CN102323248B - 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 - Google Patents

碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 Download PDF

Info

Publication number
CN102323248B
CN102323248B CN201110231296.4A CN201110231296A CN102323248B CN 102323248 B CN102323248 B CN 102323248B CN 201110231296 A CN201110231296 A CN 201110231296A CN 102323248 B CN102323248 B CN 102323248B
Authority
CN
China
Prior art keywords
silicon
active substrate
carbon nanometer
nanometer tube
honeycomb array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110231296.4A
Other languages
English (en)
Other versions
CN102323248A (zh
Inventor
姜卫粉
李幸福
单雯雯
王玉生
宋晓燕
李艺星
许磊
张静
罗世钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Water Resources and Electric Power
Original Assignee
North China University of Water Resources and Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Water Resources and Electric Power filed Critical North China University of Water Resources and Electric Power
Priority to CN201110231296.4A priority Critical patent/CN102323248B/zh
Publication of CN102323248A publication Critical patent/CN102323248A/zh
Application granted granted Critical
Publication of CN102323248B publication Critical patent/CN102323248B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,采用碳纳米管/硅巢状阵列活性基底用于检测溶液中若丹明6G分子时,可检测出溶液中浓度为10-6mol/L的若丹明6G分子。碳纳米管/硅巢状阵列活性基底的表面增强拉曼散射效应能力可以和金、铜纳米材料的相媲美,甚至优于金和铜纳米材料的表面增强拉曼散射能力。碳纳米管/硅巢状阵列活性基底不使用金、银、铜币种金属,造价低。碳纳米管/硅巢状阵列活性基底无毒无害,并且性能稳定,可以在空气中自然存放数年而不发生性能的改变。另外,还具有制备工艺简单、重复率高、应用范围广等优点。

