CN101562261A - Lithium-sulfur battery and preparation method thereof - Google Patents

Lithium-sulfur battery and preparation method thereof Download PDF

Info

Publication number
CN101562261A
CN101562261A CN 200910085137 CN200910085137A CN101562261A CN 101562261 A CN101562261 A CN 101562261A CN 200910085137 CN200910085137 CN 200910085137 CN 200910085137 A CN200910085137 A CN 200910085137A CN 101562261 A CN101562261 A CN 101562261A
Authority
CN
China
Prior art keywords
lithium
sulfur
lt
carbon
electrode
Prior art date
Application number
CN 200910085137
Other languages
Chinese (zh)
Inventor
锋 吴
吴生先
丽 李
王国庆
苏岳峰
实 陈
陈人杰
陈君政
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to CN 200910085137 priority Critical patent/CN101562261A/en
Publication of CN101562261A publication Critical patent/CN101562261A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation

Abstract

The invention relates to a lithium-sulfur battery and a preparation method thereof, which belongs to the field of electrochemical batteries. The lithium-sulfur battery uses a carbon material as a negative electrode and elemental sulfur as a positive electrode, and introduces non-lithium third electrode to perform lithium-embedding treatment on the negative electrode so as to prevent the safety problem caused by directly adopting the metal lithium as the negative electrode. The main component of the non-lithium third electrode is a lithium-rich compound with certain irreversible lithium-removing property; and in the preparation process of an elemental sulfur positive electrode material, the third electrode lithium-rich compound is mixed into the material according to a mass percent of between 10 and 40 percent; and when the material is prepared into an electrode, the electrode and the carbon negative electrode form the lithium-sulfur battery. In the charging process of the battery for the first time, the lithium-rich compound achieves the lithium-embedding operation to the negative electrode.

Description

一种锂硫电池及其制备方法 A lithium-sulfur battery and its preparation method

技术领域 FIELD

本发明涉及一种锂硫电池及其制备方法,具体而言通过引入第三极来代替金属锂负极, 从而解决锂硫电池的安全性问题,属于电化学电池领域。 The present invention relates to a lithium-sulfur battery and its preparation method, instead of metal lithium negative electrode specifically by introducing a third pole, in order to address security issues of the lithium-sulfur battery, an electrochemical cell belonging to the art.

背景技术 Background technique

近年来,随着科技的不断进步,各种电子产品的快速发展,要求所用的化学电源具有质量轻、体积小、容量大等特点。 In recent years, with the advancement of technology, the rapid development of all kinds of electronic products, chemicals used in the power requirements of light weight, small size, large capacity and other characteristics. 虽然通过改进现有电池材料制备和电池制作工艺在一定程度上可以提高电池的性能,但较大幅度提高电池的能量密度还得靠新材料和新体系的开发。 Although the material prepared by improving the conventional battery and a battery manufacturing process can be improved to a certain extent, the performance of the battery, but more substantial increase in energy density of batteries have to rely on the development of new materials and new systems.

在众多研究的电池体系中,金属锂硫电池被认为是最具应用潜力的。 In the battery system of much research, the metallic lithium sulfur batteries are considered the most promising applications. 用作正极活性物质的单质硫理论比容量为1675 mAh/g,质量比能量为2600 Wh/kg(金属锂与硫完全反应后生成Li2S),远远高于现行的锂离子二次电池材料LiCo02、 LiMn02和LiFeP04等。 As a positive electrode active material is elemental sulfur, the theoretical specific capacity of 1675 mAh / g, mass (after complete reaction with the sulfur metal lithium Li 2 S) specific energy of 2600 Wh / kg, much higher than the current lithium ion secondary battery material LiCo02 , LiMn02 and LiFeP04 and so on. 同时单质硫正极材料具有来源丰富价格便宜、对环境友好等优点。 Meanwhile elemental sulfur cathode materials have a rich source of inexpensive, environmentally friendly and so on. 然而,锂硫电池的发展还存在很多问题。 However, the development of lithium-sulfur batteries are still many problems.

锂硫电池采用金属锂作为负极,在充放电循环过程中,负极表面将发生金属锂的反复溶解和沉积反应,在金属锂表面发生粉化以及形成枝晶,对电池的安全性构成严重威胁,同时也縮短了电池的循环寿命。 Lithium-sulfur battery using metal lithium as a negative electrode, the charge-discharge cycle, the surface of the negative repeated dissolution and deposition of lithium metal reaction will occur, chalk and metal lithium dendrite formation on the surface, posing a serious threat to the safety of the battery, but also shorten the cycle life of the battery.

为了改善金属锂的循环性能,解决其安全性问题,人们进行了很多方面的尝试,具体措施包括加入与锂金属反应的物质形成锂合金、在锂电极表面用化学方法形成保护层、用保护剂对电极表面进行涂覆。 In order to improve the cycle performance of lithium metal, to solve the safety problems, attempts have been made in many aspects, including the specific measures of the substance to reaction with lithium metal a lithium alloy, the surface electrode forming the protective layer chemically the lithium, with a protecting agent electrode surface is coated.

K. Naio等利用聚乙烯醇二甲醚中的螺旋状氧化乙烯链核在充电和放电期间起到了锂离子通道作用的原理,可在充电和放电周期中通过将聚乙烯醇二甲醚吸收到锂金属的表面来形成均匀的保护层。 K. Naio oxyethylene chains such as the use of nuclear spiral polyvinyl dimethyl ether during the charging and discharging of lithium ions play a principle role of the channel, may be absorbed by polyvinyl alcohol to dimethyl ether in the charge and discharge cycles the surface of the lithium metal to form a uniform protective layer. M. Ishikawa等通过在有机电解液中加入碘化铝(A1I3)或碘化镁(Mgl2)形成合金来抑制锂枝晶的生长。 M. Ishikawa et suppressing growth of lithium dendrites are formed by the addition of an aluminum alloy iodide (A1I3) in an organic electrolyte or magnesium iodide (Mgl2). 但是,在这些例子中,表面膜在重复的充放电周期和一段浸泡时间后不能保持均匀的状态。 However, in these examples, the surface film can not maintain a uniform state after repeated charge and discharge cycles and a period of soaking time. 充放电效率也不能获得令人满意的提高。 Charge-discharge efficiency can not be obtained satisfactorily improved.

