出相,在此例中k=(M 23 C 6 )) ( k represents the different precipitated phases in the steel, in this case k=(M 23 C 6 ) )
计算出析出相颗粒簇的实际尺寸D(M23C6)1; Calculate the actual size D (M23C6)1 of the precipitated phase particle cluster;
最后重复步骤④和⑤,获得其它4张照片中不同析出相颗粒簇的实际尺寸D(M23C6)2;D(M23C6)3;D(M23C6)4;D(M23C6)5,然后计算D(M23C6)1,D(M23C6)2,D(M23C6)3,D(M23C6)4,D(M23C6)5的平均值,所得结果D(M23C6)即为该试样M23C6析出相颗粒簇的尺寸。 Repeat steps ④ and ⑤ at last to obtain the actual size D (M23C6) of different precipitated phase particle clusters in other 4 photos; D (M23C6) 3 ; D (M23C6) 4 ; D (M23C6) 5 , then calculate D (M23C6 )1 , D (M23C6)2 , D (M23C6)3 , D (M23C6)4 , the average value of D (M23C6 )5 , the obtained result D (M23C6) is the M 23 C 6 precipitated phase particle cluster of the sample size.
本方法测算结果如表2所示,结果表明本方法的测算结果(图7所示)与该样品M23C6相含量变化结果(图8所示) 有良好的一致性。 The calculation results of this method are shown in Table 2, and the results show that the calculation results of this method (shown in Figure 7) are in good agreement with the change results of the M 23 C 6 phase content of this sample (shown in Figure 8).
表2 本发明方法所测Super304h 625℃持久试样M23C6相颗粒簇尺寸 Table 2 Size of particle clusters of phase M 23 C 6 of Super304h 625°C durable sample measured by the method of the present invention
本发明具有以下优点和积极效果: The present invention has the following advantages and positive effects:
①针对目前没有测定耐热钢中多相颗粒聚集粗化程度方法这一现状,提出了用颗粒簇尺寸表征多相颗粒聚集粗化程度; ① In view of the current situation that there is no method for measuring the coarsening degree of multiphase particle aggregation in heat-resistant steel, it is proposed to use the particle cluster size to characterize the coarsening degree of multiphase particle aggregation;
②当钢中只存在单相颗粒时,与常规金相法相比,可以测出在金相显微镜下无法测出的尺寸介于几十到几百个纳米范围的相颗粒及颗粒簇尺寸; ② When there are only single-phase particles in the steel, compared with conventional metallographic methods, it is possible to measure the size of phase particles and particle clusters that cannot be measured under a metallographic microscope in the range of tens to hundreds of nanometers;
③该方法测算过程简单、快速、结果准确、可靠; ③ The calculation process of this method is simple, fast, and the result is accurate and reliable;
④该方法除了可用于各类耐热钢外,还可用于其它钢种及合金的析出相颗粒及颗粒簇的尺寸测算,具有宽广的应用前景。 ④This method can be used not only for various heat-resistant steels, but also for the size calculation of precipitated phase particles and particle clusters of other steel types and alloys, and has broad application prospects. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101624935A CN102331391B (en) | 2011-06-16 | 2011-06-16 | Method for measuring and calculating aggregation and coarsening degree of multi-phase grain in refractory steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011101624935A CN102331391B (en) | 2011-06-16 | 2011-06-16 | Method for measuring and calculating aggregation and coarsening degree of multi-phase grain in refractory steel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102331391A CN102331391A (en) | 2012-01-25 |
CN102331391B true CN102331391B (en) | 2012-11-14 |
Family
ID=45483244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011101624935A Active CN102331391B (en) | 2011-06-16 | 2011-06-16 | Method for measuring and calculating aggregation and coarsening degree of multi-phase grain in refractory steel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102331391B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102866172A (en) * | 2012-08-31 | 2013-01-09 | 广东电网公司电力科学研究院 | Measuring method of Laves phase content of T/P 92 steel |
CN103207179B (en) * | 2013-03-12 | 2016-04-20 | 宁波汉博贵金属合金有限公司 | A kind of evaluation method of silver based contact material metallographic structure |
CN103674664A (en) * | 2013-10-21 | 2014-03-26 | 广东电网公司电力科学研究院 | Quantitative Metallographic Analysis Method of M23C6 Phase in Super304H Steel |
CN106370565A (en) * | 2016-09-27 | 2017-02-01 | 山东省科学院新材料研究所 | Quantitative detection method for primary silicon phases in hypereutectic aluminum-silicon alloy |
CN106596611A (en) * | 2016-11-25 | 2017-04-26 | 江苏省沙钢钢铁研究院有限公司 | Analysis method of precipitated phase in high-temperature alloy |
CN111693557A (en) * | 2020-05-26 | 2020-09-22 | 深圳先进电子材料国际创新研究院 | Quantitative characterization method for microstructure of tin-bismuth alloy welding spot |
CN112240892A (en) * | 2020-10-14 | 2021-01-19 | 深圳市金洲精工科技股份有限公司 | Method for measuring uniformity of cobalt phase in superfine hard alloy |
