CN101562244A - Method for preparing elemental sulfur composite material used by lithium secondary battery - Google Patents

Method for preparing elemental sulfur composite material used by lithium secondary battery Download PDF

Info

Publication number
CN101562244A
CN101562244A CN 200910085136 CN200910085136A CN101562244A CN 101562244 A CN101562244 A CN 101562244A CN 200910085136 CN200910085136 CN 200910085136 CN 200910085136 A CN200910085136 A CN 200910085136A CN 101562244 A CN101562244 A CN 101562244A
Authority
CN
China
Prior art keywords
elemental sulfur
sulfur
composite material
lithium secondary
secondary battery
Prior art date
Application number
CN 200910085136
Other languages
Chinese (zh)
Inventor
锋 吴
吴生先
丽 李
王国庆
实 陈
陈人杰
陈君政
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to CN 200910085136 priority Critical patent/CN101562244A/en
Publication of CN101562244A publication Critical patent/CN101562244A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation

Abstract

The invention relates to a method for preparing an elemental sulfur composite material used by the positive electrode of a lithium secondary battery, which belongs to the field of electrochemical batteries. The composite material consists of a carbon material with good electric conductivity, high specific surface area and strong adsorptivity and elemental sulfur. The method comprises the following steps: mixing the elemental sulfur and the carbon material evenly and sufficiently, and then filling the mixture into a specially-designed stainless steel sealable tank capable of vacuumizing; and adopting a sealed zone heating method to melt sublimate the elemental sulfur in the presence of vacuum or inert gas, and then depositing the elemental sulfur on the carbon material substrate to form a composite product with a uniform structure. The elemental sulfur composite material prepared by the method has high electrochemical activity, large discharge specific capacity and good battery cycle performance, and has wide application prospect in the fields of the lithium secondary batteries, lithium-sulfur batteries and the like.

Description

锂二次电池用单质硫复合材料的制备方法 The method of preparing a lithium secondary battery of the composite elemental sulfur

技术领域 FIELD

本发明涉及一种高能量密度的锂二次电池用正极材料的制备方法。 Preparing a positive electrode material of the present invention relates to a high-energy density lithium secondary battery. 具体地说,制备了一种电化学活性高、放电比容量大的单质硫复合材料。 Specifically, the high activity of preparing an electrochemical discharge capacity is larger than the elemental sulfur composites. 此复合材料以导电性能良好的碳材料作为基体,将单质硫复合到碳材料中形成复合材料,属于电化学电池领域。 This composite material with good electrical conductivity of carbon material as a matrix, the sulfur compound into a carbon material to form a composite material, which belongs to the field of electrochemical cells.

背景技术 Background technique

近年来,随着科技的不断进步,各种电子产品的快速发展,要求所用的化学电源具有质量轻、体积小、容量大等特点。 In recent years, with the advancement of technology, the rapid development of all kinds of electronic products, chemicals used in the power requirements of light weight, small size, large capacity and other characteristics. 虽然通过改进现有电池材料制备和电池制作工艺在一定程度上可以提高电池的性能,但较大幅度提高电池的能量密度还得靠新材料的开发。 While conventional battery materials prepared by improving the production process and can improve the battery performance of the battery to a certain extent, but more substantial increase in energy density of batteries have to rely on the development of new materials.

在众多研究的电池体系中,金属锂硫电池被认为是最具应用潜力的。 In the battery system of much research, the metallic lithium sulfur batteries are considered the most promising applications. 用作正极活性物质的单质硫理论比容量为1675 mAh/g,质量比能量为2600 Wh/kg(金属锂与硫完全反应后生成Li2S),远远高于现行的锂离子二次电池材料LiCo02、 LiMn02和LiFeP04等。 As a positive electrode active material is elemental sulfur, the theoretical specific capacity of 1675 mAh / g, mass (after complete reaction with the sulfur metal lithium Li 2 S) specific energy of 2600 Wh / kg, much higher than the current lithium ion secondary battery material LiCo02 , LiMn02 and LiFeP04 and so on. 同时单质硫正极材料具有来源丰富价格便宜、对环境友好、电池安全性好等优点。 Meanwhile elemental sulfur cathode materials have a rich source of inexpensive, environmentally friendly, battery safety and good. 然而,锂硫电池的发展还存在很多问题。 However, the development of lithium-sulfur batteries are still many problems.

单质硫在室温下是典型的电子和离子绝缘体(5xlO^S/cm25X:),在实际应用时一般需要加入大量的导电剂,这在很大程度上降低了电极整体的比容量;并且硫还原生成Li2S的过程是一个多步反应,其中间产物多硫化锂易溶于有机液态电解液,多硫化锂的大量溶解会导致一部分的活性物质流失,同时还会导致电解液粘度的增大及离子导电性的降低。 Sulfur is a typical electrons and ions in the insulator (5xlO ^ S / cm25X :), in practical applications typically require a large amount of conductive agent was added at room temperature, which reduces the overall specific capacity of the electrode in large; and the sulfur reduction Li2S generation process is a multi-step reaction, wherein the product between lithium polysulfide soluble in organic liquid electrolyte, the amounts of dissolved lithium polysulfides can cause loss of a portion of the active material, while also resulting in increased viscosity of the electrolyte and ion conductivity decreases. 部分溶解了的多硫化锂扩散至负极还会与锂发生自放电反应,进一步恶化电池的性能,这一系列的问题都导致了电极活性物质利用率低和电池循环性能差。 Partially dissolved lithium polysulfides diffuse to the negative electrode will self-discharge reaction with lithium, a further deterioration of the battery performance, this series of problems resulting in poor electrode active material utilization rate and the cycle performance of the battery.

为了解决以上的问题,有建议采用有机硫化物或硫复合物来代替单质硫,比如PDDTB, PDTDA, PABTH, FeS2和CuS等,但是这类化合物的理论比容量不到单质硫的30%从而限制了这类材料的应用。 In order to solve the above problems, there is suggested an organic sulfide or sulfur compound in place of elemental sulfur, such as PDDTB, PDTDA, PABTH, FeS2 CuS and the like, but 30% of the theoretical capacity of such compounds is less than the elemental sulfur to limit the application of such materials. 在单质硫表面包覆导电聚合物如聚苯胺、聚吡咯可以增加其导电性并且可以抑制部分放电产物的溶解,但是电池的放电比容量并没有得到大幅度的提高并且该方法成本较高、对环境产生污染。 Sulfur coated on the surface of a conductive polymer such as polyaniline, polypyrrole can increase its electrical conductivity and discharge products dissolved portion can be suppressed, but the discharge capacity of the battery has not been significantly improved and the method is high cost, environment pollution. 为了改善锂硫电池的循环寿命,公布了一系列以乙二醇二甲醚、1,3-二氧五环、四氢呋喃、二甘醇二甲醚、四甘醇二甲醚等有机溶剂以及它们的混合溶剂的电解液,这类溶剂在一定程度上能抑制单质硫放电产物的溶解从而改善电池的循环性能。 In order to improve the cycle life of lithium-sulfur batteries, published a series of ethylene glycol dimethyl ether, 1,3-dioxolane, tetrahydrofuran, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, an organic solvent, and their a mixed solvent of an electrolyte, such solvents can be suppressed to a certain extent, dissolve sulfur discharge products, thereby improving the cycle performance of the battery.