有专利提出在电解液溶液中加入LiAlCl4 • 3S02,并使溶液与含有锂金属的表面进行反应而在锂电极表面形成保护层的方法。 Patent proposes LiAlCl4 • 3S02 was added in the electrolyte solution and the solution is reacted with the lithium-containing metal surface protective layer formed on electrode surface methods lithium. 还有提出通过真空喷镀在锂电极表面涂布了含有硅酸锂或硼酸锂的保护层。 There is proposed by vacuum sputtering on the lithium electrode surface is coated with a protective layer containing a lithium silicate or a lithium borate. 但是,经过许多次循环后,由于锂离子的插入和脱出,保护层变得不稳定和破裂,从而使大量的电解液溶液通过保护层上的缝隙与锂金属接触,导致电解液溶液的分解和容量的持续下降。 However, after many cycles, due to the insertion and extraction of lithium ions, the protective layer becomes unstable and broken, so that a large amount of electrolyte solution through the gap into contact with the lithium metal on the protective layer, resulting in decomposition of the electrolyte solution and the declining capacity. 发明内容 SUMMARY

本发明的目的在于提供一种新结构组成的锂硫电池及其制备方法,通过采用富锂化合物作为第三极,直接添加到锂硫电池的正极中,利用第三极提供锂源的技术,但并未在电池中增力碟三极,仅需通过对电池的首次充电,实现对负极的嵌锂处理,从而避免了直接采用金属锂电极所带来的循环性和安全性问题。 Object of the present invention to provide a lithium-sulfur battery and a method of preparing a new structure consisting of, as a third pole, added directly to the compound by using lithium rich positive electrode in lithium-sulfur battery, use of technology to provide a third pole of the lithium source, but not in the cell-energizing disc three poles, only by the first charging of the battery, to realize the negative electrode lithium intercalation process, thereby avoiding the direct use of cyclability and safety issues caused by the metal lithium electrode.

本发明的内容包括:该新结构组成的锂硫电池是以碳材料为负极,以单质硫、单质硫复合物或硫基化合物为正极,引入非金属锂第三极对负极进行预嵌锂处理。 The present invention comprises: the new structure is composed of the lithium-sulfur battery as the negative electrode carbon material, elemental sulfur, elemental sulfur or a sulfur compound composite positive electrode, metal lithium is introduced third pole to the negative electrode non-pre-treated lithium . 非金属锂第三极主要成分为具有一定不可逆脱锂性质的富锂化合物,在单质硫正极材料的制备过程中,第三极 The third non-lithium metal electrode mainly composed of a certain irreversible lithium-rich lithium compound removal properties, elemental sulfur during the preparation of the positive electrode material, a third electrode

富锂化合物以10〜40%的质量百分比惨入,制成电极后一起与碳负极构成锂硫电池。 Lithium-rich compound 10 ~ 40% by mass percentage to the miserable, together with the carbon negative electrodes made of lithium-sulfur batteries. 电池在首次充电过程中富锂化合物实现对负极的嵌锂行为。 Cheng Zhongfu battery charge over the first lithium compound is lithium negative electrode to achieve behavior. 接受嵌锂后的碳负极与硫正极组成可充放的锂硫电池。 Carbon negative accepted after the positive electrode and the sulfur composition of lithium rechargeable lithium-sulfur batteries discharge. 进行不可逆脱锂后的少量锂化合物,将作为添加剂留在正极当中,可改善硫正极的导电性能及孔隙结构。 A small amount of lithium irreversibly lithium compound after removal, will remain in the positive electrode as an additive which can improve the conductivity of the positive electrode and the sulfur pore structure.

本发明涉及的单质硫为升华硫或高纯硫;单质硫复合物包括:硫/碳材料复合物(碳材料 Elemental sulfur present invention relates to high-purity sulfur or sublimed sulfur; elemental sulfur composite comprising: sulfur / carbon composite material (carbon material

为碳纳米管、碳纳米纤维、活性炭、碳气凝胶、碳黑等)、硫/导电聚合物复合物(导电聚合物为聚苯胺、聚吡咯、聚噻吩等)、硫/无机氧化物复合物(无机氧化物为氧化钇、氧化镧、 Carbon nanotube, carbon nano fiber, activated carbon, carbon aerogels, carbon black, etc.), sulfur / electroconductive polymer composite (the conductive polymer is polyaniline, polypyrrole, polythiophene, etc.), sulfur / inorganic oxide composite material (inorganic oxide is yttrium oxide, lanthanum oxide,

氧化铈、氧化钛等);硫基化合物包括:Li2Sn (n)l)、有机硫化合物、碳硫聚合物((C2Sx)n, x=2. 5〜10, n》2)。 Cerium oxide, titanium oxide, etc.); sulfur compounds comprising: Li2Sn (n) l), organic sulfur compounds, carbon-sulfur polymers ((C2Sx) n, x = 2 5~10, n "2)..

本发明涉及的碳材料包括:石墨、石油焦、中间相炭微球、中间相炭纤维、高聚物热解碳、碳纳米管等。 The present invention relates to a carbon material comprising: graphite, petroleum coke, mesophase carbon microbeads, mesophase carbon fibers, pyrolytic carbon polymers, and carbon nanotubes.

本发明涉及的具有一定不可逆脱锂性质的锂化合物包括:LiM02 (M=Co、 Ni、 Mn、 Cu、 Cr、 Fe等)、LiMn2—复04 (当M:Ni、 Co、 Cu时,0〈x〈l;当M=Cr、 Fe、 V时,0<x〈0. 5)、 LiNi美—x02 The present invention has some irreversible delithiated properties of lithium compounds include: LiM02 (M = Co, Ni, Mn, Cu, Cr, Fe, etc.), LiMn2- complex 04 (when M: Ni, Co, Cu, the 0 < x <l;. when M = Cr, Fe, V, 0 <x <0 5), LiNi US -x02

(M=Co、 Mn、 Cu、 Cr、 Fe、 V、 La、 Al、 Mg、 Ga、 Zn等,0<x〈l)、 LiNixMnyCoz02 (x+y+z=l)、 LiFeP04、 Li2Fe04、 L"-复N (M=Co、 Ni、 Cu、 Cr、 V等,0〈x<l)、 Li7-xMnxN4 (0<x<l)、 Li3—xFexN2 (0〈x〈l)、 Li2S、 Li&等。 (M = Co, Mn, Cu, Cr, Fe, V, La, Al, Mg, Ga, Zn and the like, 0 <x <l), LiNixMnyCoz02 (x + y + z = l), LiFeP04, Li2Fe04, L " - complex N (M = Co, Ni, Cu, Cr, V, etc., 0 <x <l), Li7-xMnxN4 (0 <x <l), Li3-xFexN2 (0 <x <l), Li2S, Li & like .

