CN102313836A - 电源转换电路及其过流检测电路 - Google Patents

电源转换电路及其过流检测电路 Download PDF

Info

Publication number
CN102313836A
CN102313836A CN201110320328A CN201110320328A CN102313836A CN 102313836 A CN102313836 A CN 102313836A CN 201110320328 A CN201110320328 A CN 201110320328A CN 201110320328 A CN201110320328 A CN 201110320328A CN 102313836 A CN102313836 A CN 102313836A
Authority
CN
China
Prior art keywords
operational amplifier
input end
switch
output
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110320328A
Other languages
English (en)
Other versions
CN102313836B (zh
Inventor
王钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Zhonggan Microelectronics Co Ltd
Original Assignee
Wuxi Vimicro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Vimicro Corp filed Critical Wuxi Vimicro Corp
Priority to CN 201110320328 priority Critical patent/CN102313836B/zh
Publication of CN102313836A publication Critical patent/CN102313836A/zh
Application granted granted Critical
Publication of CN102313836B publication Critical patent/CN102313836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种过流检测电路及采用该过流检测电路的电源转换电路,所述过流检测电路包括接收模式控制信号的模式控制端,运算放大器,电容和输出逻辑电路,所述运算放大器在模式控制信号的控制下在放大模式和比较模式之间切换。当处于放大模式时,所述运算放大器的第一输入端连接过流基准电压,第二输入端连接所述电容,所述输出端连接所述第二输入端,此时所述输出逻辑电路输出非过流信号。当处于比较模式时,所述运算放大器的第一输入端连接反映受控电流的电压,第二输入端连接所述电容,所述输出端输出是否过流的信号,此时所述输出逻辑电路将所述运算放大器的输出作为自己的输出。这样可以减小所述运算放大器的输入偏差电压的影响。