3随着聚合物和凝胶电解质的发展,采用纯固态的电解质并结合特殊的电池设计技术,可以较大程度的抑制放电产物的溶解,但是单质硫电极本身导电性等问题未能得到解决。 3 and with the development of polymer gel electrolyte, solid electrolyte and pure binding special battery design techniques, can inhibit the dissolution of a greater degree of discharge product, elemental sulfur, but the conductive electrode itself unresolved problems.

发明内容 SUMMARY

本发明的目的在于提供一种锂二次电池正极用高容量单质硫复合材料的制备方法,通过单质硫的复合来提高电极活性物质利用率进而改善电池的循环寿命。 Object of the present invention is to provide a method of preparing a lithium secondary battery positive electrode composite material with high sulfur capacity, to improve the utilization rate of the electrode active material thereby improving the cycle life of the battery by the composite elemental sulfur. 造成单质硫活性物质利用率低的原因主要有,电极导电性差和放电产物的溶解。 Causes the material utilization rate of active sulfur are mainly dissolved poorly conductive electrode and discharge product. 为此,本发明提供了一种制备电化学活性高、比容量大的单质硫复合材料的方法。 To this end, the present invention provides a process for preparing a high electrochemical activity, the method is larger than the capacity of the composite elemental sulfur. 该方法所制备的复合材料由两部分组成:一是导电性能良好的碳材料;另一部分是电化学活性的单质硫。 The composite material prepared by the method of two parts: one good conductive properties of the carbon material; the other is electrochemically active elemental sulfur. 也即此复合材料以碳材料为基体,将单质硫加热升华然后扩散沉积至碳材料中,形成结构均匀的复合产物。 This composite material i.e. carbon material as the matrix, the sulfur dye-sublimation and diffusion of the carbon material deposited to form a uniform composite product structure.

本发明的内容包括:以导电性能良好的碳材料作为基体,通过密封分段加热的方式将单质硫均匀地沉积在碳材料的孔或间隙中;加热过程采用特殊设计的可抽真空的不锈钢密封反应罐,该方法的优点在于可精确控制复合材料的硫含量并且能制得结构均匀的复合产物;具有多孔结构的碳材料能减小活性物质硫的颗粒,从而提高单质硫的利用率;碳材料优良的导电性能将有助于克服单质硫导电性能差的问题,其较高的比表面积、强大的吸附能力能抑制放电产物的溶解流失,从而提高活性物质的利用率,改善电池的循环性能。 The present invention comprises: a good conductive properties of the carbon material as the substrate, the sealing segment heating manner elemental sulfur uniformly deposited in the pores or interstitial carbon material; heating using a specially designed evacuable sealed stainless steel reaction tank, the advantage of this method is that the sulfur content can be precisely controlled and can be made of the composite material to obtain a uniform structure of the composite product; carbon material having a porous structure can be reduced sulfur active material particles to improve the utilization of elemental sulfur; carbon excellent conductivity material will help to overcome the difference sulfur conductivity problems, their higher specific surface area, strong adsorption ability to inhibit the loss of dissolved discharge products, thereby increasing the utilization of the active material, improve the cycle performance of the battery .

按照以上设计思路的单质硫复合材料其具体制备步骤如下: According to the above design ideas elemental sulfur composites prepared specific steps are as follows:

(1) 称取一定量的碳材料,碳材料包括:碳纳米管、碳纳米纤维、活性炭、碳气凝胶、 碳黑等; (1) Weigh a quantity of the carbon material, the carbon material comprising: carbon nanotubes, carbon nanofibers, activated carbon, carbon aerogels, and carbon black;

(2) 称取一定量的单质硫,单质硫为升华硫或高纯硫; (2) Weigh a quantity of elemental sulfur, elemental sulfur or sublimed sulfur high-purity sulfur;

(3) 将步骤(1)中的碳材料与步骤(2)中的单质硫充分混合均匀,混合物中单质硫的含量为25%~95%; (3) The carbon material and the step of elemental sulfur in step (2) (1) is sufficiently mixed, the sulfur content in the mixture is 25% to 95%;

(4) 将混合物装入特殊设计的可抽真空的不锈钢密封罐中,然后通过抽气或排气的方式使混合物处于真空或有惰性气体存在的环境中后密封。 (4) The mixture may be loaded into a specially designed vacuum sealed stainless steel tank, and then the mixture is vacuum or an inert gas environment in a sealing manner by a suction or exhaust. 惰性气体为Ar或者N2; Inert gas is Ar or N2 of;

(5) 加热步骤(4)中的混合物,使单质硫熔化并扩散至碳材料的孔或间隙中,加热温度控制在150〜20(TC之间,恒温4〜10小时; ' (5) the heating step (4) in a mixture of the elemental sulfur is melted and diffused into the pores or interstices of the carbon material, the heating temperature (between 150~20 TC, thermostat 4~10 hours; '

(6) 升高温度使单质硫升华并进一步沉积到碳材料基体中,温度范围为300〜40(TC,恒温2~5小时; (6) raising the temperature so that the elemental sulfur sublimes and is further deposited onto the carbon matrix material, the temperature range is 300~40 (TC, temperature 2 to 5 hours;

(7) 自然冷却至室温,得到单质硫复合材料。 (7) was naturally cooled to room temperature to obtain elemental sulfur composites. 本发明方法突出的优点是在制备单质硫复合材料时采用了密封分段加热的方式使单质硫熔化升华然后扩散沉积至碳材料基体中。 The method of the present invention features the advantage of using a segmented heater sealed manner sublimed elemental sulfur is melted and deposited to the carbon diffusion matrix material in the preparation of elemental sulfur composites. 与已有的方法相比较,该方法能在真空或在惰性气 Compared with conventional methods, this method can in a vacuum or in an inert gas

体存在下的环境中实现,能精确控制复合材料中单质硫的含量,在密封罐中能使单质硫与碳材料充分反应均匀,因而加入的材料能够得到充分利用,避免了材料的浪费。 Presence in vivo environment implemented, the composite content of elemental sulfur can be precisely controlled, enabling elemental sulfur with a carbon material in a sealed tank sufficiently homogeneous reaction, the material thus added can be fully utilized to avoid material waste.