本发明所制备的锂硫电池,电解质的选择范围可以是有机液态、离子液体、固态、凝胶态的电解质体系。 Lithium-sulfur battery according to the present invention is prepared, choice of electrolyte may be an organic liquid, ionic liquid, solid, gel state electrolyte system. 有机液态电解液可选用含有乙二醇二甲醚(DME)、 1, 3-二氧戊垸(DOL)、四氢呋喃(THF)、 二甘醇二甲醚、四甘醇二甲醚、邻二甲苯等的一种有机溶剂或几种有机溶剂的混合物。 Optional organic liquid electrolyte containing ethylene glycol dimethyl ether (DME), 1, 3- dioxolane embankment (DOL), tetrahydrofuran (THF), diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, o- an organic solvent or a mixture of several organic solvents such as toluene. 电解质锂盐可以是六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、六氟砷酸锂(LiAsF6)、 高氯酸锂(LiClO》、三氟甲基磺酸锂(LiCF3S03)、双三氟甲基磺酰亚胺锂(LiN(CF3S02)2)。 固态电解质可以是Li20—B203—Li2S04、 Li2S-SiS2-P2S5、 Li2S_SiS2-Li3P04、 LiI_Li2S-SiS2、 Li3.6Si。.6P。.404、 Li3.3P03.9N。.17。凝胶电解质由两部分组成: 一部分由PVDF-HFP (聚偏氟乙烯-六氟丙烯共聚物)、PAN (聚丙烯腈)、PMMA (聚甲基丙烯酸甲酯)、PVC (聚氯乙烯)或者它们之间的混合物作为高分子骨架,另一部分是前面提到的有机液态电解液。 有益效果 Electrolyte lithium salt may be lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium hexafluoroarsenate (LiAsF6), lithium perchlorate (LiClO ", lithium trifluoromethanesulfonate (LiCF3S03), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF3S02) 2). The solid electrolyte may be a Li20-B203-Li2S04, Li2S-SiS2-P2S5, Li2S_SiS2-Li3P04, LiI_Li2S-SiS2, Li3.6Si..6P..404, Li3. . 3P03.9N..17 gel electrolyte composed of two parts: a part of PVDF-HFP (polyvinylidene fluoride - hexafluoropropylene copolymer), the PAN (polyacrylonitrile), of PMMA (polymethyl methacrylate), mixtures thereof between PVC (polyvinyl chloride), or as a polymer skeleton, the other is the aforementioned organic liquid electrolyte. beneficial effect

本发明所提出的新结构组成的锂硫电池,用第三极的方式来取代直接使用金属锂电极, 与锂硫电池的其它制作方法相比,该发明所制得的电池循环性能和安全性能得到明显改善, 且该方法工艺简单,安全可靠,控制精确,成本低廉,因而具有良好的应用前景。 The new structures of the lithium-sulfur battery proposed by the present invention, instead of directly with the third electrode metal lithium electrode, compared with other method for manufacturing a lithium sulfur battery, battery cycling performance and safety performance of the invention is prepared improved significantly, and the process is simple, reliable, precise control, low cost, thus having a good prospect.

附图说明 BRIEF DESCRIPTION

图1为本发明方法的锂硫电池电极示意图 1 a schematic diagram of lithium-sulfur battery electrode of the present invention, the method of FIG.

图2为采用本发明的锂硫电池硫电极充放电曲线图 FIG 2 is a lithium-sulfur battery charge and discharge curve of a sulfur electrode of the present invention.

图3为采用本发明的锂硫电池硫电极循环性能图 FIG 3 is a lithium-sulfur battery using sulfur electrode circulation performance of the present invention, FIG.

具体实施方式实施例1 DETAILED DESCRIPTION Example 1

以升华硫为正极,掺入质量百分比为10%的"附。.5(:0。.502,混合物与乙炔黑、聚偏氟乙烯(PVDF)按质量比80:10:10混合均匀,以N-甲基-2-吡咯烷酮(NMP)为溶剂,在不锈钢球磨罐中以200rpm的速度球磨4h,将得到的膏状桨液均匀涂布在集流体A1箔上,然后在60。C的真空干燥箱中烘干20小时备用。以石墨为负极材料,与乙炔黑、聚偏氟乙烯(PVDF)按质量比85:10:5 混合均匀,以N-甲基-2-吡咯烷酮(NMP)为溶剂,在不锈钢球磨罐中以200rpm的速度球磨2h, 将得到的膏状浆液均匀涂布在集流体Cu箔上,然后在6(TC的真空干燥箱中烘干20小时备用。 以硫电极为正极,石墨电极为负极,Celgrad2300为隔膜,1 mol/L双三氟甲基磺酸酰亚胺锂(LiTFSI)/乙二醇二甲醚(DME) + 1, 3-二氧戊垸(DOL)(体积比l:l)为电解液组装成锂硫电池。 Sublimed sulfur in the positive electrode, incorporation of 10% by mass percentage "is attached ..5 (: 0..502, with a mixture of acetylene black, polyvinylidene fluoride (PVDF) mixed in a mass ratio of 80:10:10, to N- methyl-2-pyrrolidone (NMP) as a solvent in a stainless steel ball mill jar speed ball mill at 200rpm 4h, paddle paste was uniformly coated on the obtained A1 foil collector, and then vacuum of 60.C . oven dried 20 hours standby graphite as the negative electrode material, acetylene black, polyvinylidene fluoride (PVDF) mass ratio of 85: 10: 5 mixed to N- methyl-2-pyrrolidone (NMP) as the solvent paste slurry was uniformly applied to a stainless steel ball mill jar speed 200rpm ball 2h, the resultant Cu foil on the current collector, and then dried 20 hours in standby 6 (TC in a vacuum oven. sulfur electrode a positive electrode, a negative electrode graphite electrode, Celgrad2300 a separator, 1 mol / L lithium bis trifluoromethanesulfonate imide (LiTFSI) / ethylene glycol dimethyl ether (DME) + 1, 3- dioxolane embankment (DOL ) (volume ratio of l: l) as an electrolytic solution assembled into a lithium-sulfur battery.