Description

碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用
技术领域
本发明涉及具有表面增强拉曼散射效应的活性基底技术领域,具体涉及碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用。
背景技术
拉曼光谱属于分子振动光谱,可以反映分子的特征结构。但由于拉曼散射效应的光强仅约为入射光强的10-10,所以在对表面吸附物质进行拉曼光谱研究时都要利用某种增强效应。表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)是一种具有表面选择性的增强效应,可以将吸附在材料表面的分子的拉曼信号放大106到1014倍,为人们深入表征各种表面或界面(如各种固-液、固-气、固-固界面)的结构和过程提供了分子水平上的信息,是研究表面物理、化学结构和性质的有力工具。由于分子所吸附的基底表面形态是SERS效应能否发生和SERS信号强弱的重要影响因素,所以分子的承载基底非常关键,因而SERS活性基底的研究一直是该领域的研究热点之一。其中,金、银、铜三类贵金属纳米体系一直是研究最热、最多、增强最为明显的SERS活性基底。少数碱金属如锂、钠也具有较强的SERS效应。部分过渡金属如铁、钴及镍也发现有SERS效应。但上述金属纳米材料除金、银、铜外在空气中极不稳定,因此将SERS研究拓宽到金、银、铜以外的材料体系的研究长期没有取得实际意义的进展。如果能采用简单方法制备出金、银、铜以外的具有长期稳定性的拉曼活性基底将对拓宽SERS的应用领域具有重要的意义,同时也可能成为尚未获得突破的SERS理论研究获得实质性进展的契机。
碳纳米管自身具有典型的拉曼特征峰,可以准确标识分子结构特征,因此拉曼谱是研究碳纳米管的有力手段之一。而利用贵金属的局域电场效应使具有拉曼活性分子的信号得以大幅度提高的SERS,更是成为研究碳纳米管内部结构的常用方法。另一方面,相比平面型衬底,碳纳米管的纳米弯曲表面可以形成更大的比表面积,有利于附着更多对拉曼信号有贡献、可能是“热点”的金属纳米颗粒分子,这些金属纳米颗粒分子对探针分子的吸附可以增强SERS的灵敏度。因此近年来以碳纳米管为衬底,其上沉积一层金、银、铜等纳米材料作为拉曼活性基底的研究也屡见报道,但是这种活性基底仍然需要金、银、铜几种币种金属,价格昂贵,同时也限制了SERS的应用领域。
发明内容
本发明的目的在于提供一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用。
为了实现以上目的,本发明所采用的技术方案是:一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用。所述碳纳米管/硅巢状阵列活性基底在用于检测溶液中若丹明6G分子时,可检测出溶液中浓度为10-6mol/L的若丹明6G分子。
采用所述的碳纳米管/硅巢状阵列活性基底检测溶液中若丹明6G分子的检测方法为:将碳纳米管/硅巢状阵列活性基底置入10-6 mol/L的若丹明6G水溶液中浸泡30分钟,取出,在空气条件下晾干,之后做拉曼光谱测试。
其中,拉曼光谱测试的测试条件为:采用波长为532 nm的绿光作光源,曝光时间20秒,扫描2次,波数扫描范围为400cm-1~1800cm-1
碳纳米管/硅巢状阵列的制备方法:将电阻率小于3.0Ω·cm的P型单晶硅片置入高压釜,向高压釜内填充由浓度为13.00mol/l的氢氟酸和浓度为0.04 mol/l的硝酸铁水溶液组成的腐蚀液,高压釜内的溶液体积填充度为85%,在140℃下腐蚀40分钟,制备出衬底材料硅纳米孔柱阵列(Si-NPA);然后将Si-NPA置于卧式管式炉内,氮气保护下升温至800℃,然后载气(载气为氢气和氮气的混合气体,二者的体积比为:氢气:氮气=3:7)将融有0.015 g/ml二茂铁催化剂的碳源二甲苯按0.5ml/min带至卧式管式炉内进行化学气相沉积生长碳纳米管,生长时间为15分钟,之后氮气保护下将卧式管式炉降至室温,制得碳纳米管/硅巢状阵列。
碳纳米管/硅巢状阵列自身具有准周期性结构,因此有效地增大了比表面积,有利于吸附更多对拉曼信号有贡献、可能是“热点”的若丹明6G分子进而增强了SERS的灵敏度。
采用碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底分别检测了浓度为10-3mol/L~10-6mol/L的若丹明6G分子,结果表明,碳纳米管/硅巢状阵列作为活性基底显示出了极强的拉曼增强效应,浓度为10-6mol/L的若丹明6G分子的拉曼特征峰清晰可见。碳纳米管/硅巢状阵列活性基底的表面增强拉曼散射效应能力可以和金、铜纳米材料的相媲美,甚至优于金和铜纳米材料的表面增强拉曼散射能力。
碳纳米管/硅巢状阵列活性基底不使用金、银、铜币种金属,造价低。碳纳米管/硅巢状阵列活性基底无毒无害,并且性能稳定,可以在空气中自然存放数年而不发生性能的改变。另外,还具有制备工艺简单、重复率高、应用范围广等优点。碳纳米管/硅巢状阵列活性基底在未来开发单分子检测、化学及工业、生物分子、考古等技术领域均具有潜在的应用前景。
附图说明
图1为本发明实施例1中制得的碳纳米管/硅巢状阵列的扫描电镜照片;
图2为以本发明实施例1中制得的碳纳米管/硅巢状阵列作为拉曼活性基底,对不同浓度(10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L)的若丹明6G水溶液中的若丹明6G分子进行检测得到的拉曼光谱图。
具体实施方式
实施例1
制备碳纳米管/硅巢状阵列:将电阻率小于3.0Ω·cm的P型单晶硅片置入高压釜,向高压釜内填充由浓度为13.00mol/l的氢氟酸和浓度为0.04 mol/l的硝酸铁水溶液组成的腐蚀液,高压釜内的溶液体积填充度为85%,在140℃下腐蚀40分钟,制备出衬底材料硅纳米孔柱阵列(Si-NPA);然后将Si-NPA置于卧式管式炉内,氮气保护下升温至800℃,然后载气(载气为氢气和氮气的混合气体,二者的体积比为:氢气:氮气=3:7)将融有0.015 g/ml二茂铁催化剂的碳源二甲苯按0.5ml/min带至卧式管式炉内进行化学气相沉积生长碳纳米管,生长时间为15分钟,之后氮气保护下将卧式管式炉降至室温,制得碳纳米管/硅巢状阵列,其扫描电镜照片见图1所示。
以制得的碳纳米管/硅巢状阵列为表面增强拉曼散射效应活性基底,分别对浓度为10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L的若丹明6G水溶液中的若丹明6G分子进行检测。检测之前预处理碳纳米管/硅巢状阵列,首先将碳纳米管/硅巢状阵列放置在纯酒精中浸润2分钟,之后去离子水冲洗3遍,然后将碳纳米管/硅巢状阵列放到0.1mol/L的氯化钾水溶液中浸泡半个小时,以除去可能的离子沾污,然后去离子水冲洗4次,预处理完毕。将预处理过的碳纳米管/硅巢状阵列分别放置到浓度为10-3mol/L、10-4mol/L、10-5mol/L、10-6mol/L的若丹明6G水溶液中,浸泡30分钟,然后从溶液中取出放到滤纸上,空气中自然晾干,随后做拉曼光谱测试,测试条件:采用波长为532nm的绿光作光源,曝光时间20秒,扫描2次,波数扫描范围为400cm-1~1800cm-1。得到的各浓度若丹明6G水溶液中若丹明6G分子的拉曼光谱图见图2所示,图2中a谱线对应浓度为10-3mol/L的若丹明6G水溶液,图2中b谱线对应浓度为10-4mol/L的若丹明6G水溶液,图2中c谱线对应浓度为10-5mol/L的若丹明6G水溶液,图2中d谱线对应浓度为10-6mol/L的若丹明6G水溶液。从图2中可以看出,以碳纳米管/硅巢状阵列为活性基底进行检测,浓度为10-6mol/L的若丹明6G水溶液中若丹明6G分子的拉曼特征峰清晰可见。