为了检测本发明方法制备的单质硫复合材料的电化学性能,本发明将该复合材料作为正极制备了可充锂电池,其组成包括:正极、负极、电解质和隔膜,其特征在于: In order to detect electrochemical properties of sulfur composites prepared by the process of the present invention, the present invention is a rechargeable lithium battery, the composite material prepared as a positive electrode, a composition comprising: a cathode, an anode, an electrolyte and a separator, wherein:

(1) 正极的组成包括:正极活性材料、导电材料和粘合剂。 (1) The positive electrode composition comprising: a positive electrode active material, a conductive material and a binder. 其中正极活性材料采用如上所述的单质硫复合材料; Wherein the positive electrode active material is elemental sulfur using the composite material as described above;

(2) 负极为锂金属或锂合金如Li、 Li-Sn、 Li-Si、 Li-Al; (2) the negative electrode is lithium metal or lithium alloys such as Li, Li-Sn, Li-Si, Li-Al;

(3) 电解质为液态电解质、固态电解质或凝胶电解质。 (3) the electrolyte is a liquid electrolyte, solid electrolyte or gel electrolyte. 将上述制备的可充锂电池在室温下以100mA/g的电流密度充放电,单质硫活性物质放电 The rechargeable lithium battery prepared above at a current density of 100mA / g at charge and discharge at room temperature, elemental sulfur active material discharge

比容量为500-1500mAh/g,平均放电电压为2.1V (vs丄i/Li+),活性物质的利用率在60-90%之间,电池在循环50周后还保持较高的比容量,表现出了良好的循环稳定性,所制得的可充锂电池能量密度高于300Wh/kg。 Specific capacity 500-1500mAh / g, an average discharge voltage of 2.1V (vs Shang i / Li +), the utilization of the active material is between 60-90%, 50 weeks after cell cycle still maintain a high specific capacity, shows a good cycle stability, the resulting rechargeable lithium battery energy density of greater than 300Wh / kg.

本发明方法制备的单质硫复合材料在一定程度上解决了单质硫导电性能差、放电产物溶解流失的问题,从而提高了电池的容量特性和循环寿命。 Sulfur composite material prepared by the method of the present invention to a certain extent solves the differential conductivity of elemental sulfur, dissolved discharge products loss problems, thereby improving the capacity and cycle life characteristics of the battery. 且该制备方法简单,成本低廉,所采用的材料价格便宜,与环境友好,制成的电池耐过充能力强,电池的安全性能好,因而具有良好的应用前景。 And the preparation method is simple, low cost, the price of materials used in inexpensive, and environmentally friendly, cells made resistant to the strong charge capacity, good safety performance of the battery, which has a good prospect.

附图说明 BRIEF DESCRIPTION

图1为本发明方法所设计的可抽真空的密封罐; The method of the present invention of FIG. 1 may be designed to seal the vacuum tank;

图2为采用本发明方法制备的单质硫复合材料的SEM图; FIG 2 is a SEM image of elemental sulfur using the composite material prepared by the process of the present invention;

图3为采用本发明方法制备的单质硫复合材料作为锂电池正极时的首次放电曲线图; Figure 3 is a discharge curve at the first positive electrode using lithium sulfur preparation process of the present invention, the composite material;

图4为采用本发明方法制备的单质硫复合材料作为锂电池正极时的电池循环性能,图。 Battery cycle performance when a sulfur FIG. 4 is a composite material prepared by the method of the present invention as a positive electrode of a lithium battery, Fig.

具体实施方式实施例l DETAILED DESCRIPTION Embodiments of Example l

将多壁碳纳米管(深圳纳米港)和单质硫(IOO目,Aldrich)按质量比5:95放入玛瑙研钵内充分研磨均匀,混合物装入特殊设计的可抽真空的不锈钢密封反应罐中,用真空泵将罐抽成真空后密封。 The multi-walled carbon nanotubes (Shenzhen port nanometers) and elemental sulfur (IOO mesh, Aldrich) in a mass ratio five ninety-five placed in an agate mortar sufficiently polishing uniformity, and the mixture may be loaded into a specially designed vacuum sealed stainless steel reaction tank in the tank with a vacuum pump evacuated to vacuum seal. 将密封后的反应罐置于箱式电阻炉中升温至15(TC并保持10h使单质硫熔化并扩散至多壁碳纳米管的孔或间隙中,然后将温度升至300 'C保持5 h使升华的硫蒸气进一步沉积到多壁碳纳米管的表面,自然冷却至室温得到硫/碳纳米管复合材料。该复合材料中硫含量为95%。经氮气的吸脱附等温线计算得到的多壁碳纳米管的比表面积为175.93m"g,与单质硫复合后得到的材料比表面积降为1.96n^/g,在加热处理过程中碳纳米管孔结构发生自封闭的可能性较小,因此单质硫通过升华沉积到了多壁碳纳米管的孔或间隙中是造成材料比表面积大幅度下降的根本原因。 The reaction vessel was placed the sealed box resistance furnace temperature was raised to 15 (TC 10h and maintained so that the elemental sulfur is melted and diffused up gaps or holes in the wall carbon nanotubes, and then the temperature was raised to 300 'C so maintained 5 h further sublimated sulfur vapor deposited onto the surface of the multi-walled carbon nanotubes, cooled to room temperature to give a sulfur / carbon nanotube composites the composite sulfur content of 95% by nitrogen desorption isotherm obtained more the specific surface area walled carbon nanotubes 175.93m "g, and the sulfur compound is reduced to give a specific surface area material 1.96n ^ / g, pore structure of the carbon nanotube small in the possibility of self-closing, the heat treatment process, Thus elemental sulfur deposited by sublimation into the pores or interstices of multi-walled carbon nanotube material is the root cause of a significant decrease of the specific surface area.

将该复合材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比70:20:10混合均匀,以N-甲基-2-吡咯烷酮(NMP)为溶剂,在不锈钢球磨罐中以300rpm的速度球磨8h,均匀涂布在集流体A1箔上。 The composite materials and acetylene black, polyvinylidene fluoride (PVDF) ratio of 70:20:10 by mass uniformly mixed to N- methyl-2-pyrrolidone (NMP) as a solvent in a stainless steel ball mill jar at a speed of 300rpm milling 8h, uniformly coated on the current collector A1 foil. 得到单质硫复合电极。 Elemental sulfur to obtain a composite electrode. 以该电极为工作电极,金属锂片为对电极,Celgrad2300为隔膜,1 mol/L 双三氟甲基磺酸酰亚胺锂(LiTFSI)/乙二醇二甲醚(DME) + 1, 3-二氧戊垸(D0L)(体积比l:l)为电解液组装成电池。 In this working electrode, metallic lithium sheets as the counter electrode, Celgrad2300 a separator, 1 mol / L lithium bis trifluoromethanesulfonate imide (LiTFSI) / ethylene glycol dimethyl ether (DME) + 1, 3 - dioxolane embankment (D0L) (volume ratio of l: l) is assembled into the battery electrolyte.

电池的开路电压为3.08V,在室温下以100mA/g的电流密度进行充放电,材料的首次放电比容量为1487.0 mAh/g,硫的利用率达88.9%。 Battery open circuit voltage of 3.08V, a current density to be 100mA / g at charge and discharge at room temperature, the material of the first discharge capacity was 1487.0 mAh / g, a sulfur utilization of 88.9%. 在放电曲线上出现了2个明显的放电平台,分别在2.3 V和2.0 V左右。 It appeared in two distinct discharge plateau in the discharge curve, respectively, at about 2.3 V and 2.0 V. 50次循环后放电比容量还保持在913.7 mAh/g,显示出了良好的循环稳定性。 After 50 cycles the discharge capacity remained at 913.7 mAh / g, exhibited a good cycle stability. 实施例2 Example 2

将多壁碳纳米管(深圳纳米港)和单质硫(IOO目,Aldrich)按质量比30:70放入玛瑙研钵内充分研磨均匀,混合物装入特殊设计的可抽真空的不锈钢密封反应罐中,持续通入氩气30 min以排出里面的空气,防止硫在高温下被氧化。 The multi-walled carbon nanotubes (Shenzhen port nanometers) and elemental sulfur (IOO mesh, Aldrich) in a mass ratio of 30:70 into the polishing uniformity sufficiently agate mortar, the mixture can be loaded into a specially designed vacuum sealed stainless steel reaction tank , the continuously fed to it inside the argon 30 min, to prevent the sulfur is oxidized at high temperatures. 将密封的反应罐置于箱式电阻炉中升温至200 'C并保持4h使单质硫熔化并扩散至多壁碳纳米管的孔或间隙中,然后将温度升至400 'C保持2 h使升华的硫蒸气进一步沉积到多壁碳纳米管的表面,自然冷却至室温得到硫/碳纳米管复合材料。 The sealed reaction vessel was placed in the box-type resistance furnace heated to 200 'C for 4h and elemental sulfur to make pores or interstices melt and diffusion-wall carbon nanotube up, and then the temperature was raised to 400' C sublimation holding 2 h the further sulfur vapor deposited onto the surface of the multi-walled carbon nanotubes, cooled to room temperature to give a sulfur / carbon nanotube composite. 该复合材料中硫含量为70%。 The composite sulfur content of 70%. 经氮气的吸脱附等温线计算得到的多壁碳纳米管的比表面积为175.93m々g,与单质硫复合后得到的材料比表面积降为5.33m々g,在加热处理过程中碳纳米管孔结构发生自封闭的可能性较小,因此单质硫通过升华沉积到了多壁碳纳米管的孔或间隙中是造成材料比表面积大幅度下降的根本原因。 Multi-walled carbon nanotubes obtained is calculated by the nitrogen desorption isotherm 175.93m々g specific surface area, and the elemental sulfur is reduced to a composite material obtained 5.33m々g specific surface area during heat treatment of carbon nanotubes smaller pore structure in the possibility of self-closing, thus elemental sulfur deposited by sublimation into the pores or interstices of multi-walled carbon nanotube material is the root cause of a significant decrease of the specific surface area.

将该复合材料与乙炔黑、聚氧化乙烯(PEO)按质量比70:20:10混合均匀,以去离子水为溶剂,在不锈钢球磨罐中以300rpm的速度球磨4h,均匀涂布在集流体A1箔上。 The composite materials and acetylene black, polyethylene oxide (PEO) ratio of 70:20:10 by mass uniformly mixed with deionized water as a solvent, in a stainless steel ball mill jar at a speed of 300rpm milling 4h, uniformly coated on a current collector A1 foil. 得到单质硫复合电极。 Elemental sulfur to obtain a composite electrode. 以该电极为工作电极,金属锂片为对电极,Celgrad2300为隔膜,1MPP14-TFSI离子液体电解液为电解质组装成电池。 In this working electrode, metallic lithium sheets as the counter electrode, Celgrad2300 a separator, 1MPP14-TFSI ionic liquid electrolyte is assembled into a battery electrolyte.

电池的开路电压为2.93V,在室温下以100mA/g的电流密度进行充放电,材料的首次放电比容量为1189.1mAh/g, 50次循环后放电比容量还保持在634.1 mAh/g。 Battery open circuit voltage of 2.93V, a current density to be 100mA / g at charge and discharge at room temperature, the material of the first discharge capacity was 1189.1mAh / g, after 50 cycles the discharge remained at 634.1 mAh / g specific capacity.

实施例3 Example 3

将活性炭(比表面积为1485m"g,平均孔径为1.76nm)和单质硫(IOO目,Aldrich)按质量比75:25放入玛瑙研钵内充分研磨均匀,混合物装入特殊设计的可抽真空的不锈钢密封反应罐中,用真空泵将罐抽成真空后密封。将密封后的反应罐置于箱式电阻炉中升温至180 t:并保持8h使单质硫熔化并扩散至活性炭的微孔中,然后将温度升至350 'C保持3h使升华的硫蒸气进一步沉积到活性炭的微孔中,自然冷却至室温得到硫/活性炭复合材料。该复合材料中硫含量为25%。对复合材料进行比表面积测试结果为495m々g,在加热处理过程中活性炭孔结构发生自封闭的可能性很小,因此造成材料比表面积大幅度下降的原因是因为单质硫通过升华沉积在了活性炭的微孔中。在加热的过程中,熔融态的硫,尤其是升华的硫蒸气扩散至活性炭的微孔中,由于活性炭较高的比表面积和巨大的吸附 Activated carbon (specific surface area of ​​1485m "g, an average pore size of 1.76nm) and elemental sulfur (IOO mesh, Aldrich) according to the quality sufficiently uniform polishing 75:25 into an agate mortar, the mixture may be loaded into a specially designed vacuum sealed stainless steel reaction tank, the can is evacuated to a vacuum pump and vacuum sealing the reaction vessel placed in the sealed box resistance furnace was heated to 180 t:. 8h and maintained so that elemental sulfur is melted and diffused into the pores of the activated carbon and then the temperature was raised to 350 'C for 3h sublimated further sulfur vapor deposited in the microporous activated charcoal, cooled to room temperature to give a sulfur / activated carbon composite material. the composite sulfur content of 25% of the composite material 495m々g result of specific surface area, the activated carbon during the heat treatment in the pore structure of the self-sealing is unlikely, and therefore the cause of significant decline in specific surface area material because elemental sulfur is deposited by sublimation in the micropores of activated carbon in the heating process, the sulfur in the molten state, in particular sublimed sulfur vapor diffusion into pores of the activated carbon, the activated carbon due to the high specific surface area and a great adsorption 力而使单质硫在冷却的过程中被牢牢地吸附在微孔中。 Force of the elemental sulfur in the cooling process is firmly adsorbed in the micropores.

将该复合材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比70:20:10混合均匀,以N-甲基-2-吡咯垸酮(NMP)为溶剂,在不锈钢球磨罐中以300rpm的速度球磨8h,均匀涂布在集流体A1箔上。 The composite materials and acetylene black, polyvinylidene fluoride (PVDF) ratio of 70:20:10 by mass uniformly mixed to embankment-methyl-2-one N- (NMP) as a solvent in a stainless steel ball mill jar to 300rpm speed milling 8h, uniformly coated on the current collector A1 foil. 得到单质硫复合电极。 Elemental sulfur to obtain a composite electrode. 以该电极为工作电极,金属锂片为对电极,Celgrad2300为隔膜,1 mol/L 双三氟甲基磺酸酰亚胺锂(LiTFSI)/乙二醇二甲醚(DME) + 1, 3-二氧戊垸(D0L)(体积比l:l)为电解液组装成电池。 In this working electrode, metallic lithium sheets as the counter electrode, Celgrad2300 a separator, 1 mol / L lithium bis trifluoromethanesulfonate imide (LiTFSI) / ethylene glycol dimethyl ether (DME) + 1, 3 - dioxolane embankment (D0L) (volume ratio of l: l) is assembled into the battery electrolyte.

复合材料在l V~3 V之间的循环伏安曲线表明在2.05 V和2.35 V附近存在着2个还原峰,在2.4V附近存在着l个氧化峰。 Composite cyclic voltammograms between l V ~ 3 V to indicate the presence of two peaks in the vicinity of the reduction and 2.05 V 2.35 V, there l oxide peak at around 2.4V. 在室温下以100mA/g的电流密度对电池进行充放电,材料的首次放电比容量为1352.5 mAh/g,硫的利用率达80.9%。 At 100mA / g a current density of the battery is charged and discharged at room temperature, the material of the first discharge capacity was 1352.5 mAh / g, a sulfur utilization rate of 80.9%. 40次循环后放电比容量还保持在800.7 mAh/g,表现出良好的循环稳定性。 Discharge capacity remained at 800.7 mAh / g after 40 cycles, exhibit good cycling stability.

实施例4 Example 4

将碳纳米纤维和单质硫(IOO目,Aldrich)按质量比20:80放入玛瑙研钵内充分研磨均匀, 混合物装入特殊设计的可抽真空的不锈钢密封反应罐中,持续通入氩气30 min以排出里面的空气,防止硫在高温下被氧化。 The carbon nanofibers and elemental sulfur (IOO mesh, Aldrich) in a mass ratio of 20:80 into the polishing uniformity sufficiently agate mortar, the mixture can be loaded into a specially designed vacuum sealed stainless steel reaction tank, continuously bubbled with argon 30 min to discharge the air inside, to prevent the sulfur is oxidized at high temperatures. 将密封的反应罐置于箱式电阻炉中升温至150 。 The sealed reaction vessel was placed in the box-type resistance furnace was heated to 150. C并保持8h, 然后将温度升至30(TC保持4h,自然冷却至室温得到硫/活性炭复合材料。该复合材料中硫含量为80%。将该复合材料与乙炔黑、LA133水性粘合剂按质量比70:20:10混合均匀,以去离子水为溶剂,在不锈钢球磨罐中以300rpm的速度球磨4h,均匀涂布在集流体A1箔上。得到单质硫复合电极。以该电极为工作电极,金属锂片为对电极,电解质采用PVDF-HFP和DME-DOL-LiTFSI 凝胶电解质,组装成电池。 C for 8h, and then the temperature was raised to 30 (TC holding 4h, cooled to room temperature to give a sulfur / activated carbon composite material. The composite sulfur content of 80%. The composite material and acetylene black, LA133 aqueous binder 70:20:10 by mass mixed with deionized water as a solvent, in a stainless steel ball mill jar milled at a speed of 300rpm 4h, uniformly coated on the current collector foil A1 was obtained than elemental sulfur composite electrode. in this electrode the working electrode, metallic lithium sheets as the counter electrode, an electrolyte and using PVDF-HFP gel DME-DOL-LiTFSI electrolyte, a battery was assembled.

在室温下以100mA/g的电流密度对电池进行充放电,材料的首次放电比容量为1284.3 mAh/g, 40次循环后放电比容量还保持在730.6mAh/g,表现出良好的循环稳定性。 At 100mA / g a current density of the battery is charged and discharged at room temperature, the material of the first discharge capacity was 1284.3 mAh / g, discharge after 40 cycles remained at 730.6mAh / g specific capacity, exhibit good cycling stability . . .

实施例5 Example 5

将碳黑和单质硫(IOO目,Aldrich)按质量比50:50放入玛瑙研钵内充分研磨均匀,混合物装入特殊设计的可抽真空的不锈钢密封反应罐中,持续通入氮气30 min以排出里面的空气, 防止硫在高温下被氧化。 The carbon black and elemental sulfur (IOO mesh, Aldrich) in a mass ratio of 50:50 into the polishing uniformity sufficiently agate mortar, the mixture can be loaded into a specially designed vacuum sealed stainless steel reaction tank for introducing nitrogen 30 min to discharge the air inside, to prevent the sulfur is oxidized at high temperatures. 将密封的反应罐置于箱式电阻炉中升温至200 'C并保持6h,然后将温度升至350 'C保持3h,自然冷却至室温得到硫/活性炭复合材料。 The sealed reaction vessel was placed in the box-type resistance furnace heated to 200 'C and held 6h, and then the temperature was raised to 350' C held 3h, cooled to room temperature to give a sulfur / activated carbon composites. 该复合材料中硫含量为50%。 The composite sulfur content of 50%. 该材料的首次放电比容量为1173.6 mAh/g, 40次循环后放电比容量还保持在680.5 mAh/g,表现出良好的循环稳定性。 The first discharge capacity of this material was 1173.6 mAh / g, discharge after 40 cycles remained at 680.5 mAh / g specific capacity and exhibit good cycle stability.

8 8

Claims (10)

1.一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于: (1)称取单质硫和碳材料,并将其混合均匀; (2)将混合物装入不锈钢密封罐中; (3)加热密封反应罐中的混合物,使单质硫熔化并扩散至碳材料基体中; (4)升高温度使单质硫发生升华并进一步沉积至碳材料基体中; (5)自然冷却至室温,得到单质硫复合材料。 A lithium secondary battery positive electrode preparation method of the composite elemental sulfur, characterized in that: (1) Weigh elemental sulfur and carbon materials, and mixing uniformly; (2) the mixture was sealed into a stainless steel pot ; (3) heating the mixture sealed in the reaction tank, so that elemental sulfur is melted and diffused into the carbon material matrix; (4) increasing the temperature of the single elemental sulfur sublime and further deposited carbon material matrix; (5) natural cooling to at room temperature, to obtain elemental sulfur composites.
2. 根据权利要求1所述的一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于:所述单质硫是升华硫或高纯硫。 2. A lithium secondary battery positive electrode was prepared according to a method of elemental sulfur composite material, as claimed in claim wherein: said elemental sulfur is sulfur or sublimed sulfur high purity.
3. 根据权利要求1所述的锂二次电池正极用单质硫复合材料的制备方法,其特征在于: 所述碳材料选自碳纳米管、碳纳米纤维、活性炭、碳气凝胶、碳黑组成的组。 The lithium secondary battery positive electrode according to claim 1 preparing sulfur composite material, wherein: said material is selected from carbon nanotubes, carbon nanofibers, activated carbon, carbon aerogels, carbon black thereof.
4. 根据权利要求1所述的一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于:以质量百分比计,所述混合物中单质硫的含量为25%~95%。 4. A lithium secondary battery positive electrode according to claim 1 preparing sulfur composite material, wherein: in percentage by mass, the elemental sulfur content of the mixture is 25% to 95%.
5. 根据权利要求l所述的一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于所述步骤2中混合物处于真空环境中。 5. A lithium secondary battery positive electrode according to claim l preparing sulfur composite material, wherein said mixture in step 2 in a vacuum environment.
6. 根据权利要求1所述的一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于:所述步骤2中混合物处于惰性气体存在的环境中。 6. A lithium secondary battery positive electrode according to claim 1 preparing sulfur composite material, characterized in that: said mixture of step 2 in an inert gas environment.
7. 根据权利要求6所述的一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于:所述惰性气体为Ar或者N2。 7. A lithium secondary battery positive electrode according to claim 6 prepared by the method of elemental sulfur composite material, characterized in that: said inert gas is Ar or N2.
8. 根据权利要求1所述的一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于:所述步骤3中加热温度控制在150〜20(TC之间,恒温4~10小时。 8. A lithium secondary battery positive electrode according to claim 1 preparing sulfur composite material, characterized in that: the heating temperature in step 3 (between 150~20 TC, the thermostat 4 to 10 hour.
9. 根据权利要求l所述的一种锂二次电池正极用单质硫复合材料的制备方法,其特征在于:所述步骤4中加热温度控制在300〜400'C之间,恒温2〜5小时。 9. A lithium secondary battery positive electrode according to claim l preparing sulfur composite material, characterized in that: said step of controlling the heating temperature is between 4 300~400'C, a thermostat 2 ~ 5 hour. -
10. —种用于权利要求1所述的一种锂二次电池正极用单质硫复合材料的制备方法的密封罐,其特征在于:所述密封罐为不锈钢制造,体积位于25〜200ml之间,并可抽真空和充入惰性气体。 10. - a kind of claim 1 A lithium secondary battery positive electrode according to a method of preparing sulfur composite material seal pot, characterized in that: said seal is a stainless steel tank, the volume situated between 25~200ml , and vacuum and filled with inert gas.
CN 200910085136 2009-06-02 2009-06-02 Method for preparing elemental sulfur composite material used by lithium secondary battery CN101562244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910085136 CN101562244A (en) 2009-06-02 2009-06-02 Method for preparing elemental sulfur composite material used by lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910085136 CN101562244A (en) 2009-06-02 2009-06-02 Method for preparing elemental sulfur composite material used by lithium secondary battery

Publications (1)

Publication Number Publication Date
CN101562244A true CN101562244A (en) 2009-10-21

Family

ID=41220941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910085136 CN101562244A (en) 2009-06-02 2009-06-02 Method for preparing elemental sulfur composite material used by lithium secondary battery

Country Status (1)

Country Link
CN (1) CN101562244A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719545A (en) * 2009-12-16 2010-06-02 北京理工大学 Anode composite material of lithium sulfur battery and preparation method thereof
CN101867038A (en) * 2010-06-08 2010-10-20 南开大学 Method for preparing anode composite material for lithium sulfur secondary batteries
CN102185127A (en) * 2011-04-07 2011-09-14 武汉理工大学 Lithium sulphur battery anode piece added with absorbent and lithium sulphur battery
CN102201567A (en) * 2011-04-18 2011-09-28 武汉工程大学 Preparation method for anode of lithium-sulfur battery
CN102263257A (en) * 2011-06-28 2011-11-30 中国科学院金属研究所 High-energy flexible electrode material and preparation method and use in secondary batteries
CN102280630A (en) * 2011-07-04 2011-12-14 中国科学院过程工程研究所 One sulfur - graphene composite positive electrode material and its preparation method
CN102315424A (en) * 2010-07-06 2012-01-11 中国科学院上海硅酸盐研究所 Composite anode material for lithium sulfur battery, preparation method and application thereof
CN102522542A (en) * 2011-12-14 2012-06-27 上海交通大学 Elemental sulfur composite material containing graphene and preparation method thereof
CN102522530A (en) * 2011-12-27 2012-06-27 钟馨稼 Nano-sulfur composite cathode material for rare earth lithium-sulfur battery, and preparation method thereof
CN102593433A (en) * 2012-02-27 2012-07-18 清华大学 Directional carbon nano-tube composite cathode material for lithium-sulfur secondary battery
CN102738448A (en) * 2011-04-12 2012-10-17 通用汽车环球科技运作有限责任公司 Encapsulated sulfur cathode for lithium ion battery
CN102800865A (en) * 2012-08-28 2012-11-28 吴永胜 Lithium battery with total solid ions for conducting power
CN102969481A (en) * 2012-12-11 2013-03-13 武汉大学 Sulfur/carbon composite material for lithium-sulfur secondary battery and preparation method thereof
CN103000864A (en) * 2012-10-25 2013-03-27 北京理工大学 Sulfur composite cathode material and preparation method thereof
CN103050729A (en) * 2012-12-28 2013-04-17 大连理工大学 Lithium sulfur battery
CN103178242A (en) * 2013-03-25 2013-06-26 中国科学院上海硅酸盐研究所 Graphene-sulfur composite material used as positive material of lithium-sulfur battery and preparation method of graphene-sulfur composite material
CN103178247A (en) * 2013-03-22 2013-06-26 中南大学 Sulfur/carbon composite material and preparation method thereof
WO2013097116A1 (en) * 2011-12-28 2013-07-04 Chung Winston Nano-sulphur composite positive pole material for rare earth lithium sulphur battery and method for preparing same.
CN103210525A (en) * 2010-11-26 2013-07-17 株式会社爱发科 Positive electrode for lithium sulfur secondary battery, and method for forming same
CN103236560A (en) * 2013-04-16 2013-08-07 浙江大学 Lithium-sulfur battery sulfur/carbon composite positive electrode material, preparation method and applications thereof
CN103531759A (en) * 2013-09-23 2014-01-22 广州市香港科大霍英东研究院 Two-step adsorption preparation method of high magnification sulphur/mesoporous and microporous carbon HAC (honeycomb activated carbon) lithium sulphur battery anode composite material
CN103560232A (en) * 2013-09-30 2014-02-05 南京工业大学 Preparation method of S-C positive pole composite material of high cycle performance lithium sulfur battery
CN103746097A (en) * 2013-12-20 2014-04-23 广西科技大学 Preparation method for lanthanum-doped lithium-sulfur positive electrode material
CN103746101A (en) * 2013-12-18 2014-04-23 广西科技大学 Carbon-sulfur composite positive pole material and preparation method thereof
CN103762364A (en) * 2014-02-12 2014-04-30 上海理工大学 Sulfur-based lithium ion battery electrode material and preparation method thereof
CN104218219A (en) * 2014-09-28 2014-12-17 南京中储新能源有限公司 Carbon aerogel sulfenyl composite cathode and preparation and application thereof
CN104752725A (en) * 2015-03-16 2015-07-01 山东玉皇新能源科技有限公司 Cathode material for high-capacity graphene lithium sulphur battery and preparation method of cathode material
CN104882586A (en) * 2015-06-01 2015-09-02 常州大学 Super-thick sulfur electrode based lithium sulfur battery and production method thereof
CN104934569A (en) * 2015-05-08 2015-09-23 南昌大学 Preparation method of positive pole piece of ternary composite lithium-sulfur battery
CN105374999A (en) * 2015-10-16 2016-03-02 广东烛光新能源科技有限公司 Preparation method of sulfur-containing electrode material
US9281515B2 (en) 2011-03-08 2016-03-08 Gholam-Abbas Nazri Lithium battery with silicon-based anode and silicate-based cathode
CN105449170A (en) * 2014-08-13 2016-03-30 清华大学 Method for preparing high-sulfur-content positive electrode material used for lithium-sulfur secondary battery
CN105576189A (en) * 2014-11-11 2016-05-11 天津大学 Sulfur electrode of lithium-sulfur battery and preparation method thereof
CN105591073A (en) * 2014-10-23 2016-05-18 深圳华粤宝电池有限公司 A cathode material used for secondary lithium batteries and a preparing method thereof
US9362560B2 (en) 2011-03-08 2016-06-07 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
CN105900268A (en) * 2013-10-18 2016-08-24 株式会社Lg化学 Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
CN106159267A (en) * 2016-09-12 2016-11-23 贵州梅岭电源有限公司 A kind of preparation method of sulfur carbon composite
CN106532043A (en) * 2016-12-29 2017-03-22 西安理工大学 Preparation method of carbon gel-loaded sulfur positive electrode material for lithium-sulfur battery
CN106631153A (en) * 2016-12-29 2017-05-10 西安理工大学 Method for loading subliming matters in aerogel material
CN106637090A (en) * 2016-12-29 2017-05-10 西安理工大学 Method for loading substances easy to sublimate in porous materials
CN106784713A (en) * 2016-12-29 2017-05-31 西安理工大学 A kind of preparation method of lithium sulfur battery anode material
CN106784770A (en) * 2017-02-28 2017-05-31 南开大学 The lithium magnesium alloy of content of magnesium high is the lithium-sulfur rechargeable battery of negative pole
CN106910883A (en) * 2016-02-03 2017-06-30 张琴 The preparation method of lithium-sulfur cell
CN107768654A (en) * 2012-10-26 2018-03-06 苏州宝时得电动工具有限公司 The preparation method of electrode composite material, positive pole, the battery with the positive pole