电池首先以50mA/g的电流密度进行恒流充电,充电上限电压为4.6V,此过程为石墨负极进行嵌锂处理。 First, the battery current density of 50mA / g of the constant current charging, the charge upper limit voltage was 4.6 V, the process is a graphite negative electrode lithium intercalation process. 然后以50mA/g的电流密度进行恒流放电,放电下限电压为1.0V。 Then a current density of 50mA / g of the constant current discharge, the discharge lower limit voltage of 1.0V. 随后电池以50mA/g的电流密度进行充放电循环,电压区间为l. 0V~3. 0V。 Then the battery charge-discharge cycles at a current density of 50mA / g, the voltage range of l. 0V ~ 3. 0V. 硫电极的首次放电比容量为857. 4 mAh/g,放电曲线上出现了2个明显的放电平台。 The initial discharge capacity ratio of the sulfur electrode 857. 4 mAh / g, there have been two distinct discharge platform discharge curve. 20次循环后放电比容量还保持在613. 7mAh/g, 显示出了良好的循环稳定性。 After 20 cycles the discharge capacity remained at 613. 7mAh / g, exhibited a good cycle stability. 实施例2 Example 2

以多硫化碳炔为正极,掺入质量百分比为40%的"附。.5(]0。.502,混合物与乙炔黑、聚氧化乙烯(PE0)按质量比80:10:10混合均匀,以去离子水为溶剂,在不锈钢球磨罐中以200rpra的速度球磨4h,将得到的膏状浆液均匀涂布在集流体A1箔上,然后在6(TC的真空干燥箱中烘干20 小时备用。以中间相碳微球(MCMB)为负极材料,与乙炔黑、聚偏氟乙烯(PVDF)按质量比85:10:5 混合均匀,以N-甲基-2-吡咯烷酮(画P)为溶剂,在不锈钢球磨罐中以200rpm的速度球磨2h, 将得到的膏状浆液均匀涂布在集流体Cu箔上,然后在6(TC的真空干燥箱中烘干20小时备用。 以多硫化碳炔电极为正极,MCMB电极为负极,Celgrad2300为隔膜,1M PP14-TFSI离子液体电 In carbyne polysulfide positive electrode, incorporation of 40% by mass percentage "is attached ..5 (] 0..502 mixture of acetylene black, polyethylene oxide (PE0) ratio of 80:10:10 by mass uniformly mixed, deionized water as a solvent, in a stainless steel ball mill jar speed milling 200rpra 4h, paste obtained slurry was applied uniformly on the current collector foil is A1, then 6 (TC vacuum oven dried 20 hours in standby . mesophase carbon microbeads (the MCMB) as a negative electrode material, acetylene black, polyvinylidene fluoride (PVDF) mass ratio of 85: 10: 5 mixed to N- methyl-2-pyrrolidone (Videos P) is the solvent in a stainless steel ball mill jar speed ball mill at 200rpm 2h, the resulting pasty slurry was applied uniformly on a current collector of Cu foil, then 6 (TC vacuum oven dried 20 hours in standby. in polysulfide carbon alkynyl electrode is a cathode, MCMB as a negative electrode, Celgrad2300 a separator, 1M PP14-TFSI ionic liquid electrolyte

解液为电解质组装成锂硫电池。 An electrolyte solution was assembled into a lithium-sulfur battery.

电池首先以50mA/g的电流密度进行恒流充电,充电上限电压为4.6V,此过程为MCMB负极进行嵌锂处理。 First, the battery current density of 50mA / g of the constant current charging, the charge upper limit voltage was 4.6 V, the process for the MCMB negative electrode lithium intercalation process. 然后以50mA/g的电流密度进行恒流放电,放电下限电压为1.0V。 Then a current density of 50mA / g of the constant current discharge, the discharge lower limit voltage of 1.0V. 随后电池以50raA/g的电流密度进行充放电循环,电压区间为1.0V〜3.0V。 Then the battery charge-discharge cycles at a current density 50raA / g, the voltage range of 1.0V~3.0V. 多硫化碳炔电极的首次放电比容量为769. 2 mAh/g,在2. 1V附近有一个很长的放电平台。 Multi carbyne first discharge specific capacity of the electrode 769. 2 mAh / g, there is a long discharge plateau near 2. 1V. 20次循环后还留有413. 6 mAh/g的放电比容量。 After 20 cycles there were still 413. 6 mAh / g discharge capacity. 实施例3 Example 3

以升华硫为正极,掺入质量百分比为10%的"2.6(]0。.札混合物与乙炔黑、聚偏氟乙烯(?¥0?) 按质量比80:10:10混合均匀,以N-甲基-2-吡咯垸酮(NMP)为溶剂,在不锈钢球磨罐中以200rpm 的速度球磨4h,将得到的膏状浆液均匀涂布在集流体A1箔上,然后在6(TC的真空干燥箱中烘干20小时备用。以硬碳为负极材料,与乙炔黑、聚偏氟乙烯(PVDF)按质量比85:10:5混合均匀, 以N-甲基-2-吡咯烷酮(NMP)为溶剂,在不锈钢球磨罐中以200rpm的速度球磨2h,将得到的膏状浆液均匀涂布在集流体Cu箔上,然后在6(TC的真空干燥箱中烘干20小时备用。以硫电极为正极,硬碳电极为负极,Celgrad2300为隔膜,1 mol/L双三氟甲基磺酸酰亚胺锂(LiTFSI)/乙二醇二甲醚(DME) +1, 3-二氧戊烷(D0L)(体积比1:1)为电解液组装成锂硫电池。 Sublimed sulfur in the positive electrode, incorporation of 10% by mass percentage "2.6 (] 0 .. sheaf mixture of acetylene black, and polyvinylidene fluoride (? ¥ 0?) In mass ratio of 80:10:10 uniformly mixed to N - pyrrolidin-2-one embankment (NMP) as a solvent in a stainless steel ball mill jar speed ball mill at 200rpm 4h, paste obtained slurry was applied uniformly on the current collector foil is A1, then 6 (TC vacuum . oven dried 20 hours to spare hard carbon as a negative electrode material, acetylene black, polyvinylidene fluoride (PVDF) mass ratio of 85: 5 uniformly mixed to N- methyl-2-pyrrolidone (NMP): 10 as solvent, in a stainless steel ball mill jar speed ball mill at 200rpm 2h, the resulting pasty slurry was applied uniformly on a current collector of Cu foil, then 6 (TC vacuum oven dried 20 hours in standby. sulfur electrode a positive electrode, a negative electrode hard carbon, Celgrad2300 a separator, 1 mol / L lithium bis trifluoromethanesulfonate imide (LiTFSI) / ethylene glycol dimethyl ether (DME) +1, 3- dioxolane (D0L) (volume ratio 1: 1) was assembled into a lithium-sulfur battery electrolyte.

