CN102315424A - Composite anode material for lithium sulfur battery, preparation method and application thereof - Google Patents

Composite anode material for lithium sulfur battery, preparation method and application thereof Download PDF

Info

Publication number
CN102315424A
CN102315424A CN2010102202086A CN201010220208A CN102315424A CN 102315424 A CN102315424 A CN 102315424A CN 2010102202086 A CN2010102202086 A CN 2010102202086A CN 201010220208 A CN201010220208 A CN 201010220208A CN 102315424 A CN102315424 A CN 102315424A
Authority
CN
China
Prior art keywords
sulfur
lithium
positive electrode
electrode material
composite positive
Prior art date
Application number
CN2010102202086A
Other languages
Chinese (zh)
Other versions
CN102315424B (en
Inventor
刘宇
梁宵
温兆银
黄乐之
黄颖
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Priority to CN201010220208.6A priority Critical patent/CN102315424B/en
Publication of CN102315424A publication Critical patent/CN102315424A/en
Application granted granted Critical
Publication of CN102315424B publication Critical patent/CN102315424B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

The invention relates to a high-performance sulfur and set-appearance conductive polymer composite anode material for the anode of a lithium sulfur battery and a preparation technique thereof, belonging to the field of chemical power supplies. The composite anode material for the lithium sulfur battery provided by the invention is a sulfur and conductive polymer nanotube composite anode material. The sulfur is dispersed and absorbed on the surface of the conductive polymer nanotube and in the conductive polymer nanotube to form a hollow fibrous structure. The invention uses high-conductivity polymers with good adsorbability to the sulfur and the reduced product thereof as a conductive phase in a sulfur electrode, uses a co-heating method and a liquid sulfur infiltration method to enable the polymers to be evenly combined with the sulfur to obtain a composite electrode material, and solves the problems that the sulfur electrode and the reduced product thereof in the lithium sulfur battery are apt to be dissolved in organic electrolytes, the battery circulation performance is poor because of the non-conductivity of the sulfur and the like. The sixtieth cycling capacity of the composite material is larger than 650mAh/g and the electrochemical cycling stability is good.

Description

一种锂硫电池用复合正极材料及其制备方法与应用 Material and its preparation method and application composite positive electrode for a lithium sulfur battery

技术领域 FIELD

[0001] 本发明涉及一种锂硫电池用复合正极材料,尤其是涉及一种用作锂硫电池正极的硫-聚合物复合材料及其制备方法与应用,属于化学电源领域。 [0001] The present invention relates to a lithium-sulfur battery with a composite positive electrode material, particularly to a positive electrode of lithium is used as a sulfur-sulfur battery - polymer composite material and its preparation method and application, belong to chemical power.

背景技术 Background technique

[0002] 目前,随着各种多功能便携式电子产品和电动车、储能领域等发展,对使用的可逆二次电池的需求越来越大,因此开发具有高比能量的可逆二次电池成为研究热点,尤其是采用锂金属作为电极的高比能量锂电池更是引起了人们的广泛关注。 [0002] Now, with the development of various multi-functional portable electronics and electric vehicles, energy storage and other areas, the demand for secondary batteries used reversible growing, so the development of reversible secondary battery with high specific energy becomes hotspot, especially the use of lithium metal as an electrode of high energy lithium batteries is attracting people's attention. 其主要的限制因素之一是高比容量正极的应用。 One of the main limiting factor is the positive application of high specific capacity. 使用硫系正极材料的锂硫二次电池具有高比能量、原材料丰富等优点,其中硫系正极包括:无机硫化物,有机二硫化物,聚有机二硫化物、有机多硫化物、 碳-硫聚合物、聚硫代化合物和单质硫。 Sulfur-based cathode material for lithium sulfur secondary batteries having high specific energy and abundant raw materials, etc., wherein the sulfur-based positive electrode comprising: inorganic sulfides, organic disulfides, organic poly-disulfides, organic polysulfides, carbon - sulfur polymers, thio compounds and elemental sulfur. 其中单质硫的质量比容量为1675mAh/g,是目前人们所了解的正极材料中比容量最高的,单质硫的无污染、低成本和自然界储量丰富等优点使其成为很有发展前途的一类二次锂电池正极材料。 Wherein the mass ratio of elemental sulfur capacity of 1675mAh / g, is the understanding of the positive electrode material in the highest specific capacity, elemental sulfur pollution, low cost and abundant natural reserves, etc. making it a promising class of The positive electrode material for lithium secondary batteries. 但锂硫电池还存在两个急需解决的问题,一是作为电极材料的硫是绝缘体,将引起电极中硫的电化学性能不佳及利用率低等问题,所以通常选择一种或多种电子导体与之复合达到提高导电性的目的;另一个是放电过程产生的多硫化锂易溶于有机电解液,导致电极的活性物质逐渐减少,且由于穿梭原理, 溶解的多硫化锂会穿过隔膜达到电池的负极锂片上,生成的硫化锂等产物导电性差且不溶解,引起电池负极的腐蚀和电池内阻的增加,导致电池的循环性能变差,容量逐步衰减。 However, lithium-sulfur battery further need to solve two problems, one is used as a sulfur electrode material is an insulator, the electrodes will cause poor electrochemical performance of sulfur and low utilization problems, it is usually one or more select electronic composite conductor with the purpose of improving conductivity; the other is a soluble lithium polysulfide generated during the discharge of the organic electrolyte solution, resulting in an electrode active material gradually decreases, and because the principle of the shuttle, the dissolved lithium polysulphides will pass through the membrane the battery reaches a lithium negative electrode sheet, the conductive product generated difference does not dissolve the lithium sulfide and the like, causing an increase in the corrosion of the battery anode and battery internal resistance, resulting in deterioration of the cycle performance of the battery, the capacity gradually decay. 随着对这些问题的认识,人们在导电相的选择和形貌的控制上已经开展了一系列研究:C. du. Liang, etal. (Chemistry ofMaterials 21(2009)4724-4730)使用介孔碳作为导电相,在加热条件下将硫渗入介孔碳形成一种复合物,这种复合物的50次可逆容量达700mAh/g ; B. Zhang, et al. (Electrochimica Acta 54(2009)3708-3713)使用的导电相为乙炔黑,在加热条件下与硫形成的复合物的50次可逆容量为500mAh/g ;LX Yuan, et al. (Journal ofPower Sources 189 Q009) 1141-1146)采用多壁碳纳米管与硫形成导电复合物60次可逆比容量为650mAh/g。 With the understanding of these problems, it has in the selection and control of the morphology of conductive phase has a series of studies: C du Liang, etal (Chemistry ofMaterials 21 (2009) 4724-4730) using the mesoporous carbon... as the conductive phase, under heating sulfur penetrate mesoporous carbon form a complex, 50 times the reversible capacity of such complexes 700mAh / g; B. Zhang, et al (Electrochimica Acta 54 (2009) 3708-. 3713) with the conductive acetylene black used, the reversible capacity of the composite 50 is formed under heat with sulfur to 500mAh / g;. LX Yuan, et al (Journal ofPower Sources 189 Q009) 1141-1146) using the multi-wall sulfur, carbon nanotubes form a conductive composite 60 times the reversible specific capacity 650mAh / g. 可以看出,由于上述导电相的高导电率和特殊的形貌能限制多硫化锂的扩散,使得锂硫电池的循环性能因此得到很大的提高,但是介孔碳及多壁碳纳米管的合成工艺复杂,成本高,所以有必要寻找新的替代导电材料。 As can be seen, due to the high conductivity of the conductive phase and the special morphology can limit the diffusion of lithium polysulfide, lithium-sulfur battery so that the cycle performance is therefore greatly improved, but the mesoporous carbon and MWNT synthesis of complex, high cost, it is necessary to find new alternative electrically conductive material.

