CN102323248A - 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 - Google Patents
碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 Download PDFInfo
- Publication number
- CN102323248A CN102323248A CN201110231296A CN201110231296A CN102323248A CN 102323248 A CN102323248 A CN 102323248A CN 201110231296 A CN201110231296 A CN 201110231296A CN 201110231296 A CN201110231296 A CN 201110231296A CN 102323248 A CN102323248 A CN 102323248A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- active substrate
- silicon
- rhodamine
- raman scattering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 41
- 239000010703 silicon Substances 0.000 title claims abstract description 41
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 32
- 230000000694 effects Effects 0.000 title claims abstract description 22
- 239000000758 substrate Substances 0.000 title claims abstract description 19
- 239000002041 carbon nanotube Substances 0.000 title claims abstract 13
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract 13
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 claims abstract description 25
- 238000001069 Raman spectroscopy Methods 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 8
- 238000001237 Raman spectrum Methods 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052802 copper Inorganic materials 0.000 abstract description 12
- 239000010949 copper Substances 0.000 abstract description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052737 gold Inorganic materials 0.000 abstract description 12
- 239000010931 gold Substances 0.000 abstract description 12
- 229910052709 silver Inorganic materials 0.000 abstract description 8
- 239000004332 silver Substances 0.000 abstract description 8
- 239000002086 nanomaterial Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 4
- 238000002360 preparation method Methods 0.000 abstract description 4
- 150000002739 metals Chemical class 0.000 abstract description 2
- 231100000252 nontoxic Toxicity 0.000 abstract description 2
- 230000003000 nontoxic effect Effects 0.000 abstract description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 28
- 229910052799 carbon Inorganic materials 0.000 description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 208000032005 Spinocerebellar ataxia with axonal neuropathy type 2 Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 208000033361 autosomal recessive with axonal neuropathy 2 spinocerebellar ataxia Diseases 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004557 single molecule detection Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,采用碳纳米管/硅巢状阵列活性基底用于检测溶液中若丹明6G分子时,可检测出溶液中浓度为10-6mol/L的若丹明6G分子。碳纳米管/硅巢状阵列活性基底的表面增强拉曼散射效应能力可以和金、铜纳米材料的相媲美,甚至优于金和铜纳米材料的表面增强拉曼散射能力。碳纳米管/硅巢状阵列活性基底不使用金、银、铜币种金属,造价低。碳纳米管/硅巢状阵列活性基底无毒无害,并且性能稳定,可以在空气中自然存放数年而不发生性能的改变。另外,还具有制备工艺简单、重复率高、应用范围广等优点。