电池首先以50mA/g的电流密度进行恒流充电,充电上限电压为3.5V,此过程为硬碳负极进行嵌锂处理。 First, the battery current density of 50mA / g of the constant current charging, the charging upper limit voltage of 3.5V, this process is a hard carbon negative electrode lithium intercalation process. 然后以50mA/g的电流密度进行恒流放电,放电下限电压为1.0V。 Then a current density of 50mA / g of the constant current discharge, the discharge lower limit voltage of 1.0V. 随后电池以50raA/g的电流密度进行充放电循环,电压区间为1.0V〜3.0V。 Then the battery charge-discharge cycles at a current density 50raA / g, the voltage range of 1.0V~3.0V. 硫电极的首次放电比容量为1063.8raAh/g,充放电曲线平整、稳定。 First discharge electrode sulfur specific capacity 1063.8raAh / g, the charge-discharge curves smooth and stable. 20次循环后放电比容量还保持在843. 2 mAh/g,表现 Discharge capacity remained at 843. 2 mAh / g after 20 cycles, the performance

出良好的循环性能。 Good cycle performance.

实施例4 Example 4

以硫/碳纳米管复合材料为正极,掺入质量百分比为40。 Sulfur / carbon nanotube composite as a positive electrode, incorporation of 40 percent by mass. /。 /. 的LiNi02,混合物与乙炔黑、聚偏氟乙烯(PVDF)按质量比80:10:10混合均匀,以N-甲基-2-吡咯垸酮(NMP)为溶剂,在不锈钢球磨罐中以200rpm的速度球磨4h,将得到的膏状浆液均匀涂布在集流体A1箔上,然后在6(TC 的真空干燥箱中烘干20小时备用。以中间相碳微球(MCMB)为负极材料,与乙炔黑、聚偏氟乙烯(PVDF)按质量比85:10:5混合均匀,以N-甲基-2-吡咯烷酮(陋P)为溶剂,在不锈钢球磨罐中以200rpm的速度球磨2h,将得到的膏状浆液均匀涂布在集流体Cu箔上,然后在6(TC的真空干燥箱中烘干20小时备用。以硫复合电极为正极,MCMB电极为负极,电解质采用PVDF-HFP和DME-DOL-LiTFSI凝胶电解质,组装成锂硫电池。 The LiNi02, a mixture of acetylene black, polyvinylidene fluoride (PVDF) mixed in a mass ratio of 80:10:10, to the embankment-methyl-2-one N- (NMP) as a solvent in a stainless steel ball mill jar to 200rpm speed milling 4h, the resulting pasty slurry was uniformly coated on the current collector A1 foil, then dried 20 hours in standby 6 (TC in a vacuum oven. mesophase carbon microbeads (the MCMB) as a negative electrode material, acetylene black, polyvinylidene fluoride (PVDF) mass ratio of 85: 5 uniformly mixed to N- methyl-2-pyrrolidone (Lou P) as solvent in a stainless steel ball mill jar at a speed of 200rpm milling 2h,: 10 the paste obtained slurry was applied uniformly on a Cu foil collector, and then dried 20 hours in standby 6 (TC in a vacuum oven. sulfur composite electrode is a cathode, the MCMB as a negative electrode, an electrolyte and using PVDF-HFP DME-DOL-LiTFSI electrolyte gel, assembled into a lithium-sulfur battery.

电池首先以50mA/g的电流密度进行恒流充电,充电上限电压为3.5V,此过程为MCMB负极进行嵌锂处理。 First, the battery current density of 50mA / g of the constant current charging, the charging upper limit voltage of 3.5V, this process is a MCMB negative electrode lithium intercalation process. 然后以50mA/g的电流密度进行恒流放电,放电下限电压为1.0V。 Then a current density of 50mA / g of the constant current discharge, the discharge lower limit voltage of 1.0V. 随后电池以50mA/g的电流密度进行充放电循环,电压区间为1.0V〜3.0V。 Then the battery charge-discharge cycles at a current density of 50mA / g, the voltage range of 1.0V~3.0V. 硫复合电极的首次放电比容量为 Sulfur composite electrode initial discharge capacity was

1194.4 mAh/g,放电曲线上出现了2个明显的放电平台。 1194.4 mAh / g, there have been two distinct discharge platform discharge curve. 20次循环后放电比容量还保持在 After 20 cycles the discharge capacity remained at

1018.5 mAh/g,电池的循环性能得到了很大的改善。 1018.5 mAh / g, the cycle performance of the battery was greatly improved. 实施例5 Example 5

以硫/聚苯胺复合材料为正极,掺入质量百分比为40y。 Sulfur / polyaniline composite positive electrode, incorporation of percent by mass 40y. 的LiMnL5Co。 The LiMnL5Co. .504,其他制备方法同实施例l,制得复合硫基电极材料。 .504, prepared by other methods as described in Example L, thio produce composite electrode material. 电池的首次放电比容量为1028.3mAh/g, 20次循环后放电比容量还保持在720. 5 raAh/g。 Ratio of initial discharge capacity of the battery 1028.3mAh / g, after 20 cycles the discharge also maintained at 720. 5 raAh / g specific capacity.

实施例6 Example 6

以硫/聚吡咯复合材料为正极,掺入质量百分比为30W的LiMnL5Co。 Sulfur / polypyrrole composites for the positive electrode, the incorporation of the mass percentage LiMnL5Co 30W. .5()4,其他制备方法同实 .5 () 4, another method of preparing the same solid

施例l,制得复合硫基电极材料。 Example l, to obtain a composite electrode material group. 电池的首次放电比容量为1137.6mAh/g, 20次循环后放电比容量还保持在829. 2mAh/g。 Ratio of initial discharge capacity of the battery 1137.6mAh / g, after 20 cycles the discharge also maintained at 829. 2mAh / g specific capacity.

实施例7 Example 7

以硫/聚噻吩复合材料为正极,掺入质量百分比为30。 Sulfur / polythiophene composite positive electrode, incorporation of 30 percent by mass. /。 /. 的LiMriL5Co。 The LiMriL5Co. .504,其他制备方法同实施例l,制得复合硫基电极材料。 .504, prepared by other methods as described in Example L, thio produce composite electrode material. 电池的首次放电比容量为1198.5raAh/g, 20次循环后放电比容量还保持在904.6 mAh/g。 Ratio of initial discharge capacity of the battery 1198.5raAh / g, after 20 cycles the discharge remained at 904.6 mAh / g specific capacity. 实施例8 Example 8

8以升华硫为正极,掺入质量百分比为20n/。 8 sublimed sulfur as a positive electrode, incorporation of mass percent 20n /. 的Li,eCo。 The Li, eCo. .4N,其他制备方法同实施例2。 .4N, prepared by other methods as in Example 2. 电池的 Battery

首次放电比容量为916.8 mAh/g, 20次循环后放电比容量还保持在603.7 mAh/g。 The first discharge capacity of 916.8 mAh / g, discharge after 20 cycles remained at 603.7 mAh / g specific capacity. 实施例9 Example 9

以硫/氧化铈复合材料为正极,掺入质量百分比为15"/。的Li2Fe04,其他制备方法同实施例3, 制得复合硫基电极材料。电池的首次放电比容量为1047. 1 mAh/g, 20次循环后放电比容量还保持在659. 2 mAh/g。 Sulfur / cerium composite oxide as a positive electrode, incorporation of 15 percent by mass of "/. Of Li2Fe04, prepared by other methods as described in Example 3, to obtain a composite electrode material group. The ratio of the initial discharge capacity of the battery 1047. 1 mAh / g, after 20 cycles the discharge capacity remained at 659. 2 mAh / g.

