组间正交互补序列集的生成方法
技术领域
本发明属于通信系统信号设计技术领域,具体涉及一种适用于多载波码分多址通信系统的组间正交互补序列集的生成方法。
背景技术
传统互补序列集中的每一个互补序列包含多个子序列,互补序列的相关函数等于各个子序列的相关函数相加之和。由于具有理想的周期和非周期相关性能,因此传统互补序列集在多址通信(中国专利CN101965702A)、同步(中国专利CN101155021,CN101523745)、信道估计(中国专利CN101626360,CN102007742A)以及雷达(中国专利CN101902432A)等诸多领域获得广泛的应用。然而,该类序列集的优异相关性能是以牺牲序列数目为代价的,即互补序列集中序列的个数不大于每个互补序列中子序列的数目。序列数目的约束实际上成为了传统互补序列集的一个核心问题,这也是限制基于传统互补序列集进行多址和复用的通信系统提升容量的主要瓶颈。
虽然,将传统互补序列与零相关区序列思想相结合所产生的Z-互补序列(P.Z.Fan,W.N.Yuan and Y.F.Tu,Z-complementary binary sequences,IEEE Signal Process.Lett.,vol.14,no.8,pp.509-512,Aug.2007)和Z-周期互补序列(W.N.Yuan,Y.F.Tu andP.Z.Fan,Optimal training sequences for cyclic-prefix-based single-carriermulti-antenna systems with space-time block-coding,IEEE Trans.on Wireless Commun.,vol.7,no.11,pp.4047-4050,2008)可以使得序列数目有所增加,但是这两类序列却只能在某个区间内产生局部理想的非周期或周期相关性能。
作为与互补序列相对应的另外一类序列,即单一序列(如gold序列和Walsh-Hadamard正交序列等),虽然它们可以获得较大的序列数目,但是却不可能获得理想的非周期相关性能,从而将对通信系统产生不同程度的多址干扰。
那么,传统互补序列、Z-互补序列、Z-周期互补序列以及单一序列各有优缺点,在序列数目和相关性能之间呈现不同趋向的折衷,但是它们都不能在提供理想相关性能的同时扩大序列数目。
设有两个长度为L的序列a=(a(0),a(1),…,a(L-1))和b=(b(0),b(1),…,b(L-1)),则它们的非周期互相关函数ψa,b(τ)可以表示为其中,符号*表示复共轭。当a=b时,ψa,a(τ)为非周期自相关函数。
两序列a和b的交织操作可以表示为a□b=(a(0),b(0),a(1),b(1),…,a(L-1),b(L-1))。
令A={Ai,0≤i≤M-1}表示一个由M个序列组成的集合,每个序列由N个长为L的子序列组成,即Ai={Ai,r,0≤r≤N-1},Ai,r=(Ai,r(0),Ai,r(1),…,Ai,r(L-1))。若Ai={Ai,r,0≤r≤N-1}满足则Ai为一个互补序列。其中,表示Ai,r的功率。
设Ai和Aj是集合A中的两个互补序列,若满足 i≠j,则Ai和Aj被称为互补对。
如果集合A中的所有序列均为互补序列,且它们两两之间互为互补对,则该集合A称为互补序列集。对于互补序列集,其互补序列的数目M不大于每个互补序列中子序列的数目N。当M=N时,序列数目达到最大,集合A称为完备互补序列集。
可见,即使是完备互补序列集,其序列数目也非常有限,特别是当子序列长度较大时,传统互补序列集的序列数目远远小于序列集合的处理增益。针对传统互补序列集的这一约束,对序列集合进行分组是一种有效增加序列数目的方法。通过该方法所产生的分组互补序列集(Z Y Zhang,F X Zeng,W Chen,et al.Grouped complementary codes for multicarrierCDMA systems.IEEE International Symposium on Information Theory,Seoul,Korea,June28-July 3,2009:443-447.)可以在保证各个序列组内具有理想的相关性能的同时大幅度地增加序列的数目。但是,分组互补序列集中各个分组之间的相关性能却较差,零位移上只能获得一个相对的低相关值,这将导致系统中的用户数目增加时多址干扰的累加。