Description
技术领域
本发明涉及具有表面增强拉曼散射效应的活性基底技术领域,具体涉及碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用。
背景技术
拉曼光谱属于分子振动光谱,可以反映分子的特征结构。但由于拉曼散射效应的光强仅约为入射光强的10-10,所以在对表面吸附物质进行拉曼光谱研究时都要利用某种增强效应。表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)是一种具有表面选择性的增强效应,可以将吸附在材料表面的分子的拉曼信号放大106到1014倍,为人们深入表征各种表面或界面(如各种固-液、固-气、固-固界面)的结构和过程提供了分子水平上的信息,是研究表面物理、化学结构和性质的有力工具。由于分子所吸附的基底表面形态是SERS效应能否发生和SERS信号强弱的重要影响因素,所以分子的承载基底非常关键,因而SERS活性基底的研究一直是该领域的研究热点之一。其中,金、银、铜三类贵金属纳米体系一直是研究最热、最多、增强最为明显的SERS活性基底。少数碱金属如锂、钠也具有较强的SERS效应。部分过渡金属如铁、钴及镍也发现有SERS效应。但上述金属纳米材料除金、银、铜外在空气中极不稳定,因此将SERS研究拓宽到金、银、铜以外的材料体系的研究长期没有取得实际意义的进展。如果能采用简单方法制备出金、银、铜以外的具有长期稳定性的拉曼活性基底将对拓宽SERS的应用领域具有重要的意义,同时也可能成为尚未获得突破的SERS理论研究获得实质性进展的契机。
碳纳米管自身具有典型的拉曼特征峰,可以准确标识分子结构特征,因此拉曼谱是研究碳纳米管的有力手段之一。而利用贵金属的局域电场效应使具有拉曼活性分子的信号得以大幅度提高的SERS,更是成为研究碳纳米管内部结构的常用方法。另一方面,相比平面型衬底,碳纳米管的纳米弯曲表面可以形成更大的比表面积,有利于附着更多对拉曼信号有贡献、可能是“热点”的金属纳米颗粒分子,这些金属纳米颗粒分子对探针分子的吸附可以增强SERS的灵敏度。因此近年来以碳纳米管为衬底,其上沉积一层金、银、铜等纳米材料作为拉曼活性基底的研究也屡见报道,但是这种活性基底仍然需要金、银、铜几种币种金属,价格昂贵,同时也限制了SERS的应用领域。
发明内容
本发明的目的在于提供一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用。
为了实现以上目的,本发明所采用的技术方案是:一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用。所述碳纳米管/硅巢状阵列活性基底在用于检测溶液中若丹明6G分子时,可检测出溶液中浓度为10-6mol/L的若丹明6G分子。
采用所述的碳纳米管/硅巢状阵列活性基底检测溶液中若丹明6G分子的检测方法为:将碳纳米管/硅巢状阵列活性基底置入10-6 mol/L的若丹明6G水溶液中浸泡30分钟,取出,在空气条件下晾干,之后做拉曼光谱测试。
其中,拉曼光谱测试的测试条件为:采用波长为532 nm的绿光作光源,曝光时间20秒,扫描2次,波数扫描范围为400cm-1~1800cm-1。
碳纳米管/硅巢状阵列的制备方法:将电阻率小于3.0Ω?cm的P型单晶硅片置入高压釜,向高压釜内填充由浓度为13.00mol/l的氢氟酸和浓度为0.04 mol/l的硝酸铁水溶液组成的腐蚀液,高压釜内的溶液体积填充度为85%,在140℃下腐蚀40分钟,制备出衬底材料硅纳米孔柱阵列(Si-NPA);然后将Si-NPA置于卧式管式炉内,氮气保护下升温至800℃,然后载气(载气为氢气和氮气的混合气体,二者的体积比为:氢气:氮气=3:7)将融有0.015 g/ml二茂铁催化剂的碳源二甲苯按0.5ml/min带至卧式管式炉内进行化学气相沉积生长碳纳米管,生长时间为15分钟,之后氮气保护下将卧式管式炉降至室温,制得碳纳米管/硅巢状阵列。
碳纳米管/硅巢状阵列自身具有准周期性结构,因此有效地增大了比表面积,有利于吸附更多对拉曼信号有贡献、可能是“热点”的若丹明6G分子进而增强了SERS的灵敏度。
采用碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底分别检测了浓度为10-3mol/L~10-6mol/L的若丹明6G分子,结果表明,碳纳米管/硅巢状阵列作为活性基底显示出了极强的拉曼增强效应,浓度为10-6mol/L的若丹明6G分子的拉曼特征峰清晰可见。碳纳米管/硅巢状阵列活性基底的表面增强拉曼散射效应能力可以和金、铜纳米材料的相媲美,甚至优于金和铜纳米材料的表面增强拉曼散射能力。
碳纳米管/硅巢状阵列活性基底不使用金、银、铜币种金属,造价低。碳纳米管/硅巢状阵列活性基底无毒无害,并且性能稳定,可以在空气中自然存放数年而不发生性能的改变。另外,还具有制备工艺简单、重复率高、应用范围广等优点。碳纳米管/硅巢状阵列活性基底在未来开发单分子检测、化学及工业、生物分子、考古等技术领域均具有潜在的应用前景。
附图说明
图1为本发明实施例1中制得的碳纳米管/硅巢状阵列的扫描电镜照片;
图2为以本发明实施例1中制得的碳纳米管/硅巢状阵列作为拉曼活性基底,对不同浓度(10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L)的若丹明6G水溶液中的若丹明6G分子进行检测得到的拉曼光谱图。
具体实施方式
实施例1
制备碳纳米管/硅巢状阵列:将电阻率小于3.0Ω?cm的P型单晶硅片置入高压釜,向高压釜内填充由浓度为13.00mol/l的氢氟酸和浓度为0.04 mol/l的硝酸铁水溶液组成的腐蚀液,高压釜内的溶液体积填充度为85%,在140℃下腐蚀40分钟,制备出衬底材料硅纳米孔柱阵列(Si-NPA);然后将Si-NPA置于卧式管式炉内,氮气保护下升温至800℃,然后载气(载气为氢气和氮气的混合气体,二者的体积比为:氢气:氮气=3:7)将融有0.015 g/ml二茂铁催化剂的碳源二甲苯按0.5ml/min带至卧式管式炉内进行化学气相沉积生长碳纳米管,生长时间为15分钟,之后氮气保护下将卧式管式炉降至室温,制得碳纳米管/硅巢状阵列,其扫描电镜照片见图1所示。