实施例10 Example 10

以硫/活性炭复合材料为正极,掺入质量百分比为25y。 Sulfur / activated carbon as a positive electrode composite material, incorporated percent by mass 25y. 的Li6.5Mn。 The Li6.5Mn. .美,其他制备方法同实施例4,制得复合硫基电极材料。 . United States, other prepared in Example 4, to obtain a composite electrode material group. 电池的首次放电比容量为1134.9mAh/g, 20次循环后放电比容量还保持在787. 3 mAh/g。 Ratio of initial discharge capacity of the battery 1134.9mAh / g, after 20 cycles the discharge also maintained at 787. 3 mAh / g specific capacity.

实施例11 Example 11

以升华硫为正极,掺入质量百分比为20%的",^6。.美,其他制备方法同实施例l。电池的首次放电比容量为925.8 mAh/g, 20次循环后放电比容量还保持在587. 6 raAh/g。 Sublimed sulfur in the positive electrode, incorporation of 20% by mass of "^ .. US 6, another method for preparing the same embodiment in Example l. The first discharge of the battery capacity was 925.8 mAh / g, the discharge capacity ratio after 20 cycles further held at 587. 6 raAh / g.

实施例12 Example 12

以硫/氧化镧复合材料为正极,掺入质量百分比为3(F。的Li2S,其他制备方法同实施例3, 制得复合硫基电极材料。电池的首次放电比容量为986.4raAh/g, 20次循环后放电比容量还保持在601. 5 mAh/g。 Sulfur / lanthanum oxide composite positive electrode, incorporation of 3 percent by mass of (F.. Of Li 2 S, prepared by other methods as described in Example 3, to obtain the composite material of the electrode group. The first discharge capacity of the battery was 986.4raAh / g, discharge capacity remained at 601. 5 mAh / g after 20 cycles.

实施例13 Example 13

以硫/氧化钇复合材料为正极,掺入质量百分比为25W的Li2S,其他制备方法同实施例3, 制得复合硫基电极材料。 Sulfur / yttrium composite oxide as a positive electrode incorporating the Li2S 25W mass percent, with the other production method 3, an electrode group was prepared composite material of Example. 电池的首次放电比容量为1017.4 mAh/g, 20次循环后放电比容量还保持在670. 2 mAh/g。 Ratio of initial discharge capacity of the battery 1017.4 mAh / g, discharge after 20 cycles remained at 670. 2 mAh / g specific capacity.

实施例14 Example 14

以硫/氧化钛复合材料为正极,掺入质量百分比为2(^的Li2S,其他制备方法同实施例4, 制得复合硫基电极材料。电池的首次放电比容量为1028.5 mAh/g, 20次循环后放电比容量还保持在706. 5 mAh/g。 Sulfur / titanium oxide composite positive electrode material, the incorporation of 2 percent by mass of (Li 2 S ^ a, the other prepared in Example 4, to obtain a composite electrode material group. The ratio of the initial discharge capacity of the battery 1028.5 mAh / g, 20 discharge capacity remained at 706. 5 mAh / g after the cycles.

Claims (9)