发明内容
本发明的目的就是为了克服传统互补序列集序列数目受限的不足,解决码分多址通信系统中容量提升的问题,通过正交矩阵扩展和交织操作,提供一种包含多个相互正交的互补序列组的组间正交互补序列集的生成方法。
本发明所涉及的组间正交互补序列集的生成方法,包括:
首先对初始互补序列集中的各个序列进行相应的排序;
然后将所得到的排序后的序列集中各个序列的子序列进行相应的循环移位;
接着将移位后的序列集中的各个序列乘上相应的正交矩阵系数;
最后对乘系数后的各个子序列进行交织操作得到组间正交互补序列集。
本发明所涉及的组间正交互补序列集的生成方法,具体步骤如下:
A)根据通信系统的要求,确定生成组间正交互补序列集所需要的初始互补序列集S={Sm,0≤m≤M-1}的序列数目M、子序列数目N和子序列长度L,同时确定一个M×M维的正交矩阵其中,Sm={Sm,n,0≤n≤N-1},Sm,n=(Sm,n(0),Sm,n(1),…,Sm,n(L-1)},0≤m1,m2≤M-1,正交矩阵中的各个行序列之间正交;
B)将初始序列集中的M个序列按照编号依次从(r)M到(r+M-1)M排序,对排序后的序列集{Sm,m=(r)M,(r+1)M,…,(r+M-1)M}中的各个序列的各个子序列循环左移t位,接着将移位后的序列集{Tt(Sm),m=(r)M,(r+1)M,…,(r+M-1)M}中的各个序列乘上对应的正交矩阵系数然后对相应的子序列进行交织操作。其中,0≤r≤M-1,0≤t≤L-1,符号(·)M表示对括号内的数进行模M操作,符号Tt(·)表示对括号内序列的所有子序列循环左移t位;
C)重复步骤B)中的操作,直到r遍历0到M-1,并且t遍历0到L-1,从而获得组间正交的互补序列集C={C(r,t),0≤r≤M-1,0≤t≤L-1}。该集合包含ML个序列组,每个序列组中包含M个序列,每个序列由N个子序列组成,子序列的长度为ML。其中,表示C中的第rL+t个序列组,表示C(r,t)中的第m个序列,表示中的第n个子序列。
其中,步骤B)包括:
B-1)将初始序列集中的M个序列按照编号依次从(r)M到(r+M-1)M进行排序,当r遍历0到M-1时,可以获得M个具有不同排序的序列集。每个序列集中包含M个序列,每个序列由N个长度为L的子序列组成。不同序列集中所包含的序列是完全相同的,只是排序不同;
B-2)将步骤B-1)中排序后的序列集中各个序列的各个子序列循环左移t位,当t遍历0到L-1时,可以获得L个移位的序列集,这L个序列集之间是移位等价的。每个序列集中包含M个序列,每个序列由N个长度为L的子序列组成;
B-3)将M×M维正交矩阵中第m1行序列的元素从到依次乘上步骤B-2)中所获得的序列集{Tt(Sm),m=(r)M,(r+1)M,…,(r+M-1)M}中的序列从到从而获得乘系数后的序列集当m1遍历0到M-1时,可以获得M个乘上不同正交矩阵系数的序列集。每个序列集中包含M个序列,每个序列由N个长度为L的子序列组成;
B-4)将步骤B-3)中所获得的序列集中的各个序列依次交织,从而获得组间正交互补序列集C中的第rL+t个序列组中的第m1个序列其中当m1遍历0到M-1时,可以获得C中第rL+t个序列组中的全部M个序列。
根据上述生成步骤,所获得的组间正交互补序列集C具有如下特征:
1)总共包含ML个序列组,每个序列组中包含M个序列,因此序列集C中的序列数目等于M2L;
2)每个序列由N个子序列组成,子序列的长度为ML,因此序列集C的序列长度为NML,即处理增益等于NML;
3)全部M2L个序列都具有理想的自相关性能,即自相关函数为一个冲激函数;
4)每个序列组内的M个序列之间具有理想的互相关性能,即任意位移上的互相关函数值都等于零;
5)不同序列组的序列之间相互正交,即零位移上的互相关函数值等于零;
6)当初始互补序列集为完备互补序列集,即M=N时,组间正交互补序列集C及其全部的ML个序列组都达到序列设计的理论界。