以制得的碳纳米管/硅巢状阵列为表面增强拉曼散射效应活性基底,分别对浓度为10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L的若丹明6G水溶液中的若丹明6G分子进行检测。检测之前预处理碳纳米管/硅巢状阵列,首先将碳纳米管/硅巢状阵列放置在纯酒精中浸润2分钟,之后去离子水冲洗3遍,然后将碳纳米管/硅巢状阵列放到0.1mol/L的氯化钾水溶液中浸泡半个小时,以除去可能的离子沾污,然后去离子水冲洗4次,预处理完毕。将预处理过的碳纳米管/硅巢状阵列分别放置到浓度为10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L的若丹明6G水溶液中,浸泡30分钟,然后从溶液中取出放到滤纸上,空气中自然晾干,随后做拉曼光谱测试,测试条件:采用波长为532nm的绿光作光源,曝光时间20秒,扫描2次,波数扫描范围为400cm-1~1800cm-1。得到的各浓度若丹明6G水溶液中若丹明6G分子的拉曼光谱图见图2所示,图2中a谱线对应浓度为10-3mol/L的若丹明6G水溶液,图2中b谱线对应浓度为10-4mol/L的若丹明6G水溶液,图2中c谱线对应浓度为10-5mol/L的若丹明6G水溶液,图2中d谱线对应浓度为10-6mol/L的若丹明6G水溶液。从图2中可以看出,以碳纳米管/硅巢状阵列为活性基底进行检测,浓度为10-6mol/L的若丹明6G水溶液中若丹明6G分子的拉曼特征峰清晰可见。
Claims (4)
1.一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用。
2.根据权利要求1所述的碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,其特征在于,所述的碳纳米管/硅巢状阵列活性基底在用于检测溶液中若丹明6G分子时,可检测出溶液中浓度为10-6 mol/L的若丹明6G分子。
3.根据权利要求2所述的碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,其特征在于,采用所述的碳纳米管/硅巢状阵列活性基底检测溶液中若丹明6G分子的检测方法为:将碳纳米管/硅巢状阵列活性基底置入10-6 mol/L的若丹明6G水溶液中浸泡30分钟,取出,在空气条件下晾干,之后做拉曼光谱测试。
4.根据权利要求3所述的碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,其特征在于,拉曼光谱的测试条件为:采用波长为532 nm的绿光作光源,曝光时间20秒,扫描2次,波数扫描范围为400 cm-1~1800 cm-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110231296.4A CN102323248B (zh) | 2011-08-12 | 2011-08-12 | 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110231296.4A CN102323248B (zh) | 2011-08-12 | 2011-08-12 | 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102323248A true CN102323248A (zh) | 2012-01-18 |
CN102323248B CN102323248B (zh) | 2014-04-16 |
Family
ID=45451033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110231296.4A Expired - Fee Related CN102323248B (zh) | 2011-08-12 | 2011-08-12 | 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102323248B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104777152A (zh) * | 2015-04-24 | 2015-07-15 | 天津理工大学 | 基于表面增强拉曼散射效应的碳纳米管太赫兹传感模型 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221130A (zh) * | 2008-01-28 | 2008-07-16 | 郑州大学 | 基于硅纳米孔柱阵列的表面增强拉曼散射活性基底的制备方法 |
CN101865847A (zh) * | 2010-06-18 | 2010-10-20 | 清华大学 | 拉曼散射基底的制备方法 |
-
2011
- 2011-08-12 CN CN201110231296.4A patent/CN102323248B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101221130A (zh) * | 2008-01-28 | 2008-07-16 | 郑州大学 | 基于硅纳米孔柱阵列的表面增强拉曼散射活性基底的制备方法 |
CN101865847A (zh) * | 2010-06-18 | 2010-10-20 | 清华大学 | 拉曼散射基底的制备方法 |
Non-Patent Citations (3)
Title |
---|
WEI FEN JIANG 等: "Improved surface-enhanced Raman scattering of patterned gold nanoparticles deposited on silicon nanoporous pillar arrays", 《APPLIED SURFACE SCIENCE》 * |
姜卫粉: "一种碳纳米管/硅巢状阵列的制备与场发射、湿敏性能研究", 《中国博士学位论文全文数据库》 * |
王永强 等: "银/硅纳米孔柱阵列活性基底的SERS效应研究", 《光散射学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104777152A (zh) * | 2015-04-24 | 2015-07-15 | 天津理工大学 | 基于表面增强拉曼散射效应的碳纳米管太赫兹传感模型 |
CN104777152B (zh) * | 2015-04-24 | 2017-11-03 | 天津理工大学 | 基于表面增强拉曼散射效应的碳纳米管太赫兹传感模型 |