Description

电源转换电路及其过流检测电路
【技术领域】
本发明涉及一种电源管理电路,特别是涉及一种电源转换电路及其中的过流检测电路。
【背景技术】
请参考图1所示,其为现有技术中降压型DC-DC(直流-直流)转换器100中的过流检测电路的电路示意图。所述DC-DC转换器100包括输出电路110、过流基准电压产生电路120和过流检测电路130。所述输出电路110将输入电压VCC转换成输出电压VO并提供给负载电阻RL,其包括PMOS(P-type MetalOxide Semiconductor)晶体管MP1(功率输出管)、NMOS(N-type Metal OxideSemiconductor)晶体管MN2、电感L1和电容C1,所述PMOS晶体管MP1和NMOS晶体管MN2的导通和截止分别由开关控制信号PDRV和NDRV控制,开关控制信号PDRV和NDRV是周期性的方波控制信号,它们是由DC-DC转换器的控制电路(未示出)来产生的,这部分与本发明无关,本文略去。所述过流基准电压产生电路120包括串联在输入电压VCC和地之间的PMOS晶体管MP2和电流源I1,其提供过流基准电压VIREF。所述过流检测电路130包括反相器INV1、开关S1和比较器comp1,所述反相器INV1的输入接开关控制信号PDRV,该反相器的输出端连接所述开关S1的控制端,所述开关S1的一端接PMOS晶体管MP1和NMOS晶体管MN2的中间节点LX,节点LX的电压VLX可以反映PMOS晶体管上流过的电流,另一端接所述比较器comp1的正相输入端,所述比较器comp1的反相输入端接所述过流基准电压VIREF,所述比较器comp1的输出端输出是否过流的信号。
当开关控制信号PDRV为低电平时,PMOS晶体管MP1导通,PDRV信号通过反相器INV1后的信号PON为高电平,控制开关S1导通,LX端被连到比较器Comp1的正相输入端,开始进行过流检测。当LX端的电压VLX低于过流基准电压VIREF时,所述比较器Comp1的输出端OUT为低电平,表示出现过流状态,DC-DC转换器的控制电路根据该信号关断所述PMOS晶体管MP1,进行过流保护。
由于MOS晶体管的导通电阻随工艺、电源电压和温度变化而变化很大,所以通过PMOS晶体管MP2产生一个与PMOS晶体管MP1导通电阻同比例变化的过流基准电压,可以抵消随工艺、电源电压和温度变化的影响。PMOS晶体管MP2和MP1采用类型相同的器件,在版图设计时进行匹配设计,让两者相似度很高。这样PMOS晶体管MP2和MP1的导通电阻比例仅依赖于MP2和MP1的宽长比之比,与宽长比成反比。下面公式是MOS晶体管的导通电阻计算公式:
Ron = 1 μ . Cox . ( W L ) . | ( Vgs - Vt ) |
其中Ron是导通电阻,μ是载流子迁移率,Cox是单位面积栅氧电容,这两个参数都是工艺常数,W是MOS管宽度,L是MOS晶体管长度,Vgs是栅源电压,Vt是MOS晶体管阈值电压,为工艺常数。
但是随着各种电子系统的功能越来越复杂,工作速度越来越快,对电源的输出电流要求越来越大。对于大电流DC-DC转换器来说,PMOS晶体管MP1上的导通能量损失越来越大,其上导通能量损失可由下面公式计算:
P=I2.Ron
其中P是损耗的功率,I是流经MOS晶体管的电流,Ron是MOS晶体管的导通电阻。
可见可以通过减小Ron来减小能量损失的功率。所以大电流DC-DC转换器中会设计MOS晶体管的导通电阻更小,这样导致MOS晶体管上的导通电压降更小。MOS晶体管上的导通电压降等于Vdrop=I.Ron,其中I是流经MOS晶体管的电流。
但是比较器Comp1通常存在输入偏差电压,这是由大规模生产工艺导致,即大批量生产中,芯片间的输入偏差不一致,有的大,有的小。输入偏差电压导致比较器Comp1不是在两个输入端电压完全相等时翻转,而是在VN=VP+ΔVOS时翻转,其中VN为比较器Comp1的负相输入端电压,VP为比较器Comp1的正相输入端电压,ΔVOS为输入偏差电压,其可为正数,也可为负数,随机分布。当MOS晶体管导通电压降很小时,ΔVOS相对Vdrop的值较大,这样就导致更大的相对误差,ΔVOS还随温度变化而变化,导致更大的误差。严重时可能导致低温下误触发过流保护。
因此,有必要提出一种改进的技术方案来解决上述问题。
【发明内容】
本发明的目的之一在于提供一种过流检测电路,其可以实现降低输入偏差电压的影响,从而防止由输入偏差电压的影响导致的误触发过流保护。
本发明的目的之二在于提供一种包括有过流检测电路的电源转换电路,其可以实现降低输入偏差电压的影响,从而防止由输入偏差电压的影响导致的误触发过流保护。