CN116593515B (en) * | 2023-07-13 | 2023-09-29 | 江苏省沙钢钢铁研究院有限公司 | Method for detecting boron element in steel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2048659R (en) * | 1992-07-14 | 1996-06-01 | ||
CN101403678A (en) * | 2008-09-19 | 2009-04-08 | 山西太钢不锈钢股份有限公司 | Metallic phase automatic detection method for stainless steel casting blank foreign matter |
CN101620060A (en) * | 2009-08-13 | 2010-01-06 | 上海交通大学 | Automatic detection method of particle size distribution |
CN101964293A (en) * | 2010-08-23 | 2011-02-02 | 西安航空动力股份有限公司 | Metallographical microstructural image processing method |
-
2011
- 2011-06-16 CN CN2011101624935A patent/CN102331391B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2048659R (en) * | 1992-07-14 | 1996-06-01 | ||
CN101403678A (en) * | 2008-09-19 | 2009-04-08 | 山西太钢不锈钢股份有限公司 | Metallic phase automatic detection method for stainless steel casting blank foreign matter |
CN101620060A (en) * | 2009-08-13 | 2010-01-06 | 上海交通大学 | Automatic detection method of particle size distribution |
CN101964293A (en) * | 2010-08-23 | 2011-02-02 | 西安航空动力股份有限公司 | Metallographical microstructural image processing method |
Non-Patent Citations (6)
Title |
---|
基于数字图像处理技术的金相组织定量分析;王桂棠 等;《金属热处理》;20060228;第31卷(第2期);66-70 * |
彭志方 等.超(超)临界锅炉钢的相稳定性与相定量及持久寿命预测方法的研究.《电力建设》.2009,第30卷(第12期), |
王桂棠 等.基于数字图像处理技术的金相组织定量分析.《金属热处理》.2006,第31卷(第2期), |
超(超)临界锅炉钢的相稳定性与相定量及持久寿命预测方法的研究;彭志方 等;《电力建设》;20091231;第30卷(第12期);1-5 * |
铜铬稀土引线框架材料的定量金相分析;陈坤;《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》;20060415(第4期);14-23 * |
陈坤.铜铬稀土引线框架材料的定量金相分析.《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》.2006,(第4期), |
Also Published As
Publication number | Publication date |
---|---|
CN102331391A (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102331391B (en) | Method for measuring and calculating aggregation and coarsening degree of multi-phase grain in refractory steel | |
Moussa et al. | Statistical analysis of dislocations and dislocation boundaries from EBSD data | |
Zhang et al. | The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants | |
US8837807B2 (en) | Inspection method with color correction | |
CN103698497B (en) | Method for evaluating asphalt mixture aggregate distribution state | |
CN102866172A (en) | Measuring method of Laves phase content of T/P 92 steel | |
CN102621056A (en) | Method for quantitatively measuring rusting ratio of surface of metal material | |
CN109933925A (en) | A method for predicting stamping formability of sheet metal | |
CN103308372B (en) | T91-steel ageing ranking method based on transmission electron microscope | |
CN106370565A (en) | Quantitative detection method for primary silicon phases in hypereutectic aluminum-silicon alloy | |
CN104483654B (en) | A kind of intelligent electric energy meter measures the integrated evaluating method and its system of positive and negative deviation | |
CN108572115B (en) | Test Methods for Testing the Fatigue Strength of Materials | |
US20130253691A1 (en) | Methods for determining a recovery state of a metal alloy | |
CN109872316B (en) | Quantitative characterization method for grinding burn based on HSV color space model | |
CN116380942A (en) | Metal matrix composite uniformity evaluation method | |
CN106370688A (en) | Method for judging optimal gamma' phase size of nickel-base wrought superalloy based on microhardness | |
CN101900698A (en) | A method for measuring Delta ferrite phase content in high Cr heat-resistant steel | |
CN105527461B (en) | A kind of material structure Quantitative Analysis Method based on transmission electron microscope HAADF images | |
CN1284965C (en) | Method for measuring phase content of Ni-base superalloy | |
CN104165696A (en) | Material surface color feature on-line automatic detection method | |
Vasilyev et al. | Estimation of the degree of recrystallization upon annealing of cold-rolled automobile body sheet steels using EBSD analysis and hardness measurements | |
Wang et al. | Microstructure and residual stress gradient evolution mechanism of electronic copper strip for lead frame | |
JP2023044835A (en) | Damage state evaluation device of high-temperature apparatus, damage state evaluation method of high-temperature apparatus, and learning model creation method | |
TWI671523B (en) | Sludge mixing uniformity test method | |
CN111833972A (en) | Method and device for optimizing composition of aluminum alloy for wire based on performance simulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |