CN102316282B - 一种基于光学杜比的图像降噪装置 - Google Patents

一种基于光学杜比的图像降噪装置 Download PDF

Info

Publication number
CN102316282B
CN102316282B CN201110278885.8A CN201110278885A CN102316282B CN 102316282 B CN102316282 B CN 102316282B CN 201110278885 A CN201110278885 A CN 201110278885A CN 102316282 B CN102316282 B CN 102316282B
Authority
CN
China
Prior art keywords
signal
image
telecommunication
optics
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110278885.8A
Other languages
English (en)
Other versions
CN102316282A (zh
Inventor
许祖彦
杨晶
张景园
杜仕峰
崔大复
彭钦军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201110278885.8A priority Critical patent/CN102316282B/zh
Publication of CN102316282A publication Critical patent/CN102316282A/zh
Application granted granted Critical
Publication of CN102316282B publication Critical patent/CN102316282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

一种基于光学杜比的图像降噪装置,其包括对目标物进行光学成像的成像模块、光学图像记录模块、图像显示模块和电学参考信号产生模块;目标物体的光信号经过一定干扰介质如薄雾、霾等之后通过成像模块到达图像记录模块中光电传感器阵列表面,完成光信号的接收和光电转换;在电信号模数转换之前,利用电学参考信号产生模块的调节,改变光学图像记录模块记录信号的强度阈值,对光电转换的信号进行强度分辨和选择性记录;最终通过图像显示模块输出;该装置基于硬件的信号选择能力可实现复杂环境下的图像降噪显示,缓解了后续图像处理的压力,有利于目标快速定位与特征识别。

Description

一种基于光学杜比的图像降噪装置
技术领域
本发明涉及一种图像降噪装置,特别涉及一种用于实现在复杂环境(如存在雾、霾等传输介质)中成像的,基于光学杜比的图像降噪装置。
背景技术
为满足在远距离探测和遥感方面的需求,人们迫切需要克服现有CCD或其他的光电图像探测器在复杂环境,如薄雾、霾、生物样品等散射介质引起的图像噪声增加和对比度的下降,或太阳夹角较小时背景干扰等应用场合的图像降噪装置。
在多数实际应用中,目标与背景对于主/被动辐照具有不同的反射率(反射率及空间分布),可以通过常规的主/被动成像的方式进行探测/成像,但对于复杂环境下,如存在一定干扰介质如薄雾、霾、生物样品等的目标成像,则由于传输介质的散射作用以及背景光的干扰,会导致记录的光学图像的接收到的像素间光子数差异变少,接收端接收到的图像产生(模糊)匀化,对比度变差,目标主体和背景的强度区分变得困难。干扰严重时,图像信号与背景差异进一步缩小,图像不同区域的信号经传感器接收和模数转换后灰度值变得极为接近,甚至变得相同,导致目标轮廓与背景无法分辨,甚至无法由后续图像处理进行有效恢复。
一般来讲,要降低图像的噪声首先可以通过增加图像传感器的灵敏度以及对电信号转移、传输过程进行严格的噪声控制来实现。
此外,针对上述困难,现有成像技术主要通过主动探测配合距离选通实现复杂环境下的目标成像,采用主动探测光源,如激光,配合窄带滤波片,即可将大部分背景光去除。此外,控制图像传感器的开关时间,进行时间选通可以对特定时间范围内的回波信号进行收集,由于不同的飞行时间对应于不同距离,若采用脉冲激光作为主动探测的光源,则可以对特定距离的图像信号进行选择记录,排除前景和背景的干扰,有利于实现目标的有效探测。
但由于距离选通对基于信号的特定时间门宽内的选择,信号强度明显减少,因此需要对回波光子进行光学/电学放大。对于电学图像增强,可以采用像增强方案(常采用像增强ICCD)以及电子倍增方案(常采用EMCCD),在光学图像放大方面,常见的光学增强手段包括:激光光学放大、掺杂光纤放大器、半导体光放大器、光学参量放大OPA、受激喇曼放大SRS。
此外,还可以通过将记录得到的图像数据进行数字化处理,通过较多和运算,实现复杂环境下获取图像的降噪处理,该法也得到了日益广泛的应用。但由于涉及到较多的像素单元的灰度计算,在实时性要求较高的场合便显得难以满足需求。
通过上述分析可知,目前主要的技术途径在于基于图像信号的光学增强与时间选通、图像记录及传输环节的噪声控制以及记录之后的电信号增强和基于计算机的数字信号处理。
由于在很多情况下,目标主体与环境背景之间存在着一定的信号的有效强度差异(取决于二者不同的探测距离、表面光谱反射率等等),通过设定成像光学透过或电信号记录的强度阈值、扣除背景的干扰和影响,有利于目标与背景图像的分辨。
发明内容
本发明的目的在于:克服现有CCD或者其他的光电探测器阵列在复杂环境下记录光学图像时,光信号经历散射介质或者背景光干扰,导致输出图像与背景信号强度接近,在进行电学、光学增益之后又引入了增益过程中的噪声,图像的对比度进一步变差,导致在模数转换后灰度值接近甚至完全相同,造成后续的图像识别分析困难,如图1-2所示,为了解决这一困难,必须针对不同环境下的背景噪声信号的实时、有效扣除问题,以获得在上述条件下高信噪比的光学图像输出,本发明提出一种基于光学杜比的图像降噪装置,并利用相关光学比较元件选择透过和电学信号比较元件选择记录光强的特点,实现基于硬件的背景实时、连续可调的强度扣除,成像效果如图1-3所示。本发明将杜比技术扩展至光学图像记录装置中,是一种对复杂环境下的目标成像时实现实时图像降噪的有效方案。
所述的光学杜比的概念如下:
针对目标图像和背景图像具有不同强度的光信号这一普遍现象,基于光学/电学硬件设计进行强度分辨,并通过设置适当的光强透过/电学显示阈值,将图像整体或局部显示中目标主体与周围环境进行显示强度的区分,从而实现图像降噪显示,有利于复杂环境下的目标识别。
为实现上述目的,本发明的技术方案如下:
本发明提供的基于光学杜比的图像降噪装置,其包括:对目标物进行光学成像的成像模块100、光学图像记录模块300、图像显示模块500,其特征在于,还包括:电学参考信号产生模块400;
所述的成像模块100包括成像透镜组101、成像反射镜组103、成像透镜组101与成像反射镜组103的组合、成像透镜组101与用于调节光通量的光阑/光阑组102的组合、成像反射镜组103与用于调节光通量的光阑/光阑组102的组合或成像透镜组101、成像反射镜组103和用于调节光通量的光阑/光阑组102的组合;所述的用于调节光通量的光阑/光阑组102位于成像透镜组101内透射组之间、成像反射镜组103内反射镜组之间或成像透镜组101与成像反射镜组103光路之间;
所述的光学图像记录模块300包括:用于感光的光电探测器阵列301、电信号转移电路302、电信号转换元件303、模数转换元件305和电信号比较器304;其中,光电探测器阵列301、电信号转移电路302、电信号转换元件303和模数转换元件305依次串联;
所述的电学参考信号产生模块400由开关及电源子模块401、参考信号产生与调节子模块402、控制面板403和参考信号输出接口404组成,参考信号产生与调节子模块402由开关及电源子模块401提供能量,其产生稳定输出的电流/电压参考信号通过参考信号输出接口404和信号传输线输入至电信号比较器304;
所述的电信号比较器304位于感光的光电探测器阵列301之后、电信号转移电路302之后或电信号转换元件303之后,且位于模数转换元件305之前,接收两路参考信号:一路接收由前一级301、302或303提供的电学信号;另一路接收由参考信号产生与调节子模块402产生信号通过参考信号输出接口404和信号传输线输入至电信号比较器304的参考信号;同时,所述的图像信号经电信号比较器304将低于参考信号阈值之下的模拟电信号扣除之后进入所述的模数转换元件305,转换为数字信号输出给图像显示模块500;
所述的图像显示模块500包括:带数字图像采集卡502的计算机主机503和图像显示器504;数字图像采集卡502装于计算机主机503主板上,通过数据传输线接收由模数转换器件305输出的数字信号,数字图像采集卡502的输出信号经计算机主机503处理之后最终在图像显示器504上显示降噪图像。
为实现光信号的选择透过,所述的基于光学杜比的图像降噪装置,进一步包括光学选择透过模块200、第一转接环1和第二转接环2;
所述的光学选择透过模块200为滤色镜201、窄带滤光片202、可饱和吸收滤光片203、中性密度滤光片204、波段可调的滤色镜201-b、透过窄带波长可调的窄带滤光片202-b、饱和光强可调的可饱和吸收滤光片203-b、透过强度可选的中性密度滤光片204-b或它们中的任意组合;所述的光学选择透过模块200位于所述成像模块100与光学图像记录模块300的光路之间,用于对光信号进行频域和强度的选择;
所述的第一转接环1用于实现成像模块100与光信号选择透过模块200之间相互连接;所述第二转接环2用于实现光学图像记录模块300与光学选择透过模块200之间相互连接。
为实现主动图像的探测,所述成像装置成像模块100还包括:所述的成像装置成像模块100还包括:发射激光的探测光源104和位于其出射光路中的光束整形发射元件105,探测光源104对目标物体进行主动照明,由成像透镜组101、成像反射镜组103或其任意组合对该目标物进行成像,由光学图像记录模块300接收。
为实现扫描式成像,所述成像装置成像模块100还包括:机械扫描元件108。为实现更加紧凑的光路安排,所述成像装置成像模块100还包括:偏振控制元件107。偏振控制元件107位于探测光源104和光束整形发射元件105之间,机械扫描元件108位于光束整形发射元件105之后,实现对目标的扫描式照明,并经由成像透镜组101对其成像。
为实现距离选通成像,所述成像模块100还包括用于进行距离选通成像时间控制子模块,所述距离选通成像时间控制子模块可采用电学延迟方案和光学延迟方案;
采用电学延迟方案的距离选通成像时间控制子模块由分光元件106、光电探测器109、信号电缆110和数字延迟器111组成,探测光源104发出的光信号经分光元件106由光电探测器109接收,所述的光电探测器109产生的触发电平信号经信号电缆110传输至数字延迟器111处;所述的光学图像记录模块300还包括图像探测器触发信号接口309,经数字延迟器111输出的触发电平通过该接口309为光电探测器阵列301提供触发信号;
采用光学延迟方案的距离选通成像时间控制子模块由分光元件106、传输介质112、光束传输元件113、以及可调光程的光学机械元件113组成;
所述的光学图像记录模块300还包括:放置于光电探测器阵列301之前的利用电信号放大实现图像增强的电学像增强子模块306或放置于光电探测器阵列301之后的利用电学增益实现信号增强的电信号倍增子模块307或光电探测器阵列301之前的利用光信号放大实现图像增强的光学像增强子模块308;
所述的电学像增强子模块306由电驱动的光信号增强元件以及光学图像的像传递元件组成,光学图像信号经所述的电驱动的光信号增强元件实现光学增强,再经像传递元件传递由光电探测器阵列301进行接收;
所述的电信号倍增子模块307由电信号倍增元件组成,将转移电路302提供的电信号进行放大并传输至电信号转换元件303;
所述的光学增益的信号增强子模块308由光学驱动的光信号放大元件和像传递元件组成,光学图像信号经所述的光信号放大元件实现光学增强,再经像传递元件传递由光电探测器阵列301进行接收。
为降低微弱图像情形下本底噪声的影响,所述的光电探测器阵列301还包括探测器本底噪声控制元件310,所述的电信号转移电路302还包括集成在其中的读出噪声控制元件311,以便在图像增强的同时降低本底噪声的影响。
所述的光学选择透过模块200还进一步包括调节波段可调的滤色镜201-b、透过窄带波长可调的窄带滤光片202-b、饱和光强可调的可饱和吸收滤光片203-b、透过强度可选的中性密度滤光片204-b或它们的任意组合的光学选择参数的机电装置205;该机电装置205通过反馈控制线505接收由所述计算机主机503输出的反馈控制信号,以形成光信号选择的闭环自动控制。
所述的电学参考信号产生模块400的控制面板403的输入端通过反馈控制线505与所述计算机主机503输出端相连,以形成电信号选择的闭环自动控制。
所述的光学成像模块100对远处的目标物体光信号进行收集并成像,由图像探测模块300接收,对于外界杂光较强的情形,可经第一转接环1与第二转接环2将所述光学选择透过模块200放置于光学成像模块100与图像探测模块300之间,光信号经过光电探测器阵列301之后转换为电信号,电信号经转移电路302被传输至电信号转换元件303处,之后电信号转化为模数转换元件305可识别的电信号,所述的电信号比较器304位于感光的光电探测器阵列301之后、电信号转移电路302之后或电信号转换元件303之后,接收两路信号:一路来自由光电探测器阵列转换得到的电信号,另一路电信号来自参考信号产生模块400提供的参考信号;扣除参考阈值之下的图像强度信息,将扣除之后的图像信息传输至所述模数转换元件305处,与所述参考信号产生模块400产生的可调节参考信号同时进入电信号比较器304,经过比较器之后,满足条件的电信号经数据传输线传输至图像显示模块500中,并通过数字图像采集卡502以及计算机主机503的处理,最终图像通过图像显示器504输出。
本发明的基于光学杜比的图像降噪装置的优点如下:
1、由于本发明的装置中基于硬件的降噪处理,直接通过电学信号比较器降低背景辐射和散射背景的干扰,提升现有成像装置在复杂环境下成像的信噪比。如图1-1所示,相对于一般无像增强的图像探测装置,避免了数字图像处理的复杂性。
2、由于本发明的装置电信号比较器位于模数转换元件之前,通过电学参考信号产生模块对A/D转换前的信号进行扣除,由于参考电信号可以连续调节,即可以通过连续调节的背景扣除实现显示效果的最优化。采用光学杜比前后的图像分别如图1-2与图1-3所示,相比只有特定比例的衰减的光学灰度滤色镜,无须增加曝光时间,便于记录快速运动的目标,同时也消除了长时间曝光时本底噪声如暗电流等因素对图像质量的影响。
3、通过硬件改变阈值,有利于通过显示效果,避免了数字图像处理的滞后性,能够满足对目标观察的高实时性的需求,从而可以从不同的灰度值进行更为有效的目标区分。为提高响应速度,对光学杜比降噪后的图像进行二值化,即特定阈值之下为0,反之为1,在设定阈值较低时,突出的主体是图片中较近距离的桥,而设定阈值较高时,则突出了左侧较远距离的建筑物,分别为如图1-4和图1-5所示。
4、由于本发明中电位器扣除的原始信号强度可与电位计进行量化标定,因此,可以配合计算机系统进行相应的信号补偿,还原显示部分的原始信号强度。
5、本发明可以与现有的距离选通、光学或电学信号增强技术很好地配合,实现综合信噪比的提升。
综上所述,本发明采用了光学杜比技术实现图像降噪,在电信号模数转换之前,利用电学参考信号产生模块的调节,改变光学图像记录模块记录信号的强度阈值,对光电转换的信号进行强度分辨和选择性记录;最终通过图像显示模块输出;该装置基于硬件的信号选择能力可实现复杂环境下的图像降噪显示,缓解了后续图像处理的压力,有利于目标快速定位与特征识别。
附图说明
图1-1传统图像降噪与光学杜比降噪的区别;
图1-2未采用光学杜比方案的成像效果;
图1-3采用光学杜比方案之后的成像效果;
图1-4采用光学杜比加图像二值化(高阈值)之后的成像效果(模拟黑白显示);
图1-5采用光学杜比加图像二值化(低阈值)之后的成像效果(模拟黑白显示);
图2-1具有电学参考信号产生模块的整体模块示意图;
图2-2具有电学参考信号产生模块和光学选择透过模块系统整体模块示意图;
图3基于CCD的被动成像的光学杜比装置示意图;
图4基于ICCD主动探测成像的光学杜比降噪装置;
图5基于EMCCD主动探测成像的光学杜比降噪装置;
图6-1基于OPA+CCD主动探测成像的光学杜比降噪系统示意图;
图6-2基于OPA的图像放大装置示意图。
具体实施方式
下面结合实施例和附图对本发明做详细的说明。
实施例:一种基于光学杜比的CCD被动探测的图像降噪装置。
参考图2-1及图3,制作一本发明的基于光学杜比的图像降噪装置,用于实现CCD在干扰条件下被动探测及图像降噪显示。
该成像系统100利用焦距为300毫米的长焦成像透镜组101配合相应的光阑102,基于自然光照明,对雾霾环境下对约500米外的目标物体0成像,成像至所述光学图像探测模块300中的光电探测器阵列301(本实施中301为电荷耦合器件CCD)表面,光电探测器阵列301为CCD,金属氧化物半导体MOS结构,其将光信号转换为电荷信号,然后经过所述电信号转移电路302进行信号转移并通过所述信号转换电路303将电荷信号转换为电压信号,经信号线传输至所述电信号比较器304中作为第一路输入,同时在电学参考信号发生模块400中,开关及电源子模块401为参考信号产生与调节子模块402提供所需能量,402产生的参考信号(本实施例中为电压信号)通过信号线输入至控制面板403进行显示,同时亦接收由控制面板403提供的控制信号,对402产生的参考电压进行调节,然后经所述的参考信号输出接口404以及信号传输线将信号输出至电信号比较器304中,作为第二路输入;控制信号比较器304,本实施例中为电压比较器,将参考信号电压以下的信号扣除,此时处理之后的电压信号经过模数转换元件305进行模数转换之后作为数字信号通过输出,并通过数据传输线将数据传输至所述图像显示模块500进行实时控制,该图像显示装置为所述的图像采集卡502(本实施例中为CCD图像采集卡)及计算机主机503,最终通过图像显示器504实现光学杜比降噪显示输出。
在实际应用中,根据显示效果,通过手动调节控制面板403,对参考信号产生与调节子模块402的输出电压进行实时调节,得到优化的光学杜比降噪图像输出。
对于本实施例中的基于光学杜比的直接图像探测降噪装置,改变成像输出的阈值,有效地降低了背景信号强度,对于有助于在物体与背景反射率存在差异时的普遍情形,实现有效的目标图像记录与目标的快速识别。
实施例2:一种基于光学杜比的ICCD主动探测的图像降噪装置。
参考图2-2和图4,制作一本发明的基于光学杜比的图像降噪装置,本实施例在实施例1的基础之上,采用了主动照明的激光光源,用于实现低照底环境下主动探测及图像增强及降噪显示。并且结合距离选通技术,在实现图像信号的距离分辨的同时,可以排除前景与后景干扰,结合光学杜比的光学与电学信号选择,能够实现复杂环境下成像信噪比的有效提升。
本实施例中采用300毫米成像透镜组101对1000米外的目标进行主动探测成像,相对于实施例1,新增了主动探测子模块,包括探测光源104(本实施例中为1kHz532nm纳秒ns脉冲激光器),本实施例中的探测光源104为1kHz,激光经倍频后输出532nm垂直偏振激光,激光束经过光束整形发射元件105之后,极少部分光(约为1nJ)经过分光元件106入射到高速响应光电探测器109处,产生触发信号,此时记为T0,电信号经过信号电缆110,进入高精度数字延迟器111,在考虑信号传输时间之后,数字延迟器通过内部电路对光电探测器阵列301进行触发,此时记为T1,使得T1与T0的时间间隔等于探测激光的从发射到由目标反射回来的往返时间。由高精度数字延迟器确定的延迟时间为激光在空间中传播的往返时间,大约为6.667μs.
由于光学图像的采用预放大方案,成像模块的第一次成像位置在预放大子模块306的前表面,增强之后的图像再通过像传递系统成像至光电探测器阵列301处。本实施例中大部分激光经偏振分光棱镜(PBS)107-a后发生全反射,经放置在其后的四分之一波片(QWP)107-b经过成像透镜组101,此时为接收望远镜(本实施例中发射与接收共用一个望远镜系统),进行发射,经目标0表面返回来的信号经接成像透镜组101之后再次通过四分之一波片107-b,此时偏振方向相对于首次入射时改变90度,则偏振方向变成水平方向,则完全通过偏振分光棱镜(PBS)107-a,实现接收信号与发射信号的分离,该方案为激光主动探测中的一种常见方案,可以实现相对更加紧凑的结构,为本领域相关人员所熟悉。
本实施例采用激光作为主动探测光源,考虑到ICCD运转在高增益模式下,较强的输入信号导致像增强器损毁;本实施例中光学选择透过模块200加入了窄带滤光波201,本实施例中采用532nm窄带滤光片,可饱和吸收滤光片203,本实施例中采用基于半导体可饱和吸收镜工艺针对532nm设计制作的SESAM透射镜;以及透过强度可选的中性密度滤光片204-b,本实施例中采用圆形金属膜中性密度渐变滤光片的组合;并通过机电装置205,本实施例中采用带旋转轴的步进电机及配套的电源驱动组成,可根据实时显示的效果,利用计算机自动控制中性密度滤光片204-b的转动角度,实现可调的衰减比率,保证系统的安全性的显示效果的优化;控制信号比较器304,本实施例中为电压比较器,将参考信号电压以下的信号扣除,此时处理之后的电压信号经过模数转换元件305进行模数转换之后作为数字信号通过输出。由于存在较高的光学增益,且读出速率很快,为避免记录与数据读出环节的噪声影响,探测装置还包括探测器本底噪声控制元件310,本实施中为TEC制冷,以及读出噪声控制电路311,这些都是高灵敏度图像传感器人员所熟知的。其后的实施方式同实施例1。
本实施例中的,探测光源104还可选用探照灯(气体/LED等)以及其他各种类型的激光器。
实施例3:一种基于光学杜比的EMCCD主动探测的图像降噪装置。
参考图2-2与图5,制作一本发明的基于光学杜比的图像降噪装置,用于实现存在散射介质干扰条件下生物样品信号的图像降噪显示。
本实施例采用主动探测光源为倍频后的飞秒宽调谐激光源,中心波长为400nm,研究不同的激发波长产生的样品荧光图像,成像透镜组101为显微镜组合,图像放大率为500倍,光学图像信号经过光阑102和反射镜组103进入感光的光电探测器阵列301,本实施例采用EMCCD。为节约系统成本,EMCCD感光面积较小且像元数目有限,为256x256像素,将相应的不同范围的数据进行整合、处理,能实现大视场范围的图像重建.为实现快速的图像信号获取,激光器的重频为1kHz.,脉宽为150fs,利用扫描式成像方案,并采用机械扫描元件108实现大范围进行主动探测。在得到视场范围内的图像信息之后,扫描振镜移动,对另一位置进行图像采样,信号的采集和转换同实施例1,直至扫描振镜完成视场整体扫描。
本实施例采用光电探测器阵列301为EMCCD,所述的EMCCD的触发信号由所述的高精度数字延迟器111来提供,通过图像探测器触发信号接口309导入。输出时刻由激光器自身的发射时刻和所感兴趣的成像距离共同决定,EMCCD被触发后,对进行成像.信号通过电信号转移电路302本实施例为读出寄存器之后,再经过电信号倍增子模块307,本实施例为EMCCD的增益寄存器,实现对弱的回波光学信号进行显著的图像信号放大,增益可超过103。相应的探测器本底噪声控制元件310为采用液氮冷却低温控制电路,其后的实施方式同实施例2。电信号比较器304,与电学参考信号发生模块400之间的连接关系如实施例2所示。