为了实现上述目的,根据本发明的一方面,本发明提出一种过流检测电路,其包括接收模式控制信号的模式控制端,具有第一输入端、第二输入端和一个输出端的运算放大器,电容以及与所述运算放大器的输出端连接的输出逻辑电路,所述运算放大器在模式控制信号的控制下在放大模式和比较模式之间切换,当所述运算放大器处于放大模式时,所述运算放大器的第一输入端连接过流基准电压,第二输入端连接所述电容,所述输出端连接所述第二输入端,此时所述模式控制信号控制所述输出逻辑电路输出非过流信号,当所述运算放大器处于比较模式时,所述运算放大器的第一输入端连接反映受控电流的电压,第二输入端连接所述电容,所述运算放大器比较其两个输入端的电压并通过所述输出端输出是否过流的信号,此时所述模式控制信号控制所述输出逻辑电路将所述运算放大器的输出作为自己的输出。
在一个进一步的实施例中,当所述运算放大器处于放大模式时,所述运算放大器将其第二输入端的电容的电压调整的与其第一输入端的过流基准电压相等。
在一个进一步的实施例中,所述过流检测电路包括第一开关、第二开关和第三开关,第一开关连接于所述反映受控电流的电压和所述运算放大器的第一输入端之间,第二开关连接于所述过流基准电压和所述运算放大器的第一输入端之间,第三开关连接于所述运算放大器的第二输入端和输出端之间,各个开关的导通和截止都受控于所述模式控制信号,在所述模式控制信号使得所述运算放大器处于放大模式时,所述模式控制信号控制第一开关截止,第二开关导通,以及第三开关导通,在所述模式控制信号使得所述运算放大器处于比较模式时,所述模式控制信号控制第一开关导通,第二开关截止,以及第三开关截止。
在一个更进一步的实施例中,所述输出逻辑电路包括或非门和反相器,所述或非门的第一输入端接收所述模式控制信号,所述或非门的第二输入端接所述运算放大器的输出端,所述或非门的输出端接所述反相器的输入端,所述反相器的输出端为所述输出逻辑电路的输出端。
根据本发明的另一方面,本发明还提出一种电源转换电路,其包括过流检测电路,所述过流检测电路包括接收模式控制信号的模式控制端,具有第一输入端、第二输入端和一个输出端的运算放大器,电容以及与所述运算放大器的输出端连接的输出逻辑电路,所述运算放大器在模式控制信号的控制下在放大模式和比较模式之间切换,当所述运算放大器处于放大模式时,所述运算放大器的第一输入端连接过流基准电压,第二输入端连接所述电容,所述输出端连接所述第二输入端,此时所述模式控制信号控制所述输出逻辑电路输出非过流信号,当所述运算放大器处于比较模式时,所述运算放大器的第一输入端连接反映受控电流的电压,第二输入端连接所述电容,所述运算放大器比较其两个输入端的电压并通过所述输出端输出是否过流的信号,此时所述模式控制信号控制所述输出逻辑电路将所述运算放大器的输出作为自己的输出。
在一个进一步的实施例中,所述电源转换电路还包括功率输出管和过流基准电压产生电路,所述过流基准电压产生电路产生进行过流保护的过流基准电压;所述受控电流为所述功率输出管上流过的电流。
与现有技术相比,在本发明提出的过流检测电路中,利用每个开关周期中部分时间用于存储参考电压和输入偏差电压,而在开关周期中另一部分时间比较,抵消或减小输入偏差电压的影响。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为现有技术中的降压型DC-DC转换器中的过流检测电路在一个实施例中的电路示意图;和
图2为本发明中的过流检测电路在一个实施例中的电路示意图。
【具体实施方式】
本发明的详细描述主要通过程序、步骤、逻辑块、过程或其他象征性的描述来直接或间接地模拟本发明技术方案的运作。为透彻的理解本发明,在接下来的描述中陈述了很多特定细节。而在没有这些特定细节时,本发明则可能仍可实现。所属领域内的技术人员使用此处的这些描述和陈述向所属领域内的其他技术人员有效的介绍他们的工作本质。换句话说,为避免混淆本发明的目的,由于熟知的方法和程序已经容易理解,因此它们并未被详细描述。
此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
请参考图2所示,其为本发明中的过流检测电路在一个实施例中的电路图。所述过流检测电路包括接收模式控制信号PDRV的模式控制端201,具有第一输入端、第二输入端和一个输出端的运算放大器OP,电容C2以及与所述运算放大器OP的输出端连接的输出逻辑电路220,所述运算放大器OP在模式控制信号PDRV的控制下在放大模式和比较模式之间切换。
当所述运算放大器OP处于放大模式时,所述运算放大器OP的第一输入端连接过流基准电压VIREF,第二输入端连接所述电容C2,所述输出端连接所述第二输入端,此时所述模式控制信号PDRV控制所述输出逻辑电路220输出非过流信号。在本实施例中,所述运算放大器OP的第一输入端为其正相输入端,第二输入端为其负相输入端。所述电容C2的一端与所述运算放大器OP的第二输入端相连,其另一端接地。当所述运算放大器OP处于放大模式时,所述运算放大器OP将其第二输入端的电容C2的电压VC调整的与其第一输入端的过流基准电压VIREF相等,由于所述运算放大器OP存在偏差电压VOS,因此VC=VIREF+VOS