根据上述特征,本发明所获得的组间正交互补序列集,在保证各个序列组内部理想相关性能的同时大幅度地增加了序列数目,从而有效解决了传统互补序列集的序列数目受限问题,可用于实现码分多址通信系统的无干扰传输、移动通信系统的主同步和辅同步、MIMO系统的信道估计以及相互正交的零相关区序列集的构造等方面。各个序列组由于具有理性的相关性能,因此可以看作传统的互补序列集单独使用。当一个序列组的序列数目不能满足要求时,可以根据系统需要灵活选择多个正交的序列组同时使用。
附图说明
图1为本发明的组间正交互补序列集中子序列的生成方法示意图;
图2为本发明的根据系统要求生成组间正交互补序列集的流程图;
图3为图2中模块2的实现结构图;
图4为图2中模块3的实现结构图;
图5为本发明在例1中所生成的组间正交互补序列集中所有序列的归一化非周期自相关函数值分布图。非周期自相关函数为一个冲激函数,显示序列集C具有理想的非周期自相关性能;
图6为本发明在例1中所生成的组间正交互补序列集中两个序列和之间的归一化非周期互相关函数值分布图。非周期互相关函数对于任意位移都等于0,显示这两个序列之间具有理想的非周期互相关性能;
图7为本发明在例1中所生成的组间正交互补序列集中两个序列和之间的归一化非周期互相关函数值分布图。非周期互相关函数在零位移上等于0,显示这两个序列之间相互正交,即组间序列正交;
图8为本发明在例1中所生成的组间正交互补序列集中两个序列和之间的归一化非周期互相关函数值分布图。非周期互相关函数在零位移上等于0,显示这两个序列之间相互正交,即组间序列正交。
具体实施方式
下面结合附图和实施例对本发明的技术方案进一步说明如下:
例1
本实施例为一个两载波8用户码分多址系统,系统的处理增益要求等于8。根据系统要求,可确定初始互补序列集的子序列数目为N=2,序列数目为M=2,子序列长度为L=4,正交矩阵的维数是2×2。
按照图3中模块2的实现结构图,首先利用模块2-2从模块2-1所示数据库中选择初始互补序列集然后利用模块2-3从模块2-4所示数据库中选择2×2维正交矩阵从而完成初始数据的选择。其中,符号“+”表示1,符号“-”表示-1。
按照图4中模块3的实现结构图,首先利用模块3-1对初始互补序列集S进行排序。令r=1,则可的排序后的序列集然后,利用模块3-2对排序后的序列集循环左移t位,其中t=0,1。令t=1,则序列左移1位,移位后的序列集为接着,利用模块3-3将移位后的序列集乘上对应的正交矩阵系数。根据步骤B-3),
则序列集乘上正交矩阵中的第一行系数[+ +]后仍为序列集乘上正交矩阵中的第二行系数[+ -]系数后成为最后,利用模块3-4,根据步骤B-4)对乘系数后的两个序列集分别进行交织操作。对乘系数后的序列集进行交织操作可获得对乘系数后的序列集进行交织操作可获得从而可得组间正交互补序列集C的第rL+t=3个序列组
上述为r=1且t=1时的生成过程,采用相同的方式,当r遍历0到1并且t遍历0到1时,根据步骤C)可以获得组间正交互补序列集C的全部4个序列组如下:
图5-图8分别给出了上述所生成的组间正交互补序列集C={C(r,t),0≤r≤1,0≤t≤1}的非周期自相关、组内非周期互相关以及两种组间非周期互相关的分布情况。这四幅图验证了本发明所生成的组间正交互补序列集在每个序列组内具有理想的相关性能,同时不同序列组之间的序列相互正交。
本实施例中子序列的数目为N=2,那么对于传统互补序列来说,最多只能产生两个互补序列。然而,本例中所生成的组间正交互补序列集的序列数目等于8,这是传统互补序列集合序列数目的4倍。
本实施例中的初始互补序列集为完备互补序列集,达到了理论界,因此所生成的组间正交互补序列集C={C(r,t),0≤r≤1,0≤t≤1}及其所有的4个序列组都达到了理论界。其中,每一个序列组都可以被看作是一个传统互补序列集而单独使用。
尽管上文对本发明进行了详细说明,但是本发明不限于此,本技术领域技术人员可以根据本发明的原理进行各种修改。因此,凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。