经目标0表面反射在来的光信号,通过成像模块100和光学选择透过模块200,分别采用波段可调的滤色镜201-b和400nm窄带滤光片202,分别用于观察激发荧光成像以及直接照明的激光轮廓,以及透过强度可选的中性密度滤光片204-b;手动调节波段可调的滤色镜201-b,本实施例中为六孔密度盘,分别装有750~850nm滤色镜,500~600nm滤色镜,850~1000nm滤色镜,使其透光波段分别与对应于不同机制的激发荧光波段图像;若要观察直接照明的样品轮廓,则将201-b换成202即可;为降低本底的强度,并考虑到EMCCD具有超过3个量级的电学增益,手动调节204-b的光学密度值为1~2,即光信号衰减至入射信号的1/10~1/100。光谱选择与光强选择之后的图像到达光学图像预放大子模块306;此后过程与实施例1,2相类似。
控制信号比较器304,本实施例中为电压比较器,将参考信号电压以下的信号扣除,此时处理之后的电压信号经过模数转换元件305进行模数转换之后作为数字信号通过输出。本实施例还基于电信号调节的光学杜比降噪技术,通过计算机实现光学杜比闭环控制,计算机主机503可根据实际显示的效果,调节光学杜比的阈值,并将反馈信号经反馈控制线505输出至控制面板403.然后,通过对参考电压产生与调节子模块402对输出的参考电压进行实时调节,将电压信号输入至所述电信号比较器304,从而实现了最佳的图像输出质量。本实施例在实施例1的基础上,引入主动探测技术,实现低照度复杂环境下成像质量的提升。
实施例4:一种基于光学杜比的OPA主动探测(+时间选通)的图像降噪装置。
参考图2-2与图6-1,制作一本发明的基于光学杜比的图像降噪装置,用于实现存在环境干扰条件下立体目标图像信号的距离选通探测及图像降噪显示,并实现毫米~亚毫米级的纵向分辨精度。
本实施例中为光参量放大即OPA模块,探测光源104为可同时提供10Hz,皮秒全固态Nd:YAG倍频和三倍频激光,输出波长为532nm和355nm的激光输出,距离选通成像时间控制子模块采用光学延迟方案。本实施例中,分光元件106为45度入射355nm高透射率532nm高反射率的镀膜镜面,传输介质112为空气,光束传输元件113为一组光学反射镜和一个像传递透镜,可调光程的光学机械元件114为行程2英寸的光学平移台,实施中通过平移台的调节,使得532nm基频探测激光与355nm泵浦激光经历相同的光程,二者同时到达光学像增强子模块308处,基频光为信号激光,倍频激光为OPA过程提供泵浦激光,实现光学图像信号的OPA放大。
本实施例采用激光作为主动探测光源,考虑到EMCCD的高增益,本实施例与实施例2相似,光学选择透过模块200包括了窄带滤光波201,本实施例中为532nm窄带滤光片,可饱和吸收滤光片203,本实施例中采用基于半导体可饱和吸收镜工艺针对532nm设计制作的SESAM透射镜;以及透过强度可选的中性密度滤光片204-b,本实施例中采用圆形金属膜中性密度渐变滤光片的组合;并通过机电装置205,本实施例中采用带旋转轴的步进电机及配套的电源驱动组成,可根据实时显示的效果,利用计算机自动控制中性密度滤光片204-b的转动角度,实现可调的衰减比率,保证系统的安全性的显示效果的优化;此外,本实施例中还综合了如实施例3中的基于电信号调节的光学杜比降噪技术,进一步优化成像的对比度。
与实施例2不同之处在于采用了光学图像增强方案代替了实施例2中的电学图像增强,光学图像增强通过光参量放大技术来实现。光参量放大是指当较微弱的信号光和较强的泵浦激光同时入射到非线性光学晶体上时,在满足相位匹配条件和时间、空间匹配的条件下,信号光可以从泵浦光得到能量,该方案为非线性光学技术中的一种常见技术,可以实现信号光的高增益的放大,其增益倍数可达103~107,为本领域相关人员所熟悉。装置示意图如图6-2所示,本实施例中光学像增强子模块308包括泵浦激光器308-a、及其时空控制装置308-b,非线性光学晶体308-c、以及耦合光学元件308-d。其中,泵浦激光器308-a用于提供泵浦光,时空控制装置308-b用于实现信号光与泵浦光之间精确的时间同步,非线性光学晶体308-c作为光参量放大作用产生的场所,成像模块的第一次成像位置在光学像增强子模块308的像增强器即非线性光学晶体308-c处。泵浦激光经过同等的时间延迟与经由目标返回信号光之间的时间同步到达非线性光学晶体308-c处。如图6-2所示,耦合光学元件308-d为双色镜,镀有信号光532nm高透、355nm泵浦光高反的双色膜层,用于实现泵浦光与信号光之间的空间耦合与信号增强之后的空间分离,这些都是为非线性光学领域专业人员所熟悉的。增强之后的光学图像通过像传递系统308-f成像至光电探测器阵列301处,此后的实施方式与实施例2相同。由于采用了光学相互作用的图像信号选通,其时间选通精度可以达到皮秒10-12s~飞秒10-15s的精度,远超过电学增益手段的时间精度,因此,可以实现超高的纵向成像的距离分辨精度,可以应用至在生物、医学领域中对存在干扰的精细结构成像。实施例中的光学放大模块除了光参量放大器方案外,还可以采用包括:激光光学放大器、掺杂光纤放大器、半导体光放大器、受激喇曼放大器等,实现微弱光信号的直接增强。
当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明做出各种相应的改变和变型,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (9)