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719545A (en) * 2009-12-16 2010-06-02 北京理工大学 Anode composite material of lithium sulfur battery and preparation method thereof
CN101719545B (en) * 2009-12-16 2014-07-02 北京理工大学 Anode composite material of lithium sulfur battery and preparation method thereof
CN101867038A (en) * 2010-06-08 2010-10-20 南开大学 Method for preparing anode composite material for lithium sulfur secondary batteries
CN101867038B (en) 2010-06-08 2012-07-04 南开大学 Method for preparing anode composite material for lithium sulfur secondary batteries
CN102315424B (en) * 2010-07-06 2014-07-16 中国科学院上海硅酸盐研究所 Composite anode material for lithium sulfur battery, preparation method and application thereof
CN102315424A (en) * 2010-07-06 2012-01-11 中国科学院上海硅酸盐研究所 Composite anode material for lithium sulfur battery, preparation method and application thereof
CN103210525A (en) * 2010-11-26 2013-07-17 株式会社爱发科 Positive electrode for lithium sulfur secondary battery, and method for forming same
US9882202B2 (en) 2010-11-26 2018-01-30 Ulvac, Inc. Positive electrode for lithium-sulfur secondary battery and method of forming the same
CN103210525B (en) * 2010-11-26 2015-11-25 株式会社爱发科 Lithium-sulfur rechargeable battery positive pole and forming method thereof
US9281515B2 (en) 2011-03-08 2016-03-08 Gholam-Abbas Nazri Lithium battery with silicon-based anode and silicate-based cathode
US9362560B2 (en) 2011-03-08 2016-06-07 GM Global Technology Operations LLC Silicate cathode for use in lithium ion batteries
CN102185127A (en) * 2011-04-07 2011-09-14 武汉理工大学 Lithium sulphur battery anode piece added with absorbent and lithium sulphur battery
CN102738448B (en) * 2011-04-12 2015-03-25 通用汽车环球科技运作有限责任公司 Encapsulated sulfur cathode for lithium ion battery
CN102738448A (en) * 2011-04-12 2012-10-17 通用汽车环球科技运作有限责任公司 Encapsulated sulfur cathode for lithium ion battery
CN102201567A (en) * 2011-04-18 2011-09-28 武汉工程大学 Preparation method for anode of lithium-sulfur battery
CN102263257B (en) * 2011-06-28 2013-08-07 中国科学院金属研究所 High energy flexible electrode material and preparation method thereof and application thereof in storage battery
CN102263257A (en) * 2011-06-28 2011-11-30 中国科学院金属研究所 High-energy flexible electrode material and preparation method and use in secondary batteries
CN102280630A (en) * 2011-07-04 2011-12-14 中国科学院过程工程研究所 One sulfur - graphene composite positive electrode material and its preparation method
CN102280630B (en) * 2011-07-04 2014-09-24 中国科学院过程工程研究所 Sulphur-graphene composite cathode material and manufacturing method thereof
CN102522542A (en) * 2011-12-14 2012-06-27 上海交通大学 Elemental sulfur composite material containing graphene and preparation method thereof
US20130161557A1 (en) * 2011-12-27 2013-06-27 Winston CHUNG Nano-Sulfur Composite Anode Material for Rare Earth Lithium-Sulfur Battery and its Preparation Method Thereof
US8858840B2 (en) * 2011-12-27 2014-10-14 Winston CHUNG Nano-sulfur composite anode material for rare earth lithium-sulfur battery and its preparation method thereof
CN102522530B (en) * 2011-12-27 2014-08-20 雷天电池技术有限公司 Nano-sulfur composite cathode material for rare earth lithium-sulfur battery, and preparation method thereof
CN102522530A (en) * 2011-12-27 2012-06-27 钟馨稼 Nano-sulfur composite cathode material for rare earth lithium-sulfur battery, and preparation method thereof
WO2013097116A1 (en) * 2011-12-28 2013-07-04 Chung Winston Nano-sulphur composite positive pole material for rare earth lithium sulphur battery and method for preparing same.
EP2784859A1 (en) * 2011-12-28 2014-10-01 Chung, Winston Nano-sulphur composite positive pole material for rare earth lithium sulphur battery and method for preparing same.
EP2784859A4 (en) * 2011-12-28 2014-11-12 Winston Chung Nano-sulphur composite positive pole material for rare earth lithium sulphur battery and method for preparing same.
CN102593433A (en) * 2012-02-27 2012-07-18 清华大学 Directional carbon nano-tube composite cathode material for lithium-sulfur secondary battery
CN102800865A (en) * 2012-08-28 2012-11-28 吴永胜 Lithium battery with total solid ions for conducting power
CN103000864A (en) * 2012-10-25 2013-03-27 北京理工大学 Sulfur composite cathode material and preparation method thereof
CN107768654A (en) * 2012-10-26 2018-03-06 苏州宝时得电动工具有限公司 The preparation method of electrode composite material, positive pole, the battery with the positive pole
CN102969481A (en) * 2012-12-11 2013-03-13 武汉大学 Sulfur/carbon composite material for lithium-sulfur secondary battery and preparation method thereof
CN103050729A (en) * 2012-12-28 2013-04-17 大连理工大学 Lithium sulfur battery
CN103178247A (en) * 2013-03-22 2013-06-26 中南大学 Sulfur/carbon composite material and preparation method thereof
CN103178247B (en) * 2013-03-22 2015-04-29 中南大学 Sulfur/carbon composite material and preparation method thereof
CN103178242A (en) * 2013-03-25 2013-06-26 中国科学院上海硅酸盐研究所 Graphene-sulfur composite material used as positive material of lithium-sulfur battery and preparation method of graphene-sulfur composite material
CN103236560A (en) * 2013-04-16 2013-08-07 浙江大学 Lithium-sulfur battery sulfur/carbon composite positive electrode material, preparation method and applications thereof
CN103236560B (en) * 2013-04-16 2016-06-08 浙江大学 A kind of sulfur/carbon composite anode material of lithium-sulfur cell and its preparation method and application
CN103531759A (en) * 2013-09-23 2014-01-22 广州市香港科大霍英东研究院 Two-step adsorption preparation method of high magnification sulphur/mesoporous and microporous carbon HAC (honeycomb activated carbon) lithium sulphur battery anode composite material
CN103531759B (en) * 2013-09-23 2015-09-02 广州市香港科大霍英东研究院 Two step absorption preparation methods of high magnification sulphur/middle microporous carbon HAC anode composite material of lithium sulfur battery
CN103560232A (en) * 2013-09-30 2014-02-05 南京工业大学 Preparation method of S-C positive pole composite material of high cycle performance lithium sulfur battery
US9911975B2 (en) 2013-10-18 2018-03-06 Lg Chem, Ltd. Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
CN105900268A (en) * 2013-10-18 2016-08-24 株式会社Lg化学 Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
CN103746101B (en) * 2013-12-18 2016-03-30 广西科技大学 A kind of carbon sulphur composite positive pole and preparation method thereof
CN103746101A (en) * 2013-12-18 2014-04-23 广西科技大学 Carbon-sulfur composite positive pole material and preparation method thereof
CN103746097A (en) * 2013-12-20 2014-04-23 广西科技大学 Preparation method for lanthanum-doped lithium-sulfur positive electrode material
CN103762364B (en) * 2014-02-12 2016-03-23 上海理工大学 A kind of sulfenyl lithium ion battery electrode material and preparation method thereof
CN103762364A (en) * 2014-02-12 2014-04-30 上海理工大学 Sulfur-based lithium ion battery electrode material and preparation method thereof
CN105449170A (en) * 2014-08-13 2016-03-30 清华大学 Method for preparing high-sulfur-content positive electrode material used for lithium-sulfur secondary battery
CN104218219A (en) * 2014-09-28 2014-12-17 南京中储新能源有限公司 Carbon aerogel sulfenyl composite cathode and preparation and application thereof
CN105591073A (en) * 2014-10-23 2016-05-18 深圳华粤宝电池有限公司 A cathode material used for secondary lithium batteries and a preparing method thereof
CN105576189A (en) * 2014-11-11 2016-05-11 天津大学 Sulfur electrode of lithium-sulfur battery and preparation method thereof
CN104752725A (en) * 2015-03-16 2015-07-01 山东玉皇新能源科技有限公司 Cathode material for high-capacity graphene lithium sulphur battery and preparation method of cathode material
CN104934569A (en) * 2015-05-08 2015-09-23 南昌大学 Preparation method of positive pole piece of ternary composite lithium-sulfur battery
CN104882586B (en) * 2015-06-01 2018-07-17 常州大学 A kind of lithium-sulfur cell and preparation method thereof based on super thick sulfur electrode
CN104882586A (en) * 2015-06-01 2015-09-02 常州大学 Super-thick sulfur electrode based lithium sulfur battery and production method thereof
CN105374999B (en) * 2015-10-16 2019-03-08 广东烛光新能源科技有限公司 A kind of preparation method of sulfur-bearing electrode material
CN105374999A (en) * 2015-10-16 2016-03-02 广东烛光新能源科技有限公司 Preparation method of sulfur-containing electrode material
CN106910883B (en) * 2016-02-03 2019-12-06 张琴 Preparation method of lithium-sulfur battery
CN106910883A (en) * 2016-02-03 2017-06-30 张琴 The preparation method of lithium-sulfur cell
CN106159267A (en) * 2016-09-12 2016-11-23 贵州梅岭电源有限公司 A kind of preparation method of sulfur carbon composite
CN106532043B (en) * 2016-12-29 2019-11-22 西安理工大学 A kind of preparation method of carbon gel sulfur loaded-lithium sulfur battery anode material
CN106784713A (en) * 2016-12-29 2017-05-31 西安理工大学 A kind of preparation method of lithium sulfur battery anode material
CN106631153A (en) * 2016-12-29 2017-05-10 西安理工大学 Method for loading subliming matters in aerogel material
CN106532043A (en) * 2016-12-29 2017-03-22 西安理工大学 Preparation method of carbon gel-loaded sulfur positive electrode material for lithium-sulfur battery
CN106637090B (en) * 2016-12-29 2019-09-27 西安理工大学 A method of loading easy sublimate in the porous material
CN106637090A (en) * 2016-12-29 2017-05-10 西安理工大学 Method for loading substances easy to sublimate in porous materials
CN106784770A (en) * 2017-02-28 2017-05-31 南开大学 The lithium magnesium alloy of content of magnesium high is the lithium-sulfur rechargeable battery of negative pole