1.一种锂硫电池制备方法,其特征在于:所述锂硫电池是以碳材料为负极,以单质硫、单质硫复合物或硫基化合物为正极。 A method for preparing lithium-sulfur battery, wherein: said carbon material is a lithium-sulfur battery as the negative electrode, to elemental sulfur, elemental sulfur or sulfur compounds composite positive electrode.
2. 如权利要求1所述的一种锂硫电池制备方法,其特征在于:其中所述以质量百分比计富锂化合物作为第三极的掺入量为10〜40%。 2. The method of preparing a lithium-sulfur battery according to claim 1, wherein: wherein the mass percentage as the rich lithium compound is incorporated in an amount of 10 ~ 40% at the third pole.
3. 如权利要求1所述的一种锂硫电池制备方法,其特征在于:其中富锂化合物具有不可逆脱锂性质。 The method of preparing a lithium-sulfur battery of claim 1 claim, wherein: wherein the lithium-rich lithium compound having an irreversible release properties.
4. 根据权利要求3所述的一种锂硫电池制备方法,其特征在于:其中所述富锂化合物选白LiM02,其中M=Co、 Ni、 Mn、 Cu、 Cr、 Fe;LiMn2.xMx04,其中当M=Ni、 Co、 Cu时,0<x<l;当M=Cr、 Fe、 V时,0<x<0.5;LiNixM卜x02,其中M二Co、 Mn、 Cu、 Cr、 Fe、 V、 La、 Al、 Mg、 Ga、 Zn, 0<x<l;LiNixMnyCoz02 (x+y+z=l)、 LiFeP04、 Li2Fe04;Li3.xMxN,其中M-Co、 Ni、 Cu、 Cr、 V, 0<x<l;Li7-xMnxN4,其中0<x<l;Li3.xFexN2,其中(Kx〈l;Li2S、 Li2S2中的一种。 A method of preparing a lithium-sulfur battery according to claim 3, wherein: wherein said compound is selected from lithium-rich white LiM02, where M = Co, Ni, Mn, Cu, Cr, Fe; LiMn2.xMx04, wherein when M = Ni, Co, Cu time, 0 <x <l; when M = Cr, Fe, V, 0 <x <0.5; LiNixM Bu x02, where M = Co, Mn, Cu, Cr, Fe, V, La, Al, Mg, Ga, Zn, 0 <x <l; LiNixMnyCoz02 (x + y + z = l), LiFeP04, Li2Fe04; Li3.xMxN, wherein M-Co, Ni, Cu, Cr, V, 0 <x <l; Li7-xMnxN4, where 0 <x <l; Li3.xFexN2, where (Kx <l; Li2S, one kind of Li2S2.
5. 根据权利要求l所述的一种锂硫电池制备方法,其特征在于:其中所述碳材料选自石墨、石油焦、中间相炭微球、中间相炭纤维、高聚物热解碳、碳纳米管组成的组。 The method for preparing a lithium-sulfur battery according to claim l, wherein: wherein the carbon material selected from graphite, petroleum coke, mesophase carbon microbeads, mesophase carbon fibers, pyrolytic carbon polymer the group consisting of carbon nanotubes.
6. 根据权利要求1所述的一种锂硫电池制备方法,其特征在于:其中所述的单质硫为升华硫或高纯硫。 The method of preparing a lithium-sulfur battery according to claim 1, wherein: wherein said elemental sulfur is a highly pure sublimed sulfur or sulfur.
7. 根据权利要求l所述的一种锂硫电池制备方法,其特征在于:其中所述单质硫复合物选自:硫/碳材料复合物,其中碳材料为碳纳米管、碳纳米纤维、活性炭、碳气凝胶、碳黑; 硫/导电聚合物复合物,其中导电聚合物为聚苯胺、聚吡咯、聚噻吩; 硫/无机氧化物复合物,其中无机氧化物为氧化钇、氧化镧、氧化铈、氧化钛中的一种。 The method for preparing a lithium-sulfur battery according to claim l, wherein: wherein said sulfur compound is selected from: sulfur / carbon material composite, wherein the carbon material is carbon nanotubes, carbon nanofibers, activated carbon, carbon airgel, carbon black; sulfur / electroconductive polymer composite, wherein the conductive polymer is polyaniline, polypyrrole, polythiophene; sulfur / inorganic oxide composites, wherein the inorganic oxide is yttrium oxide, lanthanum oxide, , cerium oxide, a titanium oxide.
8. 根据权利要求l所述的一种锂硫电池制备方法,其特征在于:其中所述的硫基化合物选自:Li2Sn,其中n》l;有机硫化合物;分子式为(C2S丄的碳硫聚合物,其中x-2.5〜10, n》2。 8. A method for preparing a lithium-sulfur battery according to claim l, wherein: wherein said sulfur compound is selected from: Li2Sn, where n "l; organic sulfur compounds; formula (C2S Shang carbonsulfur polymer, wherein x-2.5~10, n "2.
9. 一种根据权利要求1-8中任一所述的方法制得的锂硫电池 9. A method according to any of claims 1-8 of a lithium-sulfur battery prepared
CN 200910085137 2009-06-02 2009-06-02 Lithium-sulfur battery and preparation method thereof CN101562261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910085137 CN101562261A (en) 2009-06-02 2009-06-02 Lithium-sulfur battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910085137 CN101562261A (en) 2009-06-02 2009-06-02 Lithium-sulfur battery and preparation method thereof

Publications (1)

Publication Number Publication Date
CN101562261A true CN101562261A (en) 2009-10-21

Family

ID=41220953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910085137 CN101562261A (en) 2009-06-02 2009-06-02 Lithium-sulfur battery and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101562261A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719545A (en) * 2009-12-16 2010-06-02 北京理工大学 Anode composite material of lithium sulfur battery and preparation method thereof
CN102280614A (en) * 2011-07-07 2011-12-14 天津大学 The method of preparing a positive electrode for a lithium sulfur battery of sulfur
CN102315424A (en) * 2010-07-06 2012-01-11 中国科学院上海硅酸盐研究所 Composite anode material for lithium sulfur battery, preparation method and application thereof
CN102522530A (en) * 2011-12-27 2012-06-27 钟馨稼 Nano-sulfur composite cathode material for rare earth lithium-sulfur battery, and preparation method thereof
CN102820454A (en) * 2011-06-11 2012-12-12 苏州宝时得电动工具有限公司 Electrode composite material, its preparation method, its anode, and battery possessing anode
CN102956866A (en) * 2011-08-26 2013-03-06 中国科学院物理研究所 Chargeable alkali metal-sulfur liquid flow battery
CN103560265A (en) * 2013-11-06 2014-02-05 东莞新能源科技有限公司 Lithium ion battery as well as lithium-rich positive piece and preparation method thereof
CN103794800A (en) * 2012-11-02 2014-05-14 华为技术有限公司 Lithium battery current collector, pole piece, lithium battery, preparation method thereof and application of lithium battery
WO2014191420A1 (en) * 2013-05-28 2014-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Alkali metal-sulfur battery with ether as an electrolyte solvent
CN104269540A (en) * 2014-10-10 2015-01-07 南京中储新能源有限公司 Titanium dioxide/conducting polymer/sulfur three-element composite material and secondary cell
CN104681855A (en) * 2015-02-26 2015-06-03 广东烛光新能源科技有限公司 Naked cell, finished cell and preparation method of lithium-sulfur battery
CN104681854A (en) * 2015-02-26 2015-06-03 广东烛光新能源科技有限公司 Naked cell, finished cell and preparation method of lithium-sulfur battery
CN105355876A (en) * 2015-11-07 2016-02-24 合肥国轩高科动力能源有限公司 Preparation method for composite conductive polymer coated with elemental sulfur and applications
CN105390663A (en) * 2015-10-16 2016-03-09 广东烛光新能源科技有限公司 Sulfur-containing electrode, lithium-sulfur battery containing sulfur-containing electrode and manufacturing method for lithium-sulfur battery
CN105529446A (en) * 2016-01-20 2016-04-27 中南大学 Lithium-sulfur battery composite positive electrode material and preparation method and application therefor
CN105609742A (en) * 2016-03-04 2016-05-25 河北工业大学 Positive electrode material for sulfur-based lithium ion battery and preparation method and application of positive electrode material
CN106299286A (en) * 2016-09-08 2017-01-04 天津大学 A kind of lithium-sulfur cell macromolecule composite positive pole and preparation method
CN106410262A (en) * 2016-10-24 2017-02-15 东莞市联洲知识产权运营管理有限公司 High-voltage and high-capacity lithium-sulfur battery
CN107221675A (en) * 2017-06-21 2017-09-29 镇江宇神动力能源有限公司 A kind of preparation method of lithium-sulfur cell
US9899667B2 (en) 2011-06-11 2018-02-20 Positec Power Tools (Suzhou) Co., Ltd Electrode composite material, preparation method thereof, cathode and battery including the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719545B (en) * 2009-12-16 2014-07-02 北京理工大学 Anode composite material of lithium sulfur battery and preparation method thereof
CN101719545A (en) * 2009-12-16 2010-06-02 北京理工大学 Anode composite material of lithium sulfur battery and preparation method thereof
CN102315424A (en) * 2010-07-06 2012-01-11 中国科学院上海硅酸盐研究所 Composite anode material for lithium sulfur battery, preparation method and application thereof
CN102315424B (en) * 2010-07-06 2014-07-16 中国科学院上海硅酸盐研究所 Composite anode material for lithium sulfur battery, preparation method and application thereof
US9899667B2 (en) 2011-06-11 2018-02-20 Positec Power Tools (Suzhou) Co., Ltd Electrode composite material, preparation method thereof, cathode and battery including the same
CN102820454A (en) * 2011-06-11 2012-12-12 苏州宝时得电动工具有限公司 Electrode composite material, its preparation method, its anode, and battery possessing anode
CN102820454B (en) * 2011-06-11 2016-05-18 苏州宝时得电动工具有限公司 Electrode composite material and preparation method thereof, positive pole, there is this anodal battery
CN102280614A (en) * 2011-07-07 2011-12-14 天津大学 The method of preparing a positive electrode for a lithium sulfur battery of sulfur
CN102956866B (en) * 2011-08-26 2015-08-05 中国科学院物理研究所 One can fill alkali metal-sulphur flow battery
CN102956866A (en) * 2011-08-26 2013-03-06 中国科学院物理研究所 Chargeable alkali metal-sulfur liquid flow battery
US20130161557A1 (en) * 2011-12-27 2013-06-27 Winston CHUNG Nano-Sulfur Composite Anode Material for Rare Earth Lithium-Sulfur Battery and its Preparation Method Thereof
CN102522530B (en) * 2011-12-27 2014-08-20 雷天电池技术有限公司 Nano-sulfur composite cathode material for rare earth lithium-sulfur battery, and preparation method thereof
US8858840B2 (en) * 2011-12-27 2014-10-14 Winston CHUNG Nano-sulfur composite anode material for rare earth lithium-sulfur battery and its preparation method thereof
CN102522530A (en) * 2011-12-27 2012-06-27 钟馨稼 Nano-sulfur composite cathode material for rare earth lithium-sulfur battery, and preparation method thereof
CN103794800B (en) * 2012-11-02 2016-12-21 华为技术有限公司 Lithium battery collector, pole piece and lithium battery and preparation method thereof, lithium battery applications
CN103794800A (en) * 2012-11-02 2014-05-14 华为技术有限公司 Lithium battery current collector, pole piece, lithium battery, preparation method thereof and application of lithium battery
WO2014191420A1 (en) * 2013-05-28 2014-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Alkali metal-sulfur battery with ether as an electrolyte solvent
CN103560265A (en) * 2013-11-06 2014-02-05 东莞新能源科技有限公司 Lithium ion battery as well as lithium-rich positive piece and preparation method thereof
CN104269540A (en) * 2014-10-10 2015-01-07 南京中储新能源有限公司 Titanium dioxide/conducting polymer/sulfur three-element composite material and secondary cell
CN104681854A (en) * 2015-02-26 2015-06-03 广东烛光新能源科技有限公司 Naked cell, finished cell and preparation method of lithium-sulfur battery
CN104681855A (en) * 2015-02-26 2015-06-03 广东烛光新能源科技有限公司 Naked cell, finished cell and preparation method of lithium-sulfur battery
CN105390663A (en) * 2015-10-16 2016-03-09 广东烛光新能源科技有限公司 Sulfur-containing electrode, lithium-sulfur battery containing sulfur-containing electrode and manufacturing method for lithium-sulfur battery
CN105355876A (en) * 2015-11-07 2016-02-24 合肥国轩高科动力能源有限公司 Preparation method for composite conductive polymer coated with elemental sulfur and applications
CN105529446A (en) * 2016-01-20 2016-04-27 中南大学 Lithium-sulfur battery composite positive electrode material and preparation method and application therefor
CN105609742A (en) * 2016-03-04 2016-05-25 河北工业大学 Positive electrode material for sulfur-based lithium ion battery and preparation method and application of positive electrode material
CN105609742B (en) * 2016-03-04 2018-06-22 河北工业大学 A kind of sulfenyl anode material for lithium-ion batteries and its preparation method and application
CN106299286A (en) * 2016-09-08 2017-01-04 天津大学 A kind of lithium-sulfur cell macromolecule composite positive pole and preparation method
CN106299286B (en) * 2016-09-08 2018-11-30 天津大学 A kind of lithium-sulfur cell macromolecule composite positive pole and preparation method
CN106410262A (en) * 2016-10-24 2017-02-15 东莞市联洲知识产权运营管理有限公司 High-voltage and high-capacity lithium-sulfur battery
CN107221675A (en) * 2017-06-21 2017-09-29 镇江宇神动力能源有限公司 A kind of preparation method of lithium-sulfur cell

Similar Documents

Publication Publication Date Title
CN101159327B (en) Cathode active material and lithium battery using the same
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
CN1238917C (en) Lithium secondary cell
CN1126185C (en) Electrode for nonaqueous electrolyte battery
CA2693692C (en) Non-aqueous electrolytic solutions and electrochemical cells comprising the same
CA2641152C (en) Lithium secondary battery using ionic liquid
CN1205689C (en) Secondary lithium ion battery or battery pack, its protective circuit and electronic device
CN1274052C (en) Method for producing lithium ion secondary cell
CN1271735C (en) Lithium secondary cell
CN1171346C (en) Lithium secondary cell
CN1248339C (en) Anode for nonaqueous electrolyte, its making method, battery with anode and its making method
CN1288789C (en) Electrolyte for lithium secondary battery and lithium secondary battery containing the same
CN1148826C (en) Non-aqueous electrolyte accumulator
CN101436654B (en) Ferric phosphate lithium type safety high power lithium ion battery
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
CN1162927C (en) Active material of negative electrode for lithium accumulator, its preparing process and lithium accumulator containg said material
CN1320976A (en) Positive electrode and non-aqueous electrolyte cell
US20090017374A1 (en) Battery
CN1574425A (en) Anode compostition for lithium battery, and anode and lithium battery using the same
CN102142554A (en) Nano carbon sulfur composite material with network structure and preparation method of nano carbon composite material
CN1874047A (en) A non-aqueous electrolyte secondary battery
Yao et al. 5, 7, 12, 14-Pentacenetetrone as a high-capacity organic positive-electrode material for use in rechargeable lithium batteries
JPH117942A (en) Total solid lithium battery
CN101295781B (en) Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
CN101562244A (en) Method for preparing elemental sulfur composite material used by lithium secondary battery

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)