当所述运算放大器OP处于比较模式时,所述运算放大器OP的第一输入端连接反映受控电流的电压VLX,第二输入端连接所述电容C2,所述运算放大器OP比较其两个输入端的电压并通过所述输出端输出是否过流的信号。具体的,运算放大器OP将电压VLX与存储在电容C2上的电压进行比较,此时电容C2上的电压等于在放大模式时的电压即VC=VIREF+ΔVOS。由于在比较模式下运算放大器OP也存在输入偏差电压,且此输入偏差电压等于工作在运算放模式下的输入偏差电压,所以运算放大器OP在比较模式下等效于比较VLX+ΔVOS和VIREF+ΔVOS,即等效于比较反映受控电流的电压VLX和反应过流基准电压VIREF,从而抵消输入偏差电压的影响。
在比较模式时,所述模式控制信号PDRV控制所述输出逻辑电路220将所述运算放大器OP的输出作为自己的输出。
在本实施例中,所述过流检测电路还包括第一开关S1、第二开关S2和第三开关S3,第一开关S1连接于所述反映受控电流的电压VLX和所述运算放大器OP的第一输入端之间,第二开关S2连接于所述过流基准电压VIREF和所述运算放大器OP的第一输入端之间,第三开关S3连接于所述运算放大器OP的第二输入端和输出端之间。各个开关的导通和截止都受控于所述模式控制信号PDRV,在所述模式控制信号PDRV使得所述运算放大器OP处于放大模式时,所述模式控制信号PDRV控制第一开关S1截止,第二开关S2导通,以及第三开关S3导通,在所述模式控制信号PDRV使得所述运算放大器OP处于比较模式时,所述模式控制信号PDRV控制第一开关S1导通,第二开关S2截止,以及第三开关S3截止。
在本实施例中,所述模式控制信号PDRV通过反相器INV1与第一开关S1的控制端相连,所述模式控制信号PDRV直接与第二开关S2的控制端和第三开关S3的控制端相连。
在本实施例中,所述输出逻辑电路220包括或非门NOR1和反相器INV3,所述或非门NOR1的第一输入端接收所述模式控制信号PDRV,所述或非门NOR1的第二输入端接所述运算放大器OP的输出端,所述或非门NOR1的输出端接所述反相器INV3的输入端,所述反相器INV3的输出端为所述输出逻辑电路220的输出端OUT。
为了方便理解,下面将详细描述所述过流检测电路在本实施例中的工作过程。
在本实施例中,仍以所述过流控制电路应用于如图1所示的降压型DC-DC转换器为例进行介绍。如图2所示,过流基准电压VIREF由过流基准电压产生电路210来产生,其包括串联在输入电压VCC和地之间的PMOS晶体管MP2和电流源I1。
开关控制信号PDRV被用作所述模式控制信号,其为高电平时,第一开关S1关断,第二开关S2、第三开关S3接通,运算放大器OP被连接成一个反馈模式,即运算放大器OP工作在运算放大模式,运算放大器OP的正相输入端连接过流基准电压VIREF。所述电容C2上电压VC被调整为VC=VIREF+VOS。同时由于所述模式控制信号PDRV为高电平,因此所述反相器INV3的输出端即所述输出逻辑电路220的输出端OUT为高电平,即表示处于非过流状态。
当所述模式控制信号PDRV为低电平时,第一开关S1导通,第二开关S2和第三开关S3断开,运算放大器OP工作在比较模式,运算放大器OP的正相输入端连接反映受控电流的电压VLX,运算放大器OP将电压VLX与存储在电容C2上的电压比较,此时电容C2上的电压等于在运算放大器模式时的电压即VC=VIREF+ΔVOS。由于在比较模式下也存在输入偏差电压,且此输入偏差电压等于工作在运算放模式下的输入偏差电压,所以等效于比较VLX+ΔVOS和VIREF+ΔVOS,即等效于比较VLX和VIREF的电压。当VLX大于VIREF时,运算放大器OP的输出端输出高电平,所述反相器INV3的输出端即所述输出逻辑电路220的输出端OUT也为高电平,即处于非过流状态;当VLX小于VIREF时,运算放大器OP的输出端输出低电平,所述反相器INV3的输出端即所述输出逻辑电路的输出端OUT也为低电平,即处于过流状态。
虽然在上述DC-DC转换器中,列举了一种过流基准电压产生电路和反映受控电流的电压的产生节点,但是本发明不对所述过流基准电压如何产生以及反映受控电流的电压在何处采集进行限制,现有的其他方式也是可用的。在其他实施例中,所述过流检测电路可应用于不同种类开关电压转换器电路中,比如AC-DC(交流-直流)转换器或升压型DC-DC转换器。
本发明的原理是所述过流检测电路利用每个开关周期中部分时间用于存储参考电压和输入偏差电压,而在开关周期中另一部分时间比较,抵消输入偏差电压的影响。参考电压和被比较的输入电压分时连接在比较器的同一端,所以不受输入偏差电压的影响。
上述说明已经充分揭露了本发明的具体实施方式。需要指出的是,熟悉该领域的技术人员对本发明的具体实施方式所做的任何改动均不脱离本发明的权利要求书的范围。相应地,本发明的权利要求的范围也并不仅仅局限于前述具体实施方式。

Claims (6)

1.一种过流检测电路,其特征在于,其包括接收模式控制信号的模式控制端,具有第一输入端、第二输入端和一个输出端的运算放大器,电容以及与所述运算放大器的输出端连接的输出逻辑电路,所述运算放大器在模式控制信号的控制下在放大模式和比较模式之间切换,
当所述运算放大器处于放大模式时,所述运算放大器的第一输入端连接过流基准电压,第二输入端连接所述电容,所述输出端连接所述第二输入端,此时所述模式控制信号控制所述输出逻辑电路输出非过流信号,
当所述运算放大器处于比较模式时,所述运算放大器的第一输入端连接反映受控电流的电压,第二输入端连接所述电容,所述运算放大器比较其两个输入端的电压并通过所述输出端输出是否过流的信号,此时所述模式控制信号控制所述输出逻辑电路将所述运算放大器的输出作为自己的输出。
2.根据权利要求1所述的过流检测电路,其特征在于,当所述运算放大器处于放大模式时,所述运算放大器将其第二输入端的电容的电压调整的与其第一输入端的过流基准电压相等。
3.根据权利要求1所述的过流检测电路,其特征在于,其包括第一开关、第二开关和第三开关,第一开关连接于所述反映受控电流的电压和所述运算放大器的第一输入端之间,第二开关连接于所述过流基准电压和所述运算放大器的第一输入端之间,第三开关连接于所述运算放大器的第二输入端和输出端之间,
各个开关的导通和截止都受控于所述模式控制信号,在所述模式控制信号使得所述运算放大器处于放大模式时,所述模式控制信号控制第一开关截止,第二开关导通,以及第三开关导通,在所述模式控制信号使得所述运算放大器处于比较模式时,所述模式控制信号控制第一开关导通,第二开关截止,以及第三开关截止。
4.根据权利要求1所述的过流检测电路,其特征在于,所述输出逻辑电路包括或非门和反相器,所述或非门的第一输入端接收所述模式控制信号,所述或非门的第二输入端接所述运算放大器的输出端,所述或非门的输出端接所述反相器的输入端,所述反相器的输出端为所述输出逻辑电路的输出端。
5.一种电源转换电路,其特征在于,其包括如权利要求1-4任一所述的过流检测电路。
6.根据权利要求5所述的电源转换电路,其特征在于,其还包括功率输出管和过流基准电压产生电路,
所述过流基准电压产生电路产生进行过流保护的过流基准电压;
所述受控电流为所述功率输出管上流过的电流。
CN 201110320328 2011-10-20 2011-10-20 电源转换电路及其过流检测电路 Active CN102313836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110320328 CN102313836B (zh) 2011-10-20 2011-10-20 电源转换电路及其过流检测电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110320328 CN102313836B (zh) 2011-10-20 2011-10-20 电源转换电路及其过流检测电路