Claims (4)

1.一种碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,其特征在于,所述碳纳米管/硅巢状阵列的制备方法为:将电阻率小于3.0Ω·cm的P型单晶硅片置入高压釜,向高压釜内填充由浓度为13.00mol/l的氢氟酸和浓度为0.04mol/l的硝酸铁水溶液组成的腐蚀液,高压釜内的溶液体积填充度为85%,在140℃下腐蚀40分钟,制备出衬底材料硅纳米孔柱阵列Si-NPA;然后将Si-NPA置于卧式管式炉内,氮气保护下升温至800℃,然后载气将融有0.015g/ml二茂铁催化剂的碳源二甲苯按0.5ml/min带至卧式管式炉内进行化学气相沉积生长碳纳米管,生长时间为15分钟,之后氮气保护下将卧式管式炉降至室温,制得碳纳米管/硅巢状阵列,载气为氢气和氮气的混合气体,二者的体积比为:氢气:氮气=3:7。
2.根据权利要求1所述的碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,其特征在于,所述的碳纳米管/硅巢状阵列活性基底在用于检测溶液中若丹明6G分子时,可检测出溶液中浓度为10-6mol/L的若丹明6G分子。
3.根据权利要求2所述的碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,其特征在于,采用所述的碳纳米管/硅巢状阵列活性基底检测溶液中若丹明6G分子的检测方法为:将碳纳米管/硅巢状阵列活性基底置入10-6mol/L的若丹明6G水溶液中浸泡30分钟,取出,在空气条件下晾干,之后做拉曼光谱测试。
4.根据权利要求3所述的碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用,其特征在于,拉曼光谱的测试条件为:采用波长532nm的绿光作光源,曝光时间20秒,扫描2次,波数扫描范围为400cm-1-1800cm-1
CN201110231296.4A 2011-08-12 2011-08-12 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用 Expired - Fee Related CN102323248B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110231296.4A CN102323248B (zh) 2011-08-12 2011-08-12 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110231296.4A CN102323248B (zh) 2011-08-12 2011-08-12 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用

Publications (2)

Publication Number Publication Date
CN102323248A CN102323248A (zh) 2012-01-18
CN102323248B true CN102323248B (zh) 2014-04-16

Family

ID=45451033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110231296.4A Expired - Fee Related CN102323248B (zh) 2011-08-12 2011-08-12 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用

Country Status (1)

Country Link
CN (1) CN102323248B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777152B (zh) * 2015-04-24 2017-11-03 天津理工大学 基于表面增强拉曼散射效应的碳纳米管太赫兹传感模型

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221130A (zh) * 2008-01-28 2008-07-16 郑州大学 基于硅纳米孔柱阵列的表面增强拉曼散射活性基底的制备方法
CN101865847A (zh) * 2010-06-18 2010-10-20 清华大学 拉曼散射基底的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221130A (zh) * 2008-01-28 2008-07-16 郑州大学 基于硅纳米孔柱阵列的表面增强拉曼散射活性基底的制备方法
CN101865847A (zh) * 2010-06-18 2010-10-20 清华大学 拉曼散射基底的制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Improved surface-enhanced Raman scattering of patterned gold nanoparticles deposited on silicon nanoporous pillar arrays;Wei Fen Jiang 等;《Applied Surface Science》;20110430;第257卷;第8089-8092页 *
Wei Fen Jiang 等.Improved surface-enhanced Raman scattering of patterned gold nanoparticles deposited on silicon nanoporous pillar arrays.《Applied Surface Science》.2011,第257卷第8089-8092页.
一种碳纳米管/硅巢状阵列的制备与场发射、湿敏性能研究;姜卫粉;《中国博士学位论文全文数据库》;20071115(第5期);第33-34页、第42-43页 *
姜卫粉.一种碳纳米管/硅巢状阵列的制备与场发射、湿敏性能研究.《中国博士学位论文全文数据库》.2007,(第5期),第33-34页、第42-43页.
王永强 等.银/硅纳米孔柱阵列活性基底的SERS效应研究.《光散射学报》.2010,第22卷(第3期),第255-259页.
银/硅纳米孔柱阵列活性基底的SERS效应研究;王永强 等;《光散射学报》;20100930;第22卷(第3期);第255-259页 *

Also Published As

Publication number Publication date
CN102323248A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
Zhang et al. Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots
Liu et al. Low power consumption gas sensor created from silicon nanowires/TiO2 core–shell heterojunctions
Chu et al. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy
Liu et al. Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode
Vercelli et al. Nitrogen-doped carbon quantum dots obtained hydrothermally from citric acid and urea: The role of the specific nitrogen centers in their electrochemical and optical responses
Krause et al. Surface area characterization of obliquely deposited metal oxide nanostructured thin films
He et al. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO–Ag nanorod hybrids
Li et al. High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials
Cevik et al. Redox‐mediated poly (2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)/ammonium molybdate hydrogels for highly effective flexible supercapacitors
Bastakoti et al. Polymeric micelle assembly for the direct synthesis of platinum-decorated mesoporous TiO2 toward highly selective sensing of acetaldehyde
Kim et al. Surface-enhanced Raman scattering on aggregates of platinum nanoparticles with definite size
Ding et al. Vertically oriented silica mesochannels as the template for electrodeposition of polyaniline nanostructures and their electrocatalytic and electroanalytical applications
Kim et al. Surface Enhanced Raman Scattering on Non‐SERS Active Substrates and In Situ Electrochemical Study based on a Single Gold Microshell
Lezanska et al. Investigations into the structure of nitrogen-containing CMK-3 and OCM-0.75 carbon replicas and the nature of surface functional groups by spectroscopic and sorption techniques
Yi et al. Three-dimensional flower-like nickel oxide/graphene nanostructures for electrochemical detection of environmental nitrite
CN101544348A (zh) 高透光基体上复合微纳结构阵列、方法及其应用
Kong et al. Spatial control of oxygen vacancy concentration in monoclinic WO3 photoanodes for enhanced solar water splitting
Zhao et al. Dithiocarbamate-coated SERS substrates: sensitivity gain by partial surface passivation
Li et al. The gas sensor utilizing CeO2 nanorods for the low temperature detection of hydrogen
CN102391014B (zh) 具有表面增强拉曼散射效应的活性基底及其制备方法和应用
Cui et al. A difunctional electrochemiluminescence sensor based on Ru-MOFs and strand-displacement-amplification reaction for ultrasensitive detection of Hg2+ and Ag+
CN104406953A (zh) 多孔膜增敏的大面积均匀拉曼检测芯片及其制备方法
Li et al. Driving Oxygen Electrochemistry in Lithium–Oxygen Battery by Local Surface Plasmon Resonance
CN102323248B (zh) 碳纳米管/硅巢状阵列作为具有表面增强拉曼散射效应的活性基底的应用
Doescher et al. Using an oxide nanoarchitecture to make or break a proton wire

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140416

Termination date: 20150812

EXPY Termination of patent right or utility model