发明内容 SUMMARY

[0003] 本发明的目的是针对锂硫电池中硫极及其还原产物在有机电解质中的易溶解性和硫本身的不导电性而导致的电池循环性差等问题,提供一种锂硫电池用复合正极材料。 And poor cell cycle [0003] The present invention is directed to lithium-sulfur battery is not electrically conductive electrode and its reduction product of sulfur in the organic electrolyte readily soluble and resulting sulfur itself, a lithium sulfur battery composite positive electrode material.

[0004] 本发明利用聚合物的导电性、强吸附效果和特定的纳米管状形貌,制备一种含导电聚合物的复合硫材料,来解决上述问题。 [0004] The present invention using a conductive polymer, and the particular effect of strong adsorption of nanotube morphologies prepare a composite sulfur-containing conductive polymer material, to solve the above problems.

[0005] 本发明提供的一种锂硫电池用复合正极材料,为硫-导电聚合物纳米管复合正极材料,所述的硫分散吸附于所述导电聚合物纳米管的管表面和管内,形成中空的纤维状结构。 [0005] The present invention provides a lithium-sulfur battery with a composite positive electrode material, a sulfur - conducting polymer nanotube composite positive electrode material, the adsorption of sulfur dispersed in the surface of the inner tube and the conductive polymer tube nanotubes, is formed a hollow fibrous structure.

3[0006] 所述中空纤维状结构的外径为100〜200nm,所述中空纤维状结构的内径为50〜 80nm。 The outer diameter of 3 [0006] The hollow fibrous structure of 100~200nm, inner diameter of the hollow fiber structure is 50~ 80nm. 较佳的,所述的硫占所述复合正极材料总重量的15〜56%,优选为40〜56%。 Preferably, the sulfur accounted for 15~56% of the total weight of the composite positive electrode material, preferably 40~56%.

[0007] 较佳的,所述的导电聚合物选自聚吡咯、聚丙胺、聚噻吩、聚乙炔或它们的衍生物。 [0007] Preferably, the conductive polymer is selected from polypyrrole, propylamine, polythiophene, polyacetylene or derivatives thereof.

[0008] 本发明中所述的导电聚合物纳米管可通过自分解软模板法合成。 [0008] The present invention, in the conductive polymer from nanotubes can be obtained by decomposition Synthesis soft template. 该方法的反应机理是:使一定比例的氧化剂和甲基橙在水溶液中先形成纤维状络合物,在氧化剂的氧化作用下,使导电聚合物的单体在络合物纤维表面发生聚合反应,随着聚合反应的进行,氧化剂逐渐被还原并导致络合物纤维的分解,从而留下纳米管状的导电聚合物纤维。 The reaction mechanism of this method are: a proportion that the oxidant and previously formed fibrous methyl orange complex in an aqueous solution, an oxidizing agent in the oxidation of the monomer of a conductive polymer on the fiber surface polymerization reaction complex , as the polymerization reaction, the oxidant is reduced gradually and the fibers result in decomposition of the complex, leaving the nanotube conductive polymer fibers. 该方法制备工艺简单、操作方便、采用原料价格低廉、所得产物为尺寸均勻可控的纳米管。 The preparation method is simple, easy operation, low price of raw materials employed, the resulting product is nanotube controllable uniform size.

[0009] 较佳的,本发明中所述的导电聚合物纳米管的制备方法,包括以下步骤:向IOOml 的0. 004-0. 006mol/L的甲基橙溶液中,滴加0. 004-0. 006mol的变价金属氯化物,然后再加入0. 004-0. 006mol的聚合物单体,室温反应8-¾小时,收集产物,得到导电聚合物纳米管。 [0009] Preferably, the method for preparing a conductive polymer nanotubes according to the present invention, comprising the following steps: to 0. 004-0 006mol / L methyl orange solution IOOml added dropwise 0.004 -0. 006mol variable valence metal chloride, and then added to the polymer monomers 0. 004-0. 006mol, the 8-¾ hours at room temperature the reaction, the product was collected to obtain a conductive polymer nanotubes.

[0010] 所述的氧化剂为变价金属的氯化物,如!^eCl3, CrCl3等。 Oxidant [0010] The variant is a divalent metal chloride, such as! ^ ECl3, CrCl3 like.

[0011] 本发明的硫-导电聚合物纳米管复合正极材料可用共热法或液相硫渗入法合成。 [0011] Sulfur present invention - conducting polymer nanotube composite cathode material may be co-thermal method or a liquid phase synthesis sulfur infiltration.

[0012] 采用共热法制备硫-导电聚合物纳米管复合正极材料,包括以下步骤:将质量比为(1〜3) : 1的升华硫和导电聚合物纳米管混合均勻,在真空或保护气氛下于150〜 250°C保温3〜6h,自然冷却到室温后得到硫-导电聚合物纳米管复合正极材料。 [0012] Preparation of sulfur using a total heat - conducting polymer nanotube composite positive electrode material, comprising the steps of: mass ratio of (1 ~ 3): 1 sublimed sulfur nanotubes and the conductive polymer uniformly mixed, in a vacuum or protective after the atmosphere in the heat 150~ 250 ° C 3~6h, cooled to room temperature to give a sulfur - conducting polymer nanotube composite positive electrode material.

[0013] 上述共热法中,所述的将导电聚合物和升华硫的混合方法为研钵磨或行星式球磨。 [0013] The co-thermal method, the method of mixing the conductive polymer and sublimated sulfur mortar mill or a planetary ball mill. 所述的保护气体可以是氩气或者氮气。 The protective gas may be argon or nitrogen.

[0014] 上述共热法中,所述的热处理温度(150〜250°C)下硫为熔融态,此时的硫具有低的黏度而易于润湿导电聚合物纳米管,且硫在更高温度下会有较大的挥发,硫蒸汽可以进入导电聚合物纳米管基底的微孔内。 [0014] The co-thermal process, the lower the heat treatment temperature (150~250 ° C) of sulfur in a molten state, at this time has a low viscosity and sulfur wettable nanotube conductive polymer, and the sulfur at higher will volatilize at a temperature greater, sulfur vapor may enter the pores of the conductive polymer substrate nanotubes. 保温时间为3-6小时,以保证熔融态的硫能进入导电基体的管内。 Holding time of 3-6 hours to ensure that the molten sulfur to enter the conductive substrate tube.

[0015] 采用液相硫渗入法制备硫-导电聚合物纳米管复合正极材料,包括以下步骤: [0015] The penetration of liquid sulfur Sulfur Preparation Method - conducting polymer nanotube composite positive electrode material, comprising the steps of:

[0016] (1)将升华硫完全熔融,然后在空气或水中急速冷却,再溶于非极性溶剂中,过滤后得到含硫量8〜12wt%的溶液; [0016] (1) The molten sulfur sublimed completely, and then rapidly cooled in air or water, and then dissolved in a nonpolar solvent, the amount of 8~12wt% of the sulfur-containing solution was filtered;

[0017] (2)将导电聚合物纳米管浸入步骤1所得的溶液中,搅拌10〜30分钟后静置,过滤后所得产物在50〜100°C下于真空或保护气氛下烘干,得到硫-导电聚合物纳米管复合正极材料。 [0017] (2) a conductive polymer nanotube solution obtained is immersed in step 1, and stirred for 10~30 minutes standing, the resulting product was filtered and dried under vacuum or protective atmosphere at 50~100 ° C, to give sulfur - conducting polymer nanotube composite positive electrode material.

[0018] 上述液相硫渗入法中,也可将所得产物再重复步骤2得到所需硫含量的硫-导电聚合物纳米管复合正极材料。 [0018] The liquid sulfur infiltration, the resulting product may be repeated Step 2 to give the desired sulfur content of the sulfur - conducting polymer nanotube composite positive electrode material.

[0019] 上述液相硫渗入法中,所述在空气或水中急速冷却的目的是为了保持硫的高温相。 [0019] The infiltration of liquid sulfur, object of the rapid cooling in air or water in order to maintain high-temperature phase is sulfur.

[0020] 上述液相硫渗入法中,所述的非极性溶剂主要根据相似相溶原理选择,为CS2, CCl4、甲苯等。 [0020] The liquid sulfur infiltration, said non-polar solvent selected based primarily on the principle like dissolves as CS2, CCl4, toluene and the like.

[0021] 本发明中所涉及的热处理过程可以采用真空或者保护气氛下进行,保护气体可以是氩气或者氮气。 Heat treatment [0021] The present invention relates may be under vacuum or a protective atmosphere, the protective gas may be argon or nitrogen.

[0022] 上述共热法和液相硫渗入法中,所述的导电聚合物纳米管和升华硫在使用前,需在真空条件下分别干燥。 [0022] The total heat infiltration and liquid sulfur, the conductive polymer and the nanotubes of sublimed sulfur prior to use, required are dried under vacuum. 所述的干燥过程可以采用真空或者保护气氛下进行,保护气体可以是氩气或者氮气。 The drying process can be employed under a vacuum or protective atmosphere, the protective gas may be argon or nitrogen. [0023] 本发明采用上述方法所获得的硫-导电聚合物复合正极材料的特征如下: [0023] The present invention uses a sulfur obtained by the method described above - conducting polymer composite positive electrode material is characterized as follows:

[0024] (1)导电聚合物基体为纳米管,其尺寸均勻,相互交织形成的网络为电荷的传递提供更多的路径; [0024] (1) a conductive polymer matrix of the nanotube uniform in size, the network formed by intertwined to provide more charge transfer path;

[0025] (2)硫通过两种不同的方法都均勻的分布在导电聚合物纳米管的表面或管内,硫与导电聚合物基体间接触紧密,提高复合材料的导电性。 [0025] (2) sulfur by two different methods are evenly distributed over the inner surface of the tube or a conductive polymer nanotubes, conductive contact between the sulfur and the polymer matrix closely, improved electrically conductive composite material.

[0026] (3)硫在复合正极材料中的含量可控,即复合正极材料的容量可控 [0026] (3) the content of sulfur in the composite cathode material controllable, i.e., capacity controllable composite positive electrode material

[0027] 导电聚合物由于其疏松的形貌结构,对硫有一定的吸附作用,硫被吸附在纳米管状导电聚合物基体的微孔内,有效的限制了硫或多硫化锂扩散出电极基体,并且增加了绝缘体的硫与导电相的接触,提供了更多与锂相结合的反应点。 [0027] Since the conducting polymers loose their topography, have a sulfur adsorption, the sulfur is adsorbed within the pores nanotube conductive polymer matrix, effectively limit the lithium sulfide or sulfur to diffuse out of the electrode substrate and increases the contact of the insulator with the conductive phase of the sulfur, to provide more reaction sites in combination with lithium. 而导电聚合物纳米管所形成的网络结构所提供的电子通道能有助于提高电极的导电性。 And the network structure of the conductive polymer formed nanotubes provided can contribute to improve the electronic conductivity of the channel electrode.

[0028] 本发明采用对硫及其还原产物有良好吸附性且本身具有高导电率的聚合物作为硫电极中的导电相,采用共热法和硫渗入法使之与硫均勻结合得到复合电极材料,解决了锂硫电池中硫极及其还原产物在有机电解质中的易溶解性和硫本身的不导电性而导致的电池循环性差等问题。 [0028] The present invention employs a good sulfur adsorption and its reduction product itself is a polymer having a high conductivity as a conductive electrode relative to the sulfur, and sulfur calorimetry using co-infiltration so that a uniform binding sulfur composite electrode obtained material, to solve the problem of poor battery cycling lithium-sulfur battery of the sulfur electrode and the reduction product is easily soluble in the organic electrolyte is not conductive and sulfur itself caused. 本发明所提供的材料可用于锂硫电池中作为正极材料使用,该复合材料的第60次循环容量大于650mAh/g,且具有良好的电化学循环稳定性。 Material of the present invention provides for a lithium sulfur battery can be used as the cathode material, the 60th cycle capacity of this composite material is greater than 650mAh / g, and has good cycle stability.

附图说明 BRIEF DESCRIPTION

[0029] 图1为实施例2中硫-聚吡咯复合材料的TEM形貌图。 [0029] FIG. 1 is a sulfur Example 2 embodiment - TEM topography polypyrrole composite material.

[0030] 图2为纯硫电极与实施例中所得复合材料电极的放电容量随循环次数的变化情况。 [0030] FIG. 2 is a pure sulfur electrode discharge capacity of the resultant embodiments of composite electrodes changes with the number of cycles.

具体实施方式 Detailed ways

[0031] 为进一步阐述本发明的内容、实质特点和显著进步,兹列举以下实施例详细说明如下,但不仅仅限于实施例。 [0031] To further illustrate the present invention, the essential characteristics and significant progress, hereby include the following examples illustrate in detail as follows, but not limited to the embodiments.

[0032] 本发明涉及的导电聚合物以聚吡咯和聚苯胺为例说明,其制备方法为:在IOOml 浓度为0. 005mol/L的甲基橙水溶液中加入0. 005mol的!^eCl3,电磁搅拌均勻后形成絮状纤维,然后加入0. 005mol吡咯或苯胺单体,室温下搅拌12小时;产物用去离子水和酒精交替清洗后在80°C真空烘干得到聚吡咯管。 [0032] The present invention relates to a conductive polymer is polyaniline and polypyrrole as an example, the preparation method:! IOOml in a concentration of 0. 005mol / L aqueous solution of methyl orange were added 0. 005mol of ^ eCl3, electromagnetic after stirring flock fibers uniformly formed, then added 0. 005mol pyrrole or aniline monomer, stirred at room temperature for 12 hours; the product with deionized water and ethanol to give polypyrrole alternate wash pipe drying at 80 ° C in vacuo.

[0033] 对比例1 [0033] Comparative Example 1

[0034] 将升华硫粉与乙炔黑和聚环氧乙烯(PEO)按5 : 3 : 2的比例在乙腈介质中制成浆料,涂布于铝箔上并进行干燥,由此制成电极膜。 [0034] The sublimation of sulfur powder and acetylene black and polyethylene oxide (PEO) and 5: 3: 2 ratio was slurried in acetonitrile medium, coated onto an aluminum foil and dried, thereby preparing an electrode film . 以金属锂箔为对电极,美国Celgard公司聚丙烯膜为隔膜,IM LiCF3S03/TEGDME为电解液,在1-3V的电压范围内,0. ImA/cm2的电流密度下进行充放电实验。 Metallic lithium foil as a counter electrode, a polypropylene film from Celgard U.S. membrane, IM LiCF3S03 / TEGDME as electrolyte, in the voltage range of 1-3V, discharge test was performed at a current density of 0. ImA / cm2 of. 所得的实验结果如下表1所示。 The results obtained are shown in Table 1. 从表中可以看出,纯硫电极的容量衰减很快,第60次循环后,可逆容量从初始值698. ImAh/g,衰减为97. 6mAh/g,容量衰减率达86. 1%0 As can be seen from the table, the capacity of pure sulfur electrode decreases rapidly, after the 60th cycle, the reversible capacity from the initial value 698. ImAh / g, attenuation 97. 6mAh / g, 86.1 percent rate of capacity fade 0

[0035] 实施例1 [0035] Example 1

[0036] 首先分别将硫和聚吡咯在50°C下真空干燥10h。 [0036] First and sulfur, respectively polypyrrole dried 10h under vacuum at 50 ° C. 将硫和聚吡咯按质量比为2 : 1 混合均勻后真空密封在玻璃容器内,然后在150°C条件下保温4小时,自然冷却后得到硫含量为56%的硫-聚吡咯复合材料(SPT1)。 Sulfur and polypyrrole mass ratio of 2: 1 after mixed vacuum sealed in a glass container, then incubated for 4 hours at 150 ° C under conditions, allowed to cool to give a sulfur content of 56% sulfur - polypyrrole composite material ( SPT1). 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果见表1。 The test results are shown in Table 1.

[0037] 实施例2 [0037] Example 2

[0038] 原材料的干燥如实施例1。 Dried [0038] material as described in Example 1. 将质量比为1 : 1硫和聚吡咯混勻后按实施例1的方法得到硫含量为40%的硫-聚吡咯复合材料(SPD)。 The mass ratio of 1: 1 after mixing sulfur and the polypyrrole according to the method of Example 1 to give a sulfur content of 40% of the sulfur - polypyrrole composites (SPD). 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果见表1。 The test results are shown in Table 1. 从表1中的数据可以看出,相比纯硫电极,复合材料电极的循环性能有了很大提高。 As can be seen from the data in Table 1, as compared to pure sulfur electrode, a cycling performance of the composite electrode has been greatly improved.

[0039] 实施例3 [0039] Example 3

[0040] 原材料的干燥如实施例1。 Dried [0040] material as described in Example 1. 将硫在140°C完全熔融,在空气或者水中急速冷却,然后将它溶于中,过滤后得到含硫10%的滤液。 At 140 ° C sulfur is completely melted, rapidly cooled in air or water, and then it was dissolved in the filtrate was filtered to give 10% of sulfur. 将适量聚吡咯纳米管浸入以上硫的CS2 溶液,搅拌10分钟后静置20分钟,然后将过滤后的产物在50°C下真空烘干即得到含硫量为15%的硫-聚吡咯复合材料(SPIl)。 The amount of PPy tube was immersed in a solution of the above sulfur CS2, stirred for 10 minutes allowed to stand 20 minutes, then the product was filtered, vacuum drying at 50 ° C for sulfur content to obtain 15% sulfur - polypyrrole composite material (SPIl). 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果见表1。 The test results are shown in Table 1.

[0041] 实施例4 [0041] Example 4

[0042] 将适量的实施例3中得到的硫-聚吡咯复合材料(SPIl)浸入含硫10%左右的CS2 溶液,按实施例3的方法得到含硫量为的硫-聚吡咯材料(SPU)。 [0042] The embodiment an appropriate amount of sulfur obtained in Example 3 - polypyrrole composites (SPIL) was immersed in about 10% of the sulfur CS2 solution, sulfur content of sulfur obtained by the method of Example 3 - polypyrrole material (SPU ). 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果见表1。 The test results are shown in Table 1.

[0043] 实施例5 [0043] Example 5

[0044] 按具体实施方式中聚吡咯纳米管的合成方法,以苯胺为单体合成了聚苯胺纳米管。 [0044] The method of synthesis according to the specific embodiment polypyrrole nanotubes, aniline nanotubes synthesized polyaniline monomer. 原材料的干燥如实施例1。 Drying of raw materials as in Example 1. 将质量比为1 : 1的硫和聚苯胺混勻后按实施例1的方法得到硫含量为40%的硫-聚苯胺复合材料(S-PAnl)。 The mass ratio of 1: 1 of sulfur, and after mixing polyaniline as described in Example 1 to give a sulfur content of 40% of the sulfur - polyaniline composite (S-PAnl). 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果见表1。 The test results are shown in Table 1.

[0045] 实施例6 [0045] Example 6

[0046] 按实施例3中方法配置含硫10%左右的溶液。 [0046] 10% of the sulfur-containing solution by the method of Example 3 configuration embodiment. 然后将适量的聚苯胺纳米管浸入以上溶液中,搅拌10分钟后静置20分钟,然后将过滤后的产物在50°C下真空烘干即得到含硫量为15%的硫-聚苯胺复合材料(S-PAM)。 Then an appropriate amount of polyaniline nanotube is immersed in the above solution, stirred for 10 minutes allowed to stand 20 minutes, then the product was filtered, vacuum drying at 50 ° C for obtain sulfur content of sulfur of 15% - PANI material (S-PAM). 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果见表1。 The test results are shown in Table 1.

[0047] 实施例7 [0047] Example 7

[0048] 按具体实施方式中聚吡咯纳米管的合成方法,以苯胺为单体合成了聚苯胺纳米管。 [0048] The method of synthesis according to the specific embodiment polypyrrole nanotubes, aniline nanotubes synthesized polyaniline monomer. 原材料的干燥如实施例1。 Drying of raw materials as in Example 1. 将质量比为1 : 1的硫和聚苯胺混勻后真空密封在玻璃容器内,然后在250°C条件下保温3小时,自然冷却后得到硫含量为40%的硫-聚苯胺复合材料。 The mass ratio of 1: 1 mix of sulfur and polyaniline vacuum sealed in a glass container, then incubated for 3 hours under conditions of 250 ° C, natural cooling to give a sulfur content of 40% of the sulfur - polyaniline composite. 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果与实施例5基本相同。 The test results of Example 5 is substantially the same.

[0049] 实施例8 [0049] Example 8

[0050] 按具体实施方式中聚吡咯纳米管的合成方法,以苯胺为单体合成了聚苯胺纳米管。 [0050] The method of synthesis according to the specific embodiment polypyrrole nanotubes, aniline nanotubes synthesized polyaniline monomer. 原材料的干燥如实施例1。 Drying of raw materials as in Example 1. 将质量比为3 : 1的硫和聚苯胺混勻后真空密封在玻璃容器内,然后在200°C条件下保温6小时,自然冷却后得到硫含量为50%的硫-聚苯胺复合材料。 The mass ratio of 3: 1 of sulfur, and after mixing polyaniline vacuum sealed in a glass container, then incubated for 6 hours at 200 ° C for conditions, natural cooling to give a sulfur content of 50% of the sulfur - polyaniline composite. 电极制备方法及电池组装、测试条件均同对比例1。 Preparation and electrode assembly of the battery, the test conditions were the same as Comparative Example 1. 测试结果与实施例5基本相同。 The test results of Example 5 is substantially the same.

[0051] 表1 [0051] TABLE 1

[0052] [0052]

Figure CN102315424AD00071

[0053] [0053]

[0054] 从表1中所列的数据可以看出,共热法制备的复合正极材料,均具有较高的容量保持率,较对比例中的电极材料均有了很大的提高。 [0054] From the data listed in Table 1 from the composite positive electrode material prepared by co heat, have higher capacity retention than the comparative electrode material are greatly improved.

[0055] 上述实施例中所涉及的极性溶剂C2S可以由CCl4或甲苯替代,所得复合材料经检测,其结果与使用极性溶剂C2S时基本相同。 [0055] polar solvent C2S above embodiments involved CCl4 may be replaced by or toluene, the resulting composite material is detected, which is substantially the same results when using a polar solvent C2S.

[0056] 上述实施例所得复合材料,经TEM检测,其结构均呈中空纤维状,其外径为100〜 200nm,内径为50 〜80nm。 [0056] Example embodiments described above composite material obtained by TEM examination, which showed the structure of a hollow fiber, an outer diameter of 100~ 200nm, an inner diameter of 50 ~80nm.

Claims (10)

1. 一种锂硫电池用复合正极材料,其特征在于,为硫-导电聚合物纳米管复合正极材料,所述的硫分散吸附于所述导电聚合物纳米管的管表面和管内,形成中空的纤维状结构。 A lithium-sulfur battery, wherein a composite positive electrode material, a sulfur - conducting polymer nanotube composite positive electrode material, the adsorption of sulfur dispersed in the conductive polymer surface of the inner tube and the tube nanotubes, to form a hollow the fibrous structure.
2.如权利要求1所述的锂硫电池用复合正极材料,其特征在于,所述中空纤维状结构的外径为100〜200nm,所述中空纤维状结构的内径为50〜80nm。 2. The lithium-sulfur battery according to claim 1 with a composite positive electrode material, characterized in that the outer diameter of the hollow fiber structure is 100~200nm, inner diameter of the hollow fiber structure is 50~80nm.
3.如权利要求1所述的锂硫电池用复合正极材料,其特征在于,所述的硫占所述复合正极材料总重量的15〜56%。 Lithium-sulfur battery according to claim 1 with a composite positive electrode material, characterized in that the sulfur accounted for 15~56% of the total weight of the composite positive electrode material.
4.如权利要求1所述的锂硫电池用复合正极材料,其特征在于,所述的导电聚合物选自聚吡咯、聚丙胺、聚噻吩、聚乙炔或它们的衍生物。 The lithium sulfur battery according to claim 1 with a composite positive electrode material, wherein said conductive polymer is selected from polypyrrole, propylamine, polythiophene, polyacetylene or derivatives thereof.
5.如权利要求1-4中任一权利要求所述的锂硫电池用复合正极材料,其特征在于,所述的导电聚合物纳米管通过自分解软模板法合成。 The lithium sulfur battery according to any one of claims 1-4 with a composite positive electrode material, characterized in that the conductive polymer synthesized nanotubes by self-decomposition method as claimed in claim soft template.
6.如权利要求1-5中任一权利要求所述的锂硫电池用复合正极材料的制备方法,为共热法,包括以下步骤:将质量比为(1〜幻:1的升华硫和导电聚合物纳米管混合均勻,在真空或保护气氛下于150〜250°C保温3〜6h,自然冷却到室温后得到硫_导电聚合物纳米管复合正极材料。 The lithium-sulfur battery according to any one of claims 1-5 in the preparation method claimed in claim composite positive electrode material, a co-thermal method, comprising the steps of: a mass ratio of (1 ~ Magic: 1 and sublimed sulfur after conducting polymer nanotubes uniformly mixed, in a vacuum or protective atmosphere at 150~250 ° C incubation 3~6h, cooled to room temperature to give a sulfur _ conducting polymer nanotube composite positive electrode material.
7.如权利要求6所述的锂硫电池用复合正极材料的制备方法,其特征在于,所述的将导电聚合物和升华硫的混合方法为研钵磨或行星式球磨。 The lithium sulfur battery according to claim 6 for producing a composite positive electrode material, characterized in that said conductive polymer and a method of mixing sulfur sublimation mortar mill or a planetary ball mill.
8.如权利要求1-5中任一权利要求所述的锂硫电池用复合正极材料的制备方法,为液相硫渗入法,包括以下步骤:(1)将升华硫完全熔融,然后在空气或水中急速冷却,再溶于非极性溶剂中,过滤后得到含硫量8〜12wt%的溶液;(2)将导电聚合物纳米管浸入步骤1所得的溶液中,搅拌10〜30分钟后静置,过滤后所得产物于真空或保护气氛下烘干;得到硫-导电聚合物纳米管复合正极材料。 8. The lithium-sulfur battery according to any one of claims 1-5 by producing a composite positive electrode material for the liquid-phase infiltration sulfur, comprising the steps of claim: (1) complete melting of the sublimed sulfur, air and (2) a conductive polymer nanotubes obtained in the step 1 was immersed in the solution, stirred for 10~30 min; rapid cooling or water, and then dissolved in a nonpolar solvent, the amount of 8~12wt% of the sulfur-containing solution was filtered standing, the resulting product was filtered and dried under vacuum or protective atmosphere; to give a sulfur - conducting polymer nanotube composite positive electrode material.
9.如权利要求8所述的锂硫电池用复合正极材料的制备方法,其特征在于,所述的非极性溶剂选自CS2、CCl4或甲苯。 9. The lithium-sulfur battery according to claim 8 for producing a composite positive electrode material, wherein said non-polar solvent is selected CS2, CCl4 or toluene.
10.如权利要求1-5中任一权利要求所述的锂硫电池用复合正极材料在锂硫电池中作为正极材料的应用。 10. The lithium-sulfur battery as claimed in any one of claims 1-5 in claim composite positive electrode material for use as cathode material in a lithium sulfur battery.
CN201010220208.6A 2010-07-06 2010-07-06 Composite anode material for lithium sulfur battery, preparation method and application thereof CN102315424B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010220208.6A CN102315424B (en) 2010-07-06 2010-07-06 Composite anode material for lithium sulfur battery, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010220208.6A CN102315424B (en) 2010-07-06 2010-07-06 Composite anode material for lithium sulfur battery, preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN102315424A true CN102315424A (en) 2012-01-11
CN102315424B CN102315424B (en) 2014-07-16

Family

ID=45428369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010220208.6A CN102315424B (en) 2010-07-06 2010-07-06 Composite anode material for lithium sulfur battery, preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN102315424B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247776A (en) * 2012-02-07 2013-08-14 苏州宝时得电动工具有限公司 Preparation method for electrode composite material
CN103262302A (en) * 2010-11-04 2013-08-21 罗伯特·博世有限公司 Cathode material for a lithium sulfur battery
CN103259000A (en) * 2013-04-25 2013-08-21 浙江师范大学 Polypyrrole hollow microsphere/ sulfur composite material as well as preparation method and application thereof
CN104157829A (en) * 2014-08-22 2014-11-19 南京中储新能源有限公司 Sulfur carbon composite material based on polyaniline nanotubes and preparation method thereof, and secondary battery
CN104157839A (en) * 2014-08-22 2014-11-19 南京中储新能源有限公司 Polyaniline nanotube-sulfur composite material and secondary battery
CN104201336A (en) * 2014-09-10 2014-12-10 南京中储新能源有限公司 Polyaniline nano array-based sulfur composite material, preparation method thereof and secondary battery
CN104835966A (en) * 2015-04-30 2015-08-12 奇瑞汽车股份有限公司 Lithium sulfur battery cathode material and preparation method thereof
TWI511359B (en) * 2013-10-17 2015-12-01 Hon Hai Prec Ind Co Ltd Lithium ion battery active material and method for making the same
CN105762341A (en) * 2016-03-04 2016-07-13 河源广工大协同创新研究院 Preparation method of nano-sulfur/annular polypyrrole composite positive electrode material
CN105958033A (en) * 2016-07-04 2016-09-21 吉林大学 Preparation method and application of non-graphitizing carbon nano tube/sulfur composite material
CN106299317A (en) * 2016-11-03 2017-01-04 深圳市沃特玛电池有限公司 A kind of lithium sulfur battery anode material and preparation method thereof, lithium-sulfur cell
CN107275580A (en) * 2017-07-10 2017-10-20 华南理工大学 A kind of long circulation life height ratio capacity lithium sulfur battery anode material and lithium-sulphur cell positive electrode and its preparation
CN109256554A (en) * 2018-09-28 2019-01-22 河南科技学院 A kind of sulfide polymer composite material and preparation method and application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883367A (en) * 1972-10-19 1975-05-13 Toyoda Chuo Kenkyusho Kk Sodium-sulfur storage battery
CN1396202A (en) * 2002-04-17 2003-02-12 中国科学院上海微系统与信息技术研究所 Sulfur/electric conducting polymer composition used as positive electrode of electrochemical power supply and its method
CN101070383A (en) * 2007-02-13 2007-11-14 同济大学 Method for preparing poly 1,5-naphthalene diamine nano pipe
CN101562244A (en) * 2009-06-02 2009-10-21 北京理工大学 Method for preparing elemental sulfur composite material used by lithium secondary battery
CN101562261A (en) * 2009-06-02 2009-10-21 北京理工大学 Lithium-sulfur battery and preparation method thereof
CN101740758A (en) * 2010-01-04 2010-06-16 北京航空航天大学 Preparation method of vulcanized conducting polymer composite anode for lithium ion battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883367A (en) * 1972-10-19 1975-05-13 Toyoda Chuo Kenkyusho Kk Sodium-sulfur storage battery
CN1396202A (en) * 2002-04-17 2003-02-12 中国科学院上海微系统与信息技术研究所 Sulfur/electric conducting polymer composition used as positive electrode of electrochemical power supply and its method
CN101070383A (en) * 2007-02-13 2007-11-14 同济大学 Method for preparing poly 1,5-naphthalene diamine nano pipe
CN101562244A (en) * 2009-06-02 2009-10-21 北京理工大学 Method for preparing elemental sulfur composite material used by lithium secondary battery
CN101562261A (en) * 2009-06-02 2009-10-21 北京理工大学 Lithium-sulfur battery and preparation method thereof
CN101740758A (en) * 2010-01-04 2010-06-16 北京航空航天大学 Preparation method of vulcanized conducting polymer composite anode for lithium ion battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103262302A (en) * 2010-11-04 2013-08-21 罗伯特·博世有限公司 Cathode material for a lithium sulfur battery
CN103247776B (en) * 2012-02-07 2016-02-17 苏州宝时得电动工具有限公司 The preparation method of electrode composite material
CN103247776A (en) * 2012-02-07 2013-08-14 苏州宝时得电动工具有限公司 Preparation method for electrode composite material
CN103259000A (en) * 2013-04-25 2013-08-21 浙江师范大学 Polypyrrole hollow microsphere/ sulfur composite material as well as preparation method and application thereof
TWI511359B (en) * 2013-10-17 2015-12-01 Hon Hai Prec Ind Co Ltd Lithium ion battery active material and method for making the same
US9240589B2 (en) 2013-10-17 2016-01-19 Tsinghua University Electrode active material of lithium ion battery and method for making the same
CN104157839A (en) * 2014-08-22 2014-11-19 南京中储新能源有限公司 Polyaniline nanotube-sulfur composite material and secondary battery
CN104157829B (en) * 2014-08-22 2016-01-20 南京中储新能源有限公司 A kind of secondary aluminium cell comprising sulphur carbon composite based on polyaniline nanotube
CN104157829A (en) * 2014-08-22 2014-11-19 南京中储新能源有限公司 Sulfur carbon composite material based on polyaniline nanotubes and preparation method thereof, and secondary battery
CN104201336A (en) * 2014-09-10 2014-12-10 南京中储新能源有限公司 Polyaniline nano array-based sulfur composite material, preparation method thereof and secondary battery
CN104835966A (en) * 2015-04-30 2015-08-12 奇瑞汽车股份有限公司 Lithium sulfur battery cathode material and preparation method thereof
CN105762341A (en) * 2016-03-04 2016-07-13 河源广工大协同创新研究院 Preparation method of nano-sulfur/annular polypyrrole composite positive electrode material
CN105958033A (en) * 2016-07-04 2016-09-21 吉林大学 Preparation method and application of non-graphitizing carbon nano tube/sulfur composite material
CN105958033B (en) * 2016-07-04 2018-07-06 吉林大学 A kind of preparation method and application of non-graphitized carbon nanotube/sulphur composite material
CN106299317A (en) * 2016-11-03 2017-01-04 深圳市沃特玛电池有限公司 A kind of lithium sulfur battery anode material and preparation method thereof, lithium-sulfur cell
CN107275580A (en) * 2017-07-10 2017-10-20 华南理工大学 A kind of long circulation life height ratio capacity lithium sulfur battery anode material and lithium-sulphur cell positive electrode and its preparation
CN109256554A (en) * 2018-09-28 2019-01-22 河南科技学院 A kind of sulfide polymer composite material and preparation method and application

Also Published As

Publication number Publication date
CN102315424B (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Zhou et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
Wei et al. CNT enhanced sulfur composite cathode material for high rate lithium battery
Zheng et al. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries
Liang et al. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery
Lin et al. Lithium–sulfur batteries: from liquid to solid cells
Rao et al. Lithium-sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte
Liang et al. A composite of sulfur and polypyrrole–multi walled carbon combinatorial nanotube as cathode for Li/S battery
Liang et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries
Zhang et al. One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries
Choi et al. Improvement of cycle property of sulfur electrode for lithium/sulfur battery
US9112240B2 (en) Lithium metal-sulfur and lithium ion-sulfur secondary batteries containing a nano-structured cathode and processes for producing same
CN1168163C (en) Single-wall carbon nano tubes as electrode of rechargeable battery
CN101442124B (en) Method for preparing composite material of lithium ion battery cathode, and cathode and battery
He et al. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries
Li et al. Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery
Lei et al. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe 3 O 4 composites as superior lithium ion anodes
Huang et al. Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries
Ge et al. High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries
Wang et al. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery
Ding et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery
CN101577323B (en) Sulfenyl anode of lithium-sulfur rechargeable battery and preparation method thereof
Li et al. Improved cyclability of lithium–sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@ nitrogen-doped porous carbon core–shell composite
Ma et al. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer
Guo et al. Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries
Sun et al. Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01