Publications (2)

Publication Number Publication Date
CN102313836A true CN102313836A (zh) 2012-01-11
CN102313836B CN102313836B (zh) 2013-06-12

Family

ID=45427174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110320328 Active CN102313836B (zh) 2011-10-20 2011-10-20 电源转换电路及其过流检测电路

Country Status (1)

Country Link
CN (1) CN102313836B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249831A (zh) * 2015-06-05 2016-12-21 李东升 一种可应用于外接式硬盘的电源转换电路
CN109990830A (zh) * 2018-01-02 2019-07-09 恩智浦有限公司 电源中的电压和温度监视

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909315A (zh) * 2005-08-02 2007-02-07 艾默生网络能源系统有限公司 多路输出电源及其过流检测和保护方法
CN101470142A (zh) * 2007-12-27 2009-07-01 英业达股份有限公司 过流检测电路、降压转换器及过流检测方法
CN202267706U (zh) * 2011-10-20 2012-06-06 无锡中星微电子有限公司 电源转换电路及其过流检测电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909315A (zh) * 2005-08-02 2007-02-07 艾默生网络能源系统有限公司 多路输出电源及其过流检测和保护方法
CN101470142A (zh) * 2007-12-27 2009-07-01 英业达股份有限公司 过流检测电路、降压转换器及过流检测方法
CN202267706U (zh) * 2011-10-20 2012-06-06 无锡中星微电子有限公司 电源转换电路及其过流检测电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249831A (zh) * 2015-06-05 2016-12-21 李东升 一种可应用于外接式硬盘的电源转换电路
CN106249831B (zh) * 2015-06-05 2019-04-19 宸定科技股份有限公司 一种可应用于外接式硬盘的电源转换电路
CN109990830A (zh) * 2018-01-02 2019-07-09 恩智浦有限公司 电源中的电压和温度监视

Also Published As

Publication number Publication date
CN102313836B (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
US7880446B2 (en) Adaptive frequency compensation for DC-to-DC converter
CN1805281B (zh) 脉冲宽度调制电路
CN103677047B (zh) Ldo快速启动电路
CN102761273A (zh) 一种原边反馈ac-dc开关电源的空载控制系统
CN201435679Y (zh) 一种开关模式电源
CN104167923A (zh) 一种开关电源的动态快速响应电路
CN103066823A (zh) 一种开关电源控制器和控制方法
CN105811761A (zh) 一种电流采样电路及集成电流采样电路的boost电路
CN101183828B (zh) 具有内部调整的导通时间的集成开关
CN115389808B (zh) 电流检测电路及降压变换器
CN202267706U (zh) 电源转换电路及其过流检测电路
CN105162314A (zh) 一种用于buck变换器的过流检测电路
CN105790584A (zh) 一种低功耗的电源供电系统及方法
CN104991113A (zh) 应用于高频开关电源中的过零检测电路
CN110109501B (zh) 负载跳变快速响应电路及快速响应方法
CN102545663A (zh) 一种适用于电流模式开关电源的过功率补偿电路
CN205377666U (zh) 一种直流-直流转换器电路
CN102313836B (zh) 电源转换电路及其过流检测电路
CN101153880A (zh) 负电压检测器
CN202632145U (zh) 低压差电压调节器
CN105676929B (zh) 一种防输出过冲ldo启动电路
CN206274644U (zh) 结合电感转换器使用的振荡器以及电感转换器
CN116846354B (zh) 一种具有限流及自适应静态电流的电流误差放大器
CN203054660U (zh) 一种应用于电源管理电路中的快速下电控制电路
CN202978247U (zh) 过电流保护电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 214028 Jiangsu New District of Wuxi, Taihu international science and Technology Park Jia Qing 530 building 10 layer

Patentee after: WUXI ZHONGGAN MICROELECTRONIC CO., LTD.

Address before: 214028 Jiangsu New District of Wuxi, Taihu international science and Technology Park Jia Qing 530 building 10 layer

Patentee before: Wuxi Vimicro Co., Ltd.