Also Published As
Publication number | Publication date |
---|---|
CN102323248B (zh) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots | |
Cui et al. | Synthesis, characterization, and electrochemiluminescence of luminol‐reduced gold nanoparticles and their application in a hydrogen peroxide sensor | |
Tian et al. | Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater | |
He et al. | Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO–Ag nanorod hybrids | |
CN108226137B (zh) | 一种柔性、透明的二硫化钼@银颗粒/三维金字塔结构pmma sers基底的制备方法及应用 | |
Bastakoti et al. | Polymeric micelle assembly for the direct synthesis of platinum-decorated mesoporous TiO2 toward highly selective sensing of acetaldehyde | |
Ye et al. | Ultrathin polydopamine film coated gold nanoparticles: a sensitive, uniform, and stable SHINERS substrate for detection of benzotriazole | |
CN103837521A (zh) | 一种氯化钠辅助银纳米颗粒自组装滤纸表面增强拉曼光谱基底的制备方法 | |
CN104445985A (zh) | 一种用于火炸药现场快速检测的表面增强拉曼基底的制备方法 | |
Sivakumar et al. | Sol‐Gel Synthesis of Carbon‐Coated LaCoO3 for Effective Electrocatalytic Oxidation of Salicylic Acid | |
Cui et al. | A difunctional electrochemiluminescence sensor based on Ru-MOFs and strand-displacement-amplification reaction for ultrasensitive detection of Hg2+ and Ag+ | |
Freddi et al. | Chemical defect‐driven response on graphene‐based chemiresistors for sub‐ppm ammonia detection | |
CN107727717A (zh) | 多氯联苯光电化学适配体传感器的制备方法及应用 | |
Tu et al. | In situ preparation of Ag nanoparticles on silicon wafer as highly sensitive SERS substrate | |
CN108519412A (zh) | 基于类石墨烯碳三氮四纳米片的电致化学发光传感器构建方法及其Hg2+检测应用 | |
Jiang et al. | Wavelength-regulated switchable photoelectrochemical system for concurrent detection of dual antibiotics | |
Li et al. | Highly sensitive and selective SERS substrates with 3D hot spot buildings for rapid mercury ion detection | |
Hardy et al. | Detection of low-concentration contaminants in solution by exploiting chemical derivatization in surface-enhanced Raman spectroscopy | |
Yabaş et al. | Novel reduced graphene oxide/zinc phthalocyanine and reduced graphene oxide/cobalt phthalocyanine hybrids as high sensitivity room temperature volatile organic compound gas sensors | |
CN102980879B (zh) | 一种表面增强拉曼散射基底的制备方法 | |
Thenrajan et al. | Guar gum supported ZIF-8 as an effective catalyst for electrochemical sensing of gallic acid in liquid food samples | |
CN106770162A (zh) | 一种检测甜味剂的表面增强拉曼散射的基底及其制备方法和应用 | |
CN102323248A (zh) | 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 | |
Li et al. | General strategy to prepare TiO2-core gold-shell nanoparticles as SERS-tags | |
CN109115746B (zh) | 一种表面增强拉曼活性基底及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140416 Termination date: 20150812 |
|
EXPY | Termination of patent right or utility model |