Similar Documents

Publication Publication Date Title
Zheng et al. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries
Zhang et al. Preparation and electrochemical properties of sulfur–acetylene black composites as cathode materials
TWI344712B (en)
Wang et al. Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte
Ma et al. Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer
CN1224122C (en) Non aqueous lithium secondary cell
Wang et al. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery
Zhu et al. Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries
CN101442124B (en) Method for preparing composite material of lithium ion battery cathode, and cathode and battery
Wu et al. Nanoporous Li 2 S and MWCNT-linked Li 2 S powder cathodes for lithium-sulfur and lithium-ion battery chemistries
Ding et al. Improvement of cyclability of Si as anode for Li-ion batteries
Zhou et al. Improving the performance of lithium–sulfur batteries by graphene coating
Wang et al. Room temperature Na/S batteries with sulfur composite cathode materials
TWI376047B (en)
Cheng et al. Polysulfide shuttle control: Towards a lithium-sulfur battery with superior capacity performance up to 1000 cycles by matching the sulfur/electrolyte loading
CN101777648B (en) Preparation method of monodisperse lithium iron phosphate nanometer material and lithium-ion secondary battery
CN102479949B (en) Anode active material of lithium ion battery, preparation method thereof and lithium ion battery
Fedorková et al. Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries
CN101577323B (en) Sulfenyl anode of lithium-sulfur rechargeable battery and preparation method thereof
CN101295781B (en) Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
CN102447113A (en) Lithium battery with polymer-coated sulfur/carbon composite material as anode
CN100377392C (en) Anode material lithium ferric phosphate containing oxygen vacancy in use for secondary battery of lithium ion, and application thereof
Jeong et al. Carbon coated lithium sulfide particles for lithium battery cathodes
Zhao et al. Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode
Wang et al. A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)