1.一种基于光学杜比的图像降噪装置,其包括:对目标物进行光学成像的成像模块(100)、光学图像记录模块(300)、图像显示模块(500),其特征在于,还包括:电学参考信号产生模块(400);
所述的成像模块(100)包括成像透镜组(101)、成像反射镜组(103)、成像透镜组(101)与成像反射镜组(103)的组合、成像透镜组(101)与用于调节光通量的光阑/光阑组(102)的组合、成像反射镜组(103)与用于调节光通量的光阑/光阑组(102)的组合或成像透镜组(101)、成像反射镜组(103)和用于调节光通量的光阑/光阑组(102)的组合;所述的用于调节光通量的光阑/光阑组(102)位于成像透镜组(101)内透射组之间、成像反射镜组(103)内反射镜组之间或成像透镜组(101)与成像反射镜组(103)光路之间;
所述的光学图像记录模块(300)包括:用于感光的光电探测器阵列(301)、电信号转移电路(302)、电信号转换元件(303)、模数转换元件(305)和电信号比较器(304);其中,光电探测器阵列(301)、电信号转移电路(302)、电信号转换元件(303)和模数转换元件(305)依次串联;
所述的电学参考信号产生模块(400)由开关及电源子模块(401)、参考信号产生与调节子模块(402)、控制面板(403)和参考信号输出接口(404)组成,参考信号产生与调节子模块(402)由开关及电源子模块(401)提供能量,其产生稳定输出的电流/电压参考信号通过参考信号输出接口(404)和信号传输线输入至电信号比较器(304);
所述的电信号比较器(304)位于感光的光电探测器阵列(301)之后、电信号转移电路(302)之后或电信号转换元件(303)之后,且位于模数转换元件(305)之前,接收两路参考信号:一路接收由光电探测器阵列(301)、电信号转移电路(302)、或电信号转换元件(303)提供的图像模拟电信号;另一路接收由参考信号产生与调节子模块(402)产生信号通过参考信号输出接口(404)和信号传输线输入至电信号比较器(304)的参考信号;同时,所述的图像模拟电信号经电信号比较器(304)将低于参考信号阈值之下的模拟电信号扣除之后进入所述的模数转换元件(305),转换为数字信号输出给图像显示模块(500);
所述的图像显示模块(500)包括:带数字图像采集卡(502)的计算机主机(503)和图像显示器(504);数字图像采集卡(502)装于计算机主机(503)主板上,通过数据传输线接收由模数转换器件(305)输出的数字信号,数字图像采集卡(502)的输出信号经计算机主机(503)处理之后最终在图像显示器(504)上显示降噪图像。
2.按权利要求1所述的基于光学杜比的图像降噪装置,其特征在于,还进一步包括光学选择透过模块(200)、第一转接环(1)和第二转接环(2);
所述的光学选择透过模块(200)为滤色镜(201)、窄带滤光片(202)、可饱和吸收滤光片(203)、中性密度滤光片(204)、波段可调的滤色镜(201-b)、透过窄带波长可调的窄带滤光片(202-b)、饱和光强可调的可饱和吸收滤光片(203-b)、透过强度可选的中性密度滤光片(204-b)或它们中的任意组合;所述的光学选择透过模块(200)位于所述成像模块(100)与光学图像记录模块(300)的光路之间,用于对光信号进行频域和强度的选择;
所述的第一转接环(1)用于实现成像模块(100)与光信号选择透过模块(200)之间相互连接;所述第二转接环(2)用于实现光学图像记录模块(300)与光学选择透过模块(200)之间相互连接。
3.按权利要求1或2所述的基于光学杜比的图像降噪装置,其特征在于,所述成像模块(100)还包括:发射激光的探测光源(104)和位于其出射光路中的光束整形发射元件(105),探测光源(104)对目标物体进行主动照明,由成像透镜组(101)、成像反射镜组(103)或其组合对该目标物进行成像,由光学图像记录模块(300)接收。
4.按权利要求3所述的基于光学杜比的图像降噪装置,其特征在于,所述成像模块(100)还包括:偏振控制元件(107)或/和机械扫描元件(108);偏振控制元件(107)位于探测光源(104)和光束整形发射元件(105)之间,机械扫描元件(108)位于光束整形发射元件(105)之后,实现对目标物的扫描式照明,并经由成像透镜组(101)对目标物成像。
5.按权利要求3所述的基于光学杜比的图像降噪装置,其特征在于,所述成像模块(100)还包括用于进行距离选通成像时间控制子模块,所述距离选通成像时间控制子模块可采用电学延迟方案和光学延迟方案;
采用电学延迟方案的距离选通成像时间控制子模块由分光元件(106)、光电探测器(109)、信号电缆(110)和数字延迟器(111)组成,探测光源(104)发出的光信号经分光元件(106)由光电探测器(109)接收,所述的光电探测器(109)产生的触发电平信号经信号电缆(110)传输至数字延迟器(111)处;所述的光学图像记录模块(300)还包括图像探测器触发信号接口(309),经数字延迟器(111)输出的触发电平通过该接口(309)为光电探测器阵列(301)提供触发信号;
采用光学延迟方案的距离选通成像时间控制子模块由分光元件(106)、传输介质(112)、光束传输元件(113)以及可调光程的光学机械元件(114)组成。
6.按权利要求1或2所述的基于光学杜比的图像降噪装置,其特征在于,所述的光学图像记录模块(300)还包括:放置于光电探测器阵列(301)之前的利用电信号放大实现图像增强的电学像增强子模块(306)、放置于光电探测器阵列(301)之后的利用电学增益实现信号增强的电信号倍增子模块(307)或放置于光电探测器阵列301之前的利用光信号放大实现图像增强的光学图像增强子模块(308);
所述的电学像增强子模块(306)由电驱动的光信号增强元件以及光学图像的像传递元件组成,光学图像信号经所述的电驱动的光信号增强元件实现光学增强,再经像传递元件传递由光电探测器阵列(301)进行接收;
所述的电信号倍增子模块(307)由电信号倍增元件组成,将转移电路(302)提供的电信号进行放大并传输至电信号转换元件(303);
所述的光学图像增强子模块(308)由光学驱动的光信号放大元件和像传递元件组成,光学图像信号经所述的光信号放大元件实现光学增强,再经像传递元件传递由光电探测器阵列(301)进行接收。
7.按权利要求6所述的基于光学杜比的图像降噪装置,其特征在于,所述的光电探测器阵列(301)还包括探测器本底噪声控制元件(310),所述的电信号转移电路(302)还包括集成在其中的读出噪声控制元件(311)。
8.按权利要求2所述的基于光学杜比的图像降噪装置,其特征在于,所述的光学选择透过模块(200)还进一步包括调节波段可调的滤色镜(201-b)、透过窄带波长可调的窄带滤光片(202-b)、饱和光强可调的可饱和吸收滤光片(203-b)、透过强度可选的中性密度滤光片(204-b)或它们的任意组合的光学选择参数的机电装置(205);该机电装置(205)通过反馈控制线(505)接收由所述计算机主机(503)输出的反馈控制信号,以形成光信号选择的闭环自动控制。
9.按权利要求1或2所述的基于光学杜比的图像降噪装置,其特征在于,所述的电学参考信号产生模块(400)的控制面板(403)的输入端通过反馈控制线(505)与所述计算机主机(503)输出端相连,以形成电信号选择的闭环自动控制。
CN201110278885.8A 2011-09-20 2011-09-20 一种基于光学杜比的图像降噪装置 Active CN102316282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110278885.8A CN102316282B (zh) 2011-09-20 2011-09-20 一种基于光学杜比的图像降噪装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110278885.8A CN102316282B (zh) 2011-09-20 2011-09-20 一种基于光学杜比的图像降噪装置

Publications (2)

Publication Number Publication Date
CN102316282A CN102316282A (zh) 2012-01-11
CN102316282B true CN102316282B (zh) 2014-05-07

Family

ID=45429060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110278885.8A Active CN102316282B (zh) 2011-09-20 2011-09-20 一种基于光学杜比的图像降噪装置

Country Status (1)

Country Link
CN (1) CN102316282B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242280B (zh) * 2014-07-08 2017-07-28 中国科学院理化技术研究所 一种基于光学参量过程的关联成像装置和方法
CN105334626B (zh) * 2015-10-30 2021-06-01 吴东辉 声波信号的无源被动式光传送装置及方法
CN105911792A (zh) * 2016-07-04 2016-08-31 中国科学院理化技术研究所 基于多次相位匹配过程的非线性光学成像装置
CN106488149A (zh) * 2016-09-30 2017-03-08 哈尔滨工业大学 一种基于像方扫描及积分稳像的图像增强光学系统
CN107222702B (zh) * 2017-05-24 2020-01-31 四川长虹电器股份有限公司 基于Dolby Vision HDR的画质调试方法
CN107192675B (zh) * 2017-06-05 2020-04-07 中国科学院上海技术物理研究所 一种简单有效地抑制荧光干扰的光调制反射光谱检测系统
CN107944335B (zh) * 2017-08-17 2021-06-22 深圳信炜科技有限公司 感光模组、显示模组及电子设备
CN108181628A (zh) * 2018-01-23 2018-06-19 上海兰宝传感科技股份有限公司 一种基于tof的抗干扰测距传感器
WO2019148475A1 (en) * 2018-02-03 2019-08-08 Shenzhen Genorivision Technology Co. Ltd. Methods and systems with dynamic gain determination
CN108551541B (zh) * 2018-03-26 2019-09-27 深圳市智能机器人研究院 一种低成本高灵敏度的成像系统及其成像方法
WO2020115017A1 (en) * 2018-12-04 2020-06-11 Ams International Ag Patterned illumination for three dimensional imaging
CN109541627A (zh) * 2018-12-25 2019-03-29 西南技术物理研究所 双波长自适应距离门激光雷达
CN111179808B (zh) * 2020-01-22 2023-04-18 合肥京东方卓印科技有限公司 移位寄存器、栅极驱动电路、显示装置和栅极驱动方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917577A (zh) * 2006-09-01 2007-02-21 上海大学 一种图像组合降噪方法
CN101420533A (zh) * 2008-12-02 2009-04-29 上海电力学院 基于视频背景检测的嵌入式图像融合系统及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259208B2 (en) * 2008-04-15 2012-09-04 Sony Corporation Method and apparatus for performing touch-based adjustments within imaging devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917577A (zh) * 2006-09-01 2007-02-21 上海大学 一种图像组合降噪方法
CN101420533A (zh) * 2008-12-02 2009-04-29 上海电力学院 基于视频背景检测的嵌入式图像融合系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2009-278623A 2009.11.26

Also Published As

Publication number Publication date
CN102316282A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
CN102316282B (zh) 一种基于光学杜比的图像降噪装置
Wu et al. Non–line-of-sight imaging over 1.43 km
CN105242280B (zh) 一种基于光学参量过程的关联成像装置和方法
CN106646510A (zh) 一种基于光子标记的首光子激光成像系统
CN111141701A (zh) 一种基于太赫兹单脉冲的快速超分辨成像方法及系统
CN107942338A (zh) 一种基于数字微镜器件的多波长关联成像系统
CN109708767A (zh) 一种基于双层mcp像增强器的单光子相机
CN212489863U (zh) 一种快速高效自适应光学补偿的受激拉曼散射成像系统
CN201307088Y (zh) 光学非线性测量仪
CN111781629B (zh) X射线光学分幅成像系统
CN106482731B (zh) 一种抑制白天大气湍流效应的大视场测星传感器及使用方法
RU2544305C1 (ru) Лазерная локационная система
US20210164905A1 (en) Method and apparatus for simultaneous nonlinear excitation and detection of different chromophores across a wide spectral range using ultra-broadband light pulses and time-resolved detection
CN110361363A (zh) 太赫兹波衰减全反射成像的分辨率补偿装置及补偿方法
CN206684042U (zh) 基于锁相放大的显微镜
CN106595860B (zh) 多光谱成像系统
US11664471B2 (en) Systems, methods, and computer program products for image generation
CN112835189B (zh) 自共焦近红外二区荧光寿命显微镜
CN209727273U (zh) 一种基于双层mcp像增强器的单光子相机
RU2540451C1 (ru) Система лазерной локации
Sua et al. Quantum 3D imaging through multiscattering media of 10 optical depth
CN209542457U (zh) 一种基于门控单光子相机的快速远程拉曼系统
CN114040101A (zh) 一种用于周期性高速图像信号的采集方法及装置
Soan et al. Comparative assessment of different active imaging technologies for imaging through obscurants
CN113959969B (zh) 一种高分辨超灵敏的时间拉伸红外高光谱成像技术

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant