CN102281125A - Laminated and partitioned irregular low density parity check (LDPC) code decoder and decoding method - Google Patents

Laminated and partitioned irregular low density parity check (LDPC) code decoder and decoding method Download PDF

Info

Publication number
CN102281125A
CN102281125A CN2011102153915A CN201110215391A CN102281125A CN 102281125 A CN102281125 A CN 102281125A CN 2011102153915 A CN2011102153915 A CN 2011102153915A CN 201110215391 A CN201110215391 A CN 201110215391A CN 102281125 A CN102281125 A CN 102281125A
Authority
CN
China
Prior art keywords
node
information
bit
check
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102153915A
Other languages
Chinese (zh)
Other versions
CN102281125B (en
Inventor
杨艺宾
王轶翔
崔靖
俞晖
徐友云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center of Digital Television Co Ltd
Original Assignee
Shanghai Jiao Tong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University filed Critical Shanghai Jiao Tong University
Priority to CN 201110215391 priority Critical patent/CN102281125B/en
Publication of CN102281125A publication Critical patent/CN102281125A/en
Application granted granted Critical
Publication of CN102281125B publication Critical patent/CN102281125B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Error Detection And Correction (AREA)

Abstract

本发明公开一种通信技术领域的 分层分块非规则低密度校验码译码器及译码方法 ,其中:外信息存储单元将上次迭代的校验节点传递给信息节点的软值输出给译码处理模块。循环移位寄存器将信息节点的后验概率似然比更新值传递给译码处理模块。译码处理模块将本次迭代中校验更新值传递给外信息存储单元,同时将信息节点的后验概率似然比更新值经译码处理模块交织网络传递给循环移位寄存器。本发明适用于所有的QC类LDPC码译码,只要是分块的LDPC码字都支持译码;没有流水竞争冲突,有较好吞吐率性能,工作时序也相对简单;不需要耗费庞大资源的交织网络,节省了很多硬件资源,整个译码器资源消耗相对较小。支持译码并行度可以灵活变化。

The invention discloses a layered block irregular low-density check code decoder and a decoding method in the field of communication technology , wherein: the external information storage unit transfers the check node of the last iteration to the soft value output of the information node to the decoding processing module. The cyclic shift register transmits the update value of the posterior probability likelihood ratio of the information node to the decoding processing module. The decoding processing module transmits the check update value in this iteration to the external information storage unit, and at the same time transmits the update value of the posterior probability likelihood ratio of the information node to the circular shift register through the interleaving network of the decoding processing module. The present invention is applicable to decoding of all QC LDPC codes, as long as the block LDPC codewords support decoding; there is no pipeline competition conflict, good throughput performance, and relatively simple working sequence; no need to consume huge resources The interleaved network saves a lot of hardware resources, and the resource consumption of the entire decoder is relatively small. The degree of parallelism in support of decoding can be changed flexibly.

Description

分层分块非规则低密度校验码译码器及译码方法Hierarchical Block Irregular Low Density Check Code Decoder and Decoding Method

技术领域 technical field

本发明涉及一种通信技术领域的译码器及译码方法,具体是一种分层分块非规则低密度校验码译码器及译码方法。The invention relates to a decoder and a decoding method in the field of communication technology, in particular to a layered block irregular low-density check code decoder and a decoding method.

背景技术 Background technique

低密度校验码(Low Density Parity Check Codes, LDPC Codes)是1963年Gallager首先提出的一种编码技术,具有接近香农极限的性能,已经成为编码领域的一个研究热点,被广泛地应用到各种无线通信领域标准中,包括我国的数字电视地面传输标准、欧洲第二代卫星数字视频广播标准、IEEE 802.11n、IEEE 802.16e等。目前的无线通信中,高数据速率的通信越来越受到人们的重视,因此结构简单,吞吐量高的LDPC译码器一直是LDPC码的研究重点。另外,在实际应用中,根据传递信息的不同以及不同的信道状况,需要使用不同码长和码率的码进行传输。因此能够支持一定规模码长来获取足够的纠错能力的LDPC译码器结构也是在译码器结构设计中需要考虑的重点之一。为了支持大码长,通常资源消耗是很大的,由于目前技术限制,FPGA资源有限,资源耗费小的LDPC码译码器也是重要研究内容。LDPC码译码器的结构有三种形式:串行结构、全并行结构和部分并行结构。部分并行结构LDPC译码器因为其适中的复杂度和硬件资源消耗而广泛应用。另外,对于LDPC译码器来说,不同的算法,例如置信传播算法、最小和算法、带修正最小和算法、分层置信传播算法、分层带修正最小和算法等,将会影响LDPC译码器的结构,同时影响译码器的各个方面,包括吞吐量,性能,资源使用等。Low Density Parity Check Codes (Low Density Parity Check Codes, LDPC Codes) is a coding technology first proposed by Gallager in 1963. It has performance close to the Shannon limit. It has become a research hotspot in the field of coding and is widely used in various Standards in the field of wireless communication include my country's digital TV terrestrial transmission standard, the European second-generation satellite digital video broadcasting standard, IEEE 802.11n, IEEE 802.16e, etc. In the current wireless communication, people pay more and more attention to the communication of high data rate, so the LDPC decoder with simple structure and high throughput has always been the research focus of LDPC codes. In addition, in practical applications, codes with different code lengths and code rates need to be used for transmission according to different information to be transmitted and different channel conditions. Therefore, an LDPC decoder structure that can support a certain scale of code length to obtain sufficient error correction capability is also one of the key points to be considered in the design of the decoder structure. In order to support large code lengths, resource consumption is usually very large. Due to current technical limitations, FPGA resources are limited, and LDPC code decoders with low resource consumption are also important research content. The structure of LDPC code decoder has three forms: serial structure, full parallel structure and partial parallel structure. Partially parallel LDPC decoders are widely used because of their moderate complexity and hardware resource consumption. In addition, for LDPC decoders, different algorithms, such as belief propagation algorithm, minimum sum algorithm, minimum sum algorithm with modification, layered belief propagation algorithm, layered minimum sum algorithm with modification, etc., will affect LDPC decoding The structure of the decoder affects all aspects of the decoder at the same time, including throughput, performance, resource usage, etc.

经对现有技术的文献检索发现,专利申请号为200710044708的中国专利,专利名称为“分层的低密度校验码译码器及译码处理方法”,提给出了一种基于修正最小和算法的低密度校验码译码器,该译码器主要由处理模块、外信息存储单元、第二存储单元以及第一交织网络、第二交织网络组成。该译码器需要两个交织网络,由于交织网络的结构特点,使得该译码器会消耗比较多的硬件资源。而专利申请号为200810200033的中国专利,专利名称为“分层的非规则低密度校验码译码器及译码处理方法”,对前一个专利进一步改进,去掉一个交织网络,增加了迭代终止模块。这两个译码器系统都有交织网络,耗费巨大资源,而且不可避免存在流水冲突,需要插入空闲流水等待周期,大大影响了译码吞吐率,此外这两个译码器的LE资源消耗与QC-LDPC的扩展因子成正比,对于较大扩展因子的较大码长的QC-LDPC在一般的FPGA容纳不下。After searching the literature of the prior art, it is found that the Chinese patent application number is 200710044708, and the patent name is "layered low-density check code decoder and decoding processing method", which proposes a method based on the modified minimum A low-density check code decoder of sum algorithm, the decoder is mainly composed of a processing module, an external information storage unit, a second storage unit, a first interleaving network, and a second interleaving network. The decoder requires two interleaving networks, and due to the structural characteristics of the interleaving networks, the decoder consumes more hardware resources. And the Chinese patent with the patent application number 200810200033, the patent name is "layered irregular low-density check code decoder and decoding processing method", which further improves the previous patent, removes an interleaving network, and adds iteration termination module. These two decoder systems have an interleaving network, which consumes huge resources, and there are inevitably pipeline conflicts, which need to insert idle pipeline waiting periods, which greatly affects the decoding throughput. In addition, the LE resource consumption of the two decoders is different from that of The expansion factor of QC-LDPC is directly proportional, and QC-LDPC with a larger code length for a larger expansion factor cannot be accommodated in a general FPGA.

发明内容 Contents of the invention

本发明针对现有技术的不足,提出了一个分层分块非规则低密度校验码译码器及译码方法,改进的译码器结构不需要交织网络,节省了硬件资源消耗,有很小资源消耗,也不存在流水冲突问题,有较好吞吐率性能,可以支持很大扩展因子的QC-LDPC码,支持所有的QC-LDPC码译码,支持多种扩展因子并存的译码,补充了前两个译码器的不足。Aiming at the deficiencies of the prior art, the present invention proposes a layered block irregular low-density check code decoder and a decoding method. The improved decoder structure does not require an interleaving network, which saves hardware resource consumption and has a lot of advantages. Small resource consumption, no pipeline conflict problem, good throughput performance, can support QC-LDPC codes with large expansion factors, support decoding of all QC-LDPC codes, and support decoding of multiple expansion factors. Supplements the deficiencies of the first two decoders.

本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:

本发明涉及一种分层分块非规则低密度校验码译码器,包括:外信息存储单元、循环移位寄存器、译码处理模块,其中:The invention relates to a layered block irregular low-density check code decoder, comprising: an external information storage unit, a cyclic shift register, and a decoding processing module, wherein:

外信息存储单元将上次迭代的校验节点传递给信息节点的软值即校验更新值输出给译码处理模块,并存储译码处理模块传输过来的本次迭代中的检验更新值;The external information storage unit outputs the soft value of the check node of the last iteration to the information node, that is, the check update value, to the decoding processing module, and stores the check update value in this iteration transmitted by the decoding processing module;

循环移位寄存器总共有N个,N为码字母矩阵的列数,将信息节点的后验概率似然比传递给译码处理模块,并存储译码处理模块传输过来的信息节点的后验概率似然比更新值;There are a total of N cyclic shift registers, N is the number of columns of the code letter matrix, and the posterior probability likelihood ratio of the information node is passed to the decoding processing module, and the posterior probability of the information node transmitted by the decoding processing module is stored Likelihood ratio update value;

译码处理模块将本次迭代中由校验节点传递给信息节点的校验更新值传递给外信息存储单元,由比特节点处理单元和校验节点处理单元共同完成,并且将信息节点的后验概率似然比更新值传递给循环移位寄存器,由比特节点处理单元和信息比特处理单元共同完成。The decoding processing module transfers the check update value passed from the check node to the information node in this iteration to the external information storage unit, which is jointly completed by the bit node processing unit and the check node processing unit, and the a posteriori of the information node The update value of the probability likelihood ratio is transmitted to the circular shift register, which is jointly completed by the bit node processing unit and the information bit processing unit.

所述的外信息存储单元使用memory来实现,memory个数为校验节点个数,数据位宽为外信息的数据位宽两倍加上行重比特,存储最大、最小值及最小值位置,存储深度为母矩阵扩展因子。The external information storage unit is implemented using memory, the number of memory is the number of check nodes, the data bit width is twice the data bit width of the external information plus the row weight bit, and the maximum, minimum and minimum value positions are stored, and the storage depth is is the mother matrix expansion factor.

所述的循环移位寄存器个数共有比特节点个数,每个循环移位寄存器输入输出抽头个数为比特节点对应于母矩阵的列重。The cyclic shift registers have a total number of bit nodes, and the number of input and output taps of each cyclic shift register is the bit node corresponding to the column weight of the parent matrix.

所述的译码处理模块,包括:第一2选1选择器、比特节点处理单元、校验节点处理单元、信息比特处理单元,其中:The decoding processing module includes: a first 2-to-1 selector, a bit node processing unit, a check node processing unit, and an information bit processing unit, wherein:

第一2选1选择器,对输入的数据进行选择,在信道信息和从循环移位寄存器中读出的信息节点后验概率似然比之间进行选择,并将选择的结果输出给比特节点处理单元;The first 2-to-1 selector selects the input data, selects between the channel information and the posterior probability likelihood ratio of the information node read from the cyclic shift register, and outputs the selected result to the bit node processing unit;

比特节点处理单元,对母矩阵每行都有对应行重的个数,计算信息节点的比特更新值,传递给校验节点处理单元和信息比特处理单元;The bit node processing unit has a corresponding number of row weights for each row of the mother matrix, calculates the bit update value of the information node, and passes it to the check node processing unit and the information bit processing unit;

校验节点处理单元,个数为M,M为码字母矩阵行数,根据接收到的比特节点处理单元送来的信息节点的比特更新值,计算本次迭代的校验更新值,并传递给信息比特处理单元和外信息存储单元;The number of check node processing units is M, and M is the number of rows of the code letter matrix. According to the bit update value of the information node sent by the received bit node processing unit, the check update value of this iteration is calculated and passed to Information bit processing unit and external information storage unit;

信息比特处理单元根据比特节点处理单元传来的比特更新值以及校验节点处理单元传来的本次迭代的校验更新值来计算信息节点后验概率似然比更新值,输出给循环移位寄存器。The information bit processing unit calculates the update value of the information node posterior probability likelihood ratio according to the bit update value sent by the bit node processing unit and the check update value of this iteration sent by the check node processing unit, and outputs it to the cyclic shift register.

所述的比特节点处理单元,包括:减法器、第一补码转换器和第一截位运算器,其中:The bit node processing unit includes: a subtractor, a first complement converter and a first truncation operator, wherein:

减法器将第一信息节点后验概率似然比和外信息存储单元读出的上一次迭代的校验更新值相减,得到信息节点的信息更新值,传递给第一补码转换器;The subtractor subtracts the posterior probability likelihood ratio of the first information node from the check update value of the last iteration read by the external information storage unit to obtain the information update value of the information node, which is passed to the first complement converter;

第一补码转换器将信息节点的信息更新值转换为符号位-绝对值形式的数字,并传输给第一截位运算器;The first complement code converter converts the information update value of the information node into a number in the form of sign bit-absolute value, and transmits it to the first truncation operator;

第一截位运算器对第一补码转换器的输出数据进行截位操作,将位宽变为原先预定的信息节点信息的位宽,以避免在累加的过程中可能会出现数据位宽变大的情况,即得到信息节点的比特更新值。The first truncation operator performs a truncation operation on the output data of the first complement code converter, and changes the bit width to the bit width of the originally predetermined information node information, so as to avoid possible changes in the data bit width during the accumulation process In a large case, the bit update value of the information node is obtained.

所述的校验节点处理单元,包括:最小次小查找模块、乘法器、第二截位运算器和第二补码转换器,其中:The check node processing unit includes: a minimum second smallest search module, a multiplier, a second truncation operator and a second complement converter, wherein:

最小次小查找模块从比特节点处理单元传输过来的信息找出最小值和次小值,以便进一步乘性修正处理,保存到外信息存储单元,The minimum sub-minimum search module finds the minimum value and the sub-minimum value from the information transmitted by the bit node processing unit for further multiplicative correction processing and saves them in the external information storage unit.

乘法器将最小次小查找模块的输出乘以一个常数,乘法器的输出再通过第二截位运算器,将校验更新值的位宽约束在一定范围内,之后再经过第二补码转换器,得到最终本次迭代的校验更新值。The multiplier multiplies the output of the smallest second-smallest search module by a constant, and the output of the multiplier passes through the second truncation operator to constrain the bit width of the check update value within a certain range, and then undergoes second complement conversion device to get the final verification update value of this iteration.

所述最小次小查找模块由许多四输入二输出小单元组成和二输入二输出小单元,其中:The smallest second-smallest search module is composed of many four-input two-output small units and two-input two-output small units, wherein:

二输入二输出小单元输入两个节点信息,输出为按大小排列好的的原样数据,作用是对两个数进行排序,由选择器构成;The two-input-two-output small unit inputs two node information, and the output is the original data arranged according to the size. The function is to sort the two numbers, which is composed of selectors;

四输入二输出小单元四个输入是两个二输入二输出或另两个四输入二输出的四个输出,作用是把已经排好大小的两组输入数据里面选出四个里的最小与次小值;The four inputs of the four-input two-output small unit are two two-input two-output or two other four-input two-output four outputs. second minimum value;

所述的信息比特处理单元,包括:缓存器、第三补码转换器、加法器,其中:The information bit processing unit includes: a buffer, a third complement converter, and an adder, wherein:

缓存器用于存放比特节点处理单元传输过来的信息节点的比特更新值,其长度等于与当前校验节点相连的信息节点的个数(即等于校验矩阵对应当前校验节点的行重);The buffer is used to store the bit update value of the information node transmitted by the bit node processing unit, and its length is equal to the number of information nodes connected to the current check node (that is, equal to the row weight of the check matrix corresponding to the current check node);

第三补码转换器接收校验节点处理单元中的缓存器传输过来数据,将符号-绝对值形式的数据转换为补码形式;The third complement code converter receives the data transmitted from the buffer in the check node processing unit, and converts the data in the sign-absolute value form into a complement form;

加法器将第三补码转换器的输出和校验节点处理单元传输过来的本次迭代的校验更新值相加,得到信息节点后验概率似然比更新值,传递给译码循环移位寄存器。The adder adds the output of the third complement converter and the check update value of this iteration transmitted by the check node processing unit to obtain the updated value of the posterior probability likelihood ratio of the information node, which is passed to the decoding cyclic shift register.

本发明涉及一种分层分块非规则低密度校验码译码方法,包括以下步骤:The present invention relates to a layered block irregular low-density check code decoding method, comprising the following steps:

步骤一,获得译码器的输入数据(信道值);Step 1, obtaining the input data (channel value) of the decoder;

步骤二,选择器对信息节点后验概率似然比的输入数据进行选择,如果在译码过程中该信息节点第一次参与译码,则选择刚输入信道信息的移位寄存器作为信息节点后验概率似然比,否则从另外一个循环移位寄存器中读出的数据作为当前迭代的信息节点后验概率似然比传递给译码处理模块;Step 2. The selector selects the input data of the posterior probability likelihood ratio of the information node. If the information node participates in the decoding for the first time in the decoding process, the shift register that has just input the channel information is selected as the post-information node. Posterior probability likelihood ratio, otherwise the data read from another cyclic shift register is passed to the decoding processing module as the posterior probability likelihood ratio of the information node of the current iteration;

步骤三,从外信息存储单元读取上一次迭代中校验节点传递给信息节点的软值即校验更新值,传递给译码处理模块;Step 3, read the soft value passed from the check node to the information node in the last iteration from the external information storage unit, that is, the check update value, and pass it to the decoding processing module;

步骤四,比特节点处理单元读取出信息节点后验概率似然比和外信息存储单元读取的上一次迭代的校验更新值,得到信息节点的比特更新值,传递给校验节点处理单元;Step 4, the bit node processing unit reads the posterior probability likelihood ratio of the information node and the check update value of the last iteration read by the external information storage unit, obtains the bit update value of the information node, and passes it to the check node processing unit ;

步骤五,校验节点处理单元根据传递给当前校验节点的所有信息节点的比特更新值,计算本次迭代的校验更新值,这个校验更新值存入外信息存储单元;Step 5, the check node processing unit calculates the check update value of this iteration according to the bit update values of all information nodes passed to the current check node, and the check update value is stored in the external information storage unit;

步骤六,利用第四步计算得到的信息节点的比特更新值和第五步计算得到的本次迭代的校验更新值,计算信息节点的后验概率似然比更新值,然后存入移位寄存器。Step 6: Use the bit update value of the information node calculated in the fourth step and the check update value of this iteration calculated in the fifth step to calculate the update value of the posterior probability likelihood ratio of the information node, and then store it in the shift register.

本发明具有如下有益效果:The present invention has following beneficial effect:

(1)本发明译码器适用于所有的QC类LDPC码,只要是分块的LDPC码字都支持译码;(1) The decoder of the present invention is applicable to all QC LDPC codes, as long as it is a block LDPC codeword, it supports decoding;

(2)本发明译码器没有流水竞争冲突,它利用循环移位寄存器替代memory,消除了流水冲突,不需要插入流水冲突空闲等待周期,有较好吞吐率性能,工作时序也相对简单;(2) The decoder of the present invention has no pipeline contention conflicts, it uses circular shift registers instead of memory, eliminates pipeline conflicts, does not need to insert pipeline conflict idle waiting periods, has better throughput performance, and the working sequence is relatively simple;

(3)本发明译码器不需要耗费庞大资源的交织网络,节省了很多硬件资源,整个译码器资源消耗相对较小;(3) The decoder of the present invention does not require an interleaving network that consumes huge resources, which saves a lot of hardware resources, and the resource consumption of the entire decoder is relatively small;

(4)本发明支持译码并行度可以灵活变化,可以方便的在硬件资源和吞吐率选择一个折中,对于不需要灵活性但需要极小资源或极高吞吐率的应用需求有很好适用性。(4) The present invention supports that the degree of decoding parallelism can be flexibly changed, and it is convenient to choose a compromise between hardware resources and throughput rate, which is very suitable for application requirements that do not require flexibility but require extremely small resources or extremely high throughput rates sex.

附图说明 Description of drawings

图1是本发明中准循环扩展方法构造的QC-LDPC码的H矩阵的结构示意图;Fig. 1 is the structural representation of the H matrix of the QC-LDPC code that quasi-cyclic extension method constructs in the present invention;

图2是本发明中的校验矩阵的结构示意图及分层方法示意图;Fig. 2 is a schematic structural diagram and a schematic diagram of a hierarchical method of a parity check matrix in the present invention;

图3是本发明循环移位寄存器示意图(以4个抽头为例);Fig. 3 is a schematic diagram of the circular shift register of the present invention (taking 4 taps as an example);

图4是本发明最大最小值查找模块结构框图(以7输入为例);Fig. 4 is a structural block diagram of the maximum and minimum value search module of the present invention (taking 7 inputs as an example);

图5是本发明译码器的系统结构框图;Fig. 5 is the system structural block diagram of decoder of the present invention;

图6是本发明译码器的系统各部分网络连接示意图。Fig. 6 is a schematic diagram of the network connection of various parts of the system of the decoder of the present invention.

图7是本发明译码器的译码核心处理模块框图。Fig. 7 is a block diagram of the decoding core processing module of the decoder of the present invention.

具体实施方式 Detailed ways

下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below in conjunction with the accompanying drawings: this embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following the described embodiment.

如图1所示,是现有使用并行度为k的译码器所采用的准循环LDPC码的母矩阵及其扩展方法。需要构造的码字的大小为m*n,则相应的母矩阵的大小为(m/k)*(n/k),母矩阵中的每一个元素扩展为一个k*k的矩阵。母矩阵中的0扩展成一个k*k的零矩阵;母矩阵中的1扩展成一个k*k的单元矩阵的循环移位形式,图中,左侧是母矩阵示意图,右侧是母矩阵中某非零元素扩展示意图。As shown in FIG. 1 , it is the mother matrix of the quasi-cyclic LDPC code adopted by a decoder with a degree of parallelism k and its extension method. The size of the codeword to be constructed is m*n, and the size of the corresponding mother matrix is (m/k)*(n/k), and each element in the mother matrix is expanded into a k*k matrix. The 0 in the mother matrix is expanded into a k*k zero matrix; the 1 in the mother matrix is expanded into a cyclic shift form of a k*k unit matrix. In the figure, the left side is the mother matrix diagram, and the right side is the mother matrix Schematic diagram of the expansion of a non-zero element in .

构造好母矩阵后还需要对母矩阵进行变换,用本发明的译码器译码来译码可以更好的性能。变换方法如下,从母矩阵第二行开始,如果第n行非-1元素与1~(n-1)行的同一列非-1元素有重复,整行所有非-1元素都加1,直到所有非-1元素与1~(n-1)行的同一列非-1元素都没有重复为止,最后变换后的母矩阵每一列的非-1元素都不一样。After the mother matrix is constructed, it is necessary to transform the mother matrix, and decoding with the decoder of the present invention can achieve better performance. The transformation method is as follows, starting from the second row of the mother matrix, if the non-1 element in the nth row is repeated with the non-1 element in the same column of the 1~(n-1) row, all non-1 elements in the entire row will be added with 1, Until all the non-1 elements are not repeated with the non-1 elements in the same column of rows 1~(n-1), the non-1 elements in each column of the transformed mother matrix are different.

如图2所示,图示是本发明译码器使用的迭代方法的分层方法,说明书背景技术中提到的两个专利使用的分层方法如图左边所示,把母矩阵每一行扩展的k行作为一层,总共层数为母矩阵行数,然而本发明译码器分层方法则如图右边所示,母矩阵每行扩展后只取k行中的一行,总共母矩阵行数作为一层,层数为扩展因子k,例如所有扩展后的第一行为第一层,第二行为第二层……。As shown in Figure 2, the illustration is the layered method of the iterative method used by the decoder of the present invention. The layered method used by the two patents mentioned in the background technology of the specification is shown on the left side of the figure, and each row of the mother matrix is expanded The k rows of k rows are used as one layer, and the total number of layers is the number of rows of the mother matrix. However, the layered method of the decoder of the present invention is shown on the right side of the figure. After each row of the mother matrix is expanded, only one row in the k rows is taken, and the total number of rows of the mother matrix is The number is taken as one layer, and the number of layers is the expansion factor k, for example, the first row after all expansion is the first layer, and the second row is the second layer... .

如图3所示,是本发明译码器所涉及的循环移位寄存器结构,循环移位寄存器由多段进行拼接连接成环形,段个数为母矩阵列重,每一段输出传递给比特节点处理单元,从信息比特处理单元传递输入。As shown in Figure 3, it is the circular shift register structure involved in the decoder of the present invention. The circular shift register is spliced and connected into a ring by multiple segments. The number of segments is the column weight of the mother matrix, and the output of each segment is passed to the bit node for processing. unit that passes input from the information bit processing unit.

如图4所示,是本发明译码器所涉及的最小次小值查找模块结构,示例为7输入的模块,先两两一对分组排序,然后连接4选2模块从两组排好序的4个数选出最小和次小值。As shown in Figure 4, it is the structure of the minimum sub-small value search module involved in the decoder of the present invention. The example is a 7-input module, which is sorted in groups of two pairs first, and then connected with 4 to select 2 modules to sort from the two groups. Select the smallest and second smallest values from the 4 numbers.

如图5所示,为本发明译码器一实施例结构图,该分层分块非规则低密度校验码译码器,包括:译码处理模块、外信息存储单元、n个循环移位寄存器三个大模块,其中译码处理模块可以分为比特节点处理单元、校验节点处理单元和信息比特处理单元三个部分。As shown in Figure 5, it is a structural diagram of an embodiment of the decoder of the present invention. The layered block irregular LDPC decoder includes: a decoding processing module, an external information storage unit, n cyclic shift There are three large modules of bit registers, among which the decoding processing module can be divided into three parts: bit node processing unit, check node processing unit and information bit processing unit.

如图6所示,本本发明译码器一实施例几个模块之间连接网络图,其中循环移位寄存器为乒乓,个数有n个(n母矩阵列数),校验节点有m个(m为母矩阵行数),每一比特节点处理单元和信息比特处理单元都有行重个加或减节点。As shown in Figure 6, the connection network diagram between several modules of an embodiment of the decoder of the present invention, wherein the circular shift register is a ping-pong register, the number of which is n (the number of columns of the n mother matrix), and the number of check nodes is m (m is the number of rows of the parent matrix), each bit node processing unit and information bit processing unit has a row-heavy addition or subtraction node.

所述的译码处理模块里,外信息存储单元将上次迭代的校验节点传递给信息节点的软值即校验更新值输出给译码处理模块。循环移位寄存器将信息节点的后验概率似然比的更新值传递给译码处理模块。译码处理模块将本次迭代中由校验节点传递给信息节点的校验更新值传递给外信息存储单元,将信息节点的后验概率似然比更新值传递给循环移位寄存器。In the decoding processing module, the external information storage unit outputs the soft value passed from the check node to the information node in the last iteration, that is, the check update value, to the decoding processing module. The circular shift register transmits the update value of the posterior probability likelihood ratio of the information node to the decoding processing module. The decoding processing module transmits the check update value passed from the check node to the information node in this iteration to the external information storage unit, and transmits the update value of the posterior probability likelihood ratio of the information node to the circular shift register.

如图7所示,所述译码处理模块的译码核心处理模块框图,包括:第一2选1选择器501、比特节点处理单元502、校验节点处理单元509、信息比特处理单元512,其中:第一2选1选择模块501对输入的数据进行选择,并将选择的结果输出给比特节点处理单元。比特节点处理单元计算信息节点的比特更新值,传递给校验节点处理单元和信息比特处理单元。校验节点处理单元根据接收到的比特节点处理单元送来的信息节点的比特更新值,计算本次迭代的校验更新值,并传递给信息比特处理单元和外信息存储单元509。信息比特处理单元根据比特节点处理单元传来的比特更新值以及校验节点处理单元传来的本次迭代的校验更新值来计算信息节点后验概率似然比更新值,输出给循环移位寄存器515。As shown in FIG. 7 , the block diagram of the decoding core processing module of the decoding processing module includes: a first 2-to-1 selector 501, a bit node processing unit 502, a check node processing unit 509, and an information bit processing unit 512, Wherein: the first 2-to-1 selection module 501 selects the input data, and outputs the selected result to the bit node processing unit. The bit node processing unit calculates the bit update value of the information node, and transmits it to the check node processing unit and the information bit processing unit. The check node processing unit calculates the check update value of this iteration according to the received bit update value of the information node sent by the bit node processing unit, and transmits it to the information bit processing unit and the external information storage unit 509 . The information bit processing unit calculates the update value of the information node posterior probability likelihood ratio according to the bit update value sent by the bit node processing unit and the check update value of this iteration sent by the check node processing unit, and outputs it to the cyclic shift Register 515.

所述译码处理模块,其执行流程如下:The decoding processing module, its execution flow is as follows:

(1)   选择输入数据(1) Select input data

第一2选1选择器501对输入的数据进行选择。如果在译码过程中该信息节点第一次参与译码,则选择刚存储信道信息的循环移位寄存器514或515,否则选择另外一个循环移位寄存器514或515中读出的信息节点后验概率似然比。第一2选1选择器501的输出llrSum传递给比特节点处理单元。The first 2-to-1 selector 501 selects the input data. If the information node participates in decoding for the first time in the decoding process, then select the cyclic shift register 514 or 515 that just stored the channel information, otherwise select the information node read out from another cyclic shift register 514 or 515 Probability Likelihood Ratio. The output llrSum of the first 2-to-1 selector 501 is delivered to the bit node processing unit.

(2)   计算信息节点的比特更新值(2) Calculate the bit update value of the information node

如图5所示,比特节点处理单元包括减法器502、第一补码转化器503和第一截位运算器504,从外信息存储单元读出的上一次迭代的校验更新值llr2MsgOld传递给减法器502,减法器502将第一2选1选择器501的输出llrSum和校验更新值llr2MsgOld相减,得到信息节点的信息更新值llrNewTmp,校验更新值读取是根据位置标志选择最小还是次小值。llrNewTmp传递给第一补码转换器503,将补码形式的数字转换成符号位-绝对值形式的数字llrNewUnsigned。由于累加的过程中可能会出现数据位宽变大的情况,因此需要将第一补码转换器503 的输出送入到第一截位运算器504,将位宽改称原先预定的大小。第一截位运算器504出来的比特更新值llr2Check送入校验节点处理单元。As shown in Figure 5, the bit node processing unit includes a subtractor 502, a first complement code converter 503 and a first truncation operator 504, and the check update value llr2MsgOld of the last iteration read from the external information storage unit is passed to Subtractor 502. Subtractor 502 subtracts the output llrSum of the first 2-to-1 selector 501 and the check update value llr2MsgOld to obtain the information update value llrNewTmp of the information node. Whether the check update value is read is to select the minimum or second minimum value. llrNewTmp is passed to the first complement converter 503 to convert the number in complement form into the number llrNewUnsigned in sign bit-absolute value form. Since the data bit width may become larger during the accumulation process, the output of the first complement converter 503 needs to be sent to the first truncation operator 504 to rename the bit width to the original predetermined size. The bit update value llr2Check from the first truncation operator 504 is sent to the check node processing unit.

(3)   计算校验节点传递给信息节点的校验更新值(3) Calculate the check update value passed by the check node to the information node

如图5所示,校验节点信息更新模块包括:最小次小值查找模块和修正模块。最小次小值查找模块由一些比较器组成,结构如图4,修正模块为乘性修正使用3个加法器构成。校验节点处理单元的操作又分为如下几步:As shown in FIG. 5 , the check node information update module includes: a minimum sub-smallest value search module and a correction module. The minimum sub-small value search module is composed of some comparators, the structure is shown in Figure 4, and the correction module is composed of three adders for multiplicative correction. The operation of the check node processing unit is divided into the following steps:

①计算与当前校验节点相连的所有信息节点的比特更新值的最小值和次小值。(本实施例采用LMMSA算法,所以需要计算与当前校验节点相连的比特更新值中的最小值和次小值。)① Calculate the minimum value and the second minimum value of the bit update values of all information nodes connected to the current check node. (This embodiment adopts the LMMSA algorithm, so it is necessary to calculate the minimum value and the second minimum value among the bit update values connected to the current check node.)

直接使用一个由许多个比较器互相连接而成的最小次小模块505一次性找出最小和次小值并用行重比特来记录该选择最小还是次小。Directly use a smallest and second smallest module 505 which is formed by connecting many comparators to find out the smallest and second smallest values at one time and use row weight bits to record whether the selection is the smallest or the second smallest.

②乘性修正② Multiplicative correction

最小次小模块505输出直接输入到乘法器506中进行乘性修正,即将其乘以一个系数alpha,经过乘法器之后的输出送入第二截位运算器507。Alpha值通过LDPC码通用仿真平台扫描系数alpha仿真得到,系数alpha为0.8附近性能最好,实现时可以在0.8附近取个值,而不重新仿真。The output of the smallest sub-module 505 is directly input to the multiplier 506 for multiplicative correction, that is, it is multiplied by a coefficient alpha, and the output after the multiplier is sent to the second truncation operator 507 . The Alpha value is simulated by scanning the coefficient alpha on the LDPC code general simulation platform, and the coefficient alpha is around 0.8, which has the best performance, and a value around 0.8 can be taken during implementation without re-simulation.

③截位运算③Truncation operation

从乘法器506出来的信息的位宽比校验更新值的位宽大,所以在进入第二补码转换器508之前,需要对该值进行的位宽进行调整,由第二截位运算器507调整为校验更新值的位宽。The bit width of the information coming out from the multiplier 506 is larger than the bit width of the check update value, so before entering the second complement converter 508, the bit width of the value needs to be adjusted, by the second truncation operator 507 Adjusted to check the bit width of the updated value.

④数字格式转换④ Digital format conversion

将第二截位运算器507的输出送入第二补码转换器508,将符号位-绝对值形式的数字转换为补码形式的数字llr2Msg。The output of the second truncation operator 507 is sent to the second complement converter 508 to convert the number in sign bit-absolute value form into the number llr2Msg in complement form.

⑤计算校验节点传递给信息节点的更新值⑤ Calculate the updated value passed from the check node to the information node

根据位置比特标志选择最小还是次小作为校验节点传递给信息节点的更新值。According to the position bit flag, the smallest or the second smallest is selected as the update value delivered by the check node to the information node.

最后,本次迭代的校验更新值,存入外信息存储单元401。Finally, the check update value of this iteration is stored in the external information storage unit 401 .

(3)计算信息节点后验概率似然比更新值(3) Calculate the update value of the posterior probability likelihood ratio of the information node

如图5所示,信息节点后验概率似然比更新模块包括缓存器510、第三补码转换器511和加法器512。缓存器510把比特更新值llr2Check缓存延迟几个周期,从缓存器510出来的数据Q进入第三补码转换器511中,由符号-绝对值形状转化为补码形式llrNew,送入加法器512。加法器512的另一个输入是校验更新值llr2Msg,两个值相减,得到信息节点后验概率似然比更新值llrSumNew。llrSumNew的符号位就即为硬判结果,同时存入乒乓的循环移位寄存器514或515。As shown in FIG. 5 , the information node posterior probability likelihood ratio update module includes a buffer 510 , a third complement converter 511 and an adder 512 . Buffer 510 buffers the bit update value llr2Check and delays it for several cycles, and the data Q from buffer 510 enters the third complement converter 511, converts the sign-absolute value shape into complement form llrNew, and sends it to adder 512 . Another input of the adder 512 is the check update value llr2Msg, and the two values are subtracted to obtain the update value llrSumNew of the posterior probability likelihood ratio of the information node. The sign bit of llrSumNew is the hard judgment result, and is stored in the circular shift register 514 or 515 of the ping-pong simultaneously.

当采用本实施例系统对一个码长为8064、码率为1/2的非规则低密度校验码,现在要对这个码进行译码,扩展因子96,层数为96,即子矩阵的个数为96。该非规则低密度校验码的特点是所有行重为7。具体的译码过程包括以下步骤:When adopting the present embodiment system to a code length is 8064, code rate 1/2 non-regular low density check code, now will decode this code, expansion factor 96, number of layers is 96, namely the sub-matrix The number is 96. The non-regular LDPC is characterized by a weight of 7 for all rows. The specific decoding process includes the following steps:

步骤一,接收信道信息,信道信息将会被顺序的分割成8064/96=84个子模块,对应84个循环移位寄存器,乒乓的循环移位寄存器将有一个被用于移位存储信道信息,另一个用于迭代译码使用,然后交换作用,乒乓使用。Step 1, receiving channel information, the channel information will be sequentially divided into 8064/96=84 sub-modules, corresponding to 84 cyclic shift registers, one of the ping-pong cyclic shift registers will be used to shift and store channel information, The other is used for iterative decoding, and then the exchange function is used for ping-pong.

步骤二,第一2选1选择模块501会选择用于迭代译码的循环移位寄存器,将选择结果llrSum送入译码处理模块;Step 2, the first 2-to-1 selection module 501 will select the circular shift register for iterative decoding, and send the selection result llrSum to the decoding processing module;

步骤三,从外信息存储单元509读出的上一次迭代的校验更新值llr2MsgOld和信息节点后验概率似然比llrSum,相减作为llr信息,进行补码转换和截位,取得绝对值和符号;Step 3: Subtract the check update value llr2MsgOld of the last iteration read from the external information storage unit 509 and the posterior probability likelihood ratio llrSum of the information node as the llr information, perform complement conversion and truncation, and obtain the absolute value sum symbol;

步骤四,在处理过程中,译码处理模块首先得到信息节点的比特更新值llr2Check。根据信息节点的比特更新值llr2Check得到本次迭代校验节点传递给信息节点的校验更新值llr2Msg并存入外信息存储单元509。接着,译码处理模块根据信息节点的比特更新值llr2Check和本次迭代校验节点传递给信息节点的校验更新值llr2Msg得到信息节点后验概率似然比更新值llrSumNew,存入循环移位寄存器。如此完成了一次迭代之后进入下一次迭代。依次类推,直到迭代结束。Step 4, during the processing, the decoding processing module first obtains the bit update value llr2Check of the information node. According to the bit update value llr2Check of the information node, the check update value llr2Msg passed to the information node by the check node in this iteration is obtained and stored in the external information storage unit 509 . Next, the decoding processing module obtains the update value llrSumNew of the posterior probability likelihood ratio of the information node according to the bit update value llr2Check of the information node and the check update value llr2Msg passed to the information node by the check node in this iteration, and stores it in the circular shift register . After completing one iteration in this way, enter the next iteration. And so on, until the iteration ends.

进入译码处理模块的上一次迭代的校验更新值llr2MsgOld 和信息节点后验概率似然比llrSum作为减法器502的两个输入相减,得到信息节点的信息更新值llrNewTmp。将llrNewTmp传递给第一补码转换器503,将补码形式的数字转换成符号位-绝对值形式的数字llrNewUnsigned。第一补码转换器503 的输出送入到第一截位运算器504。第一截位运算器504出来的数据llr2Check按顺序存放进缓存器510中。同时,比特更新值llr2Check传递给最小次小值模块。      步骤五,校验节点处理单元中,最小次小模块505从对应同一行的7个llr2Check选出最小和次小值,输入到乘法器506中进行乘性修正,即乘以0.8125,从乘法器506出来的信息的位宽比校验节点的更新值的位宽大,所以在进入第二补码转换器508之前,需要对该值进行的位宽进行调整,由第二截位运算器507调整为校验节点的位宽。将第二截位运算器507的输出送入第二补码转换器508,将符号位-绝对值形式的数字转换为补码形式的数字llr2Msg,从第二补码转化器508出来的信息llr2Msg即位校验节点的更新值,存入外信息存储单元509。The check update value llr2MsgOld of the last iteration entering the decoding processing module and the posterior probability likelihood ratio llrSum of the information node are subtracted as the two inputs of the subtractor 502 to obtain the information update value llrNewTmp of the information node. The llrNewTmp is passed to the first complement converter 503, and the number in the complement form is converted into the number llrNewUnsigned in the sign bit-absolute value form. The output of the first complement code converter 503 is sent to the first truncation operator 504. The data llr2Check from the first truncation operator 504 is stored in the buffer 510 in sequence. At the same time, the bit update value llr2Check is passed to the smallest second smallest value module. Step 5: In the check node processing unit, the smallest second-smallest module 505 selects the smallest and second-smallest values from the 7 llr2Checks corresponding to the same row, and inputs them to the multiplier 506 for multiplicative correction, that is, multiplying by 0.8125, and then from the multiplier The bit width of the information from 506 is larger than the bit width of the update value of the check node, so before entering the second complement converter 508, the bit width of the value needs to be adjusted, which is adjusted by the second truncation operator 507 is the bit width of the check node. The output of the second truncation operator 507 is sent to the second complement converter 508, the number of sign bit-absolute value form is converted into the number llr2Msg of the complement form, and the information llr2Msg coming out from the second complement converter 508 That is, the updated value of the bit check node is stored in the external information storage unit 509 .

步骤六,从缓存器510出来的Q 进入第三补码转换器511中,由符号-绝对值形状转化为补码形式llrNew,送入加法器512。加法器512的另一个输入是校验更新值llr2Msg,两个值相减,得到信息节点后验概率似然比更新值llrSumNew。llrSumNew的符号位就即为硬判结果,之后存入循环移位寄存器。Step 6, the Q from the register 510 enters the third complement converter 511, is converted from the sign-absolute value shape into the complement form llrNew, and is sent to the adder 512. Another input of the adder 512 is the check update value llr2Msg, and the two values are subtracted to obtain the update value llrSumNew of the posterior probability likelihood ratio of the information node. The sign bit of llrSumNew is the hard judgment result, and then stored in the circular shift register.

步骤七,下一次循环或迭代结束。Step seven, the next cycle or iteration ends.

在本实施例中,没有流水竞争冲突,它利用循环移位寄存器替代memory,消除了流水冲突,不需要插入流水冲突空闲等待周期,有较好吞吐率性能,工作时序也相对简单;不需要耗费庞大资源的交织网络,节省了很多硬件资源,整个译码器资源消耗相对较小。In this embodiment, there is no pipeline contention conflict, it uses circular shift register instead of memory, eliminates pipeline conflict, does not need to insert pipeline conflict idle waiting period, has better throughput performance, and working sequence is relatively simple; no need to consume The interweaving network of huge resources saves a lot of hardware resources, and the resource consumption of the whole decoder is relatively small.

尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (10)

1. hierarchical block irregular low-density check code device, comprise: decoding processing module, external information memory cell, circulating register, it is characterized in that, the posterior probability likelihood ratio of using circulating register to come the stored information node, use minimum sub-minimum to search disposable output minimum of module and sub-minimum, decoding iterative process layered approach, respectively get delegation as one deck in the k that layered approach adopts mother matrix to expand is capable, each layer decoding quantity is a mother matrix, the number of plies cyclic extensions factor that is as the criterion; Wherein:
The external information memory cell is that the checksum update value is exported to the decoding processing module with the soft value that the check-node of last iteration passes to information node, and the check updating value in this iteration of transmitting of storage decoding processing module;
Circulating register passes to the decoding processing module with the posterior probability likelihood ratio of information node, and the posterior probability likelihood ratio updating value of the information node that transmits of storage decoding processing module;
The decoding processing module passes to the external information memory cell with the checksum update value that passes to information node by check-node in this iteration, and the posterior probability likelihood ratio updating value of information node is passed to circulating register through decoding processing module interleaving network.
2. hierarchical block irregular low-density check code device according to claim 1, it is characterized in that, described decoding processing module comprises: the one 2 selects 1 selector, bit node processing unit, code check node processing unit, information bit processing unit, wherein:
The one 2 selects 1 selector to select between the channel information and the information node posterior probability likelihood ratio of reading from circulating register, and the result that will select exports to the bit node processing unit;
The bit updating value of bit node processing unit computing information node passes to code check node processing unit and information bit processing unit;
The bit updating value of the information node that the bit node processing unit that code check node processing unit basis receives is sent here is calculated the checksum update value of this iteration, and is passed to information bit processing unit and external information memory cell;
The checksum update value of this iteration that bit updating value that the information bit processing unit transmits according to the bit node processing unit and code check node processing unit transmit is come computing information node posterior probability likelihood ratio updating value, and exports to circulating register through decoding processing module interleaving network.
3. hierarchical block irregular low-density check code device according to claim 2 is characterized in that, described bit node processing unit comprises: subtracter, the first complement code transducer and the first cut position arithmetic unit, wherein:
Subtracter subtracts each other the checksum update value of the last iteration that first information node posterior probability likelihood ratio and external information memory cell are read, and obtains the information updating value of information node, passes to the first complement code transducer;
The first complement code transducer is converted to the numeral of sign bit-absolute value form with the information updating value of information node, and is transferred to the first cut position arithmetic unit;
The first cut position arithmetic unit carries out the cut position operation to the dateout of the first complement code transducer, bit wide is become the bit wide of original information node information of being scheduled to, become big situation to avoid in the process that adds up, occurring data bit width, promptly obtain the bit updating value of information node.
4. hierarchical block irregular low-density check code device according to claim 2 is characterized in that, described code check node processing unit comprises: minimum is inferior searches module, multiplier, the second cut position arithmetic unit and the second complement code transducer for a short time, wherein:
For a short time search the information that module transmits from the bit node processing unit for minimum time and find out minimum value and sub-minimum, so that the further property taken advantage of correcting process is saved in the external information memory cell;
Multiplier multiply by a constant with minimum inferior output of searching module for a short time, this constant obtains by software emulation, the output of multiplier is again by the second cut position arithmetic unit, the bit wide of verification updating value is retrained within the specific limits, again through the second complement code transducer, obtain the checksum update value of final this iteration afterwards.
5. hierarchical block irregular low-density check code device according to claim 4 is characterized in that, described minimum time searches for a short time that module is made up of many four inputs, two output junior units and junior units are exported in two inputs two;
Two nodal informations of described two inputs, two output junior units inputs are output as and arrange good former state data by size, and effect is that two numbers are sorted, and is made of selector;
Four inputs of described four inputs, two output junior units are four outputs of two two inputs, two outputs or other two each and every one four inputs, two outputs, and effect is minimum and the sub-minimum selected inside two groups of input data that sequence size in four.
6. hierarchical block irregular low-density check code device according to claim 2 is characterized in that, described information bit processing unit comprises: buffer, the 3rd complement code transducer, adder, wherein:
Buffer is used to deposit the bit updating value of the information node that the bit node processing unit transmits, and its length equals the number of the information node that links to each other with current check-node, and the row that promptly equals the corresponding current check-node of check matrix is heavy;
The buffer that the 3rd complement code transducer receives in the code check node processing unit transmits data, and the data of symbol-absolute value form are converted to complement form;
The checksum update value addition of this iteration that adder transmits the output and the code check node processing unit of the 3rd complement code transducer obtains information node posterior probability likelihood ratio updating value, passes to the decoding circulating register.
7. hierarchical block irregular low-density check code device according to claim 1, it is characterized in that, described external information memory cell uses memory to realize, the memory number is the check-node number, data bit width is that the data bit width twice of external information adds up anharmonic ratio spy, storage maximum, minimum value and minimum value position, storage depth is the mother matrix spreading factor;
Described circulating register number has the bit node number, and each circulating register input and output tap number is the column weight of bit node corresponding to mother matrix.
8. a kind of hierarchical block irregular low-density check code method according to claim 1 is characterized in that, may further comprise the steps:
Step 1, the input data that obtain decoder are channel value;
Step 2, selector is selected the input data of information node posterior probability likelihood ratio, if this information node participates in decoding for the first time in decode procedure, the shift register of then selecting firm input channel information is as information node posterior probability likelihood ratio, otherwise the data of reading from the another one circulating register pass to the decoding processing module as the information node posterior probability likelihood ratio of current iteration;
Step 3, reading the soft value that check-node the last iteration passes to information node from the external information memory cell is the checksum update value, passes to the decoding processing module;
Step 4, bit node processing unit read out the checksum update value of the last iteration that information node posterior probability likelihood ratio and external information memory cell read, and obtain the bit updating value of information node, pass to the code check node processing unit;
Step 5, code check node processing unit are calculated the checksum update value of this iteration according to the bit updating value that passes to all information nodes of current check-node, and this checksum update value deposits the external information memory cell in;
Step 6 utilizes the 4th bit updating value and the 5th that goes on foot the information node that calculates to go on foot the checksum update value of this iteration that calculates, and the posterior probability likelihood ratio updating value of computing information node deposits shift register then in.
9. a kind of hierarchical block irregular low-density check code method according to claim 8, it is characterized in that, described decoding iterative process layered approach, respectively get delegation as one deck in the k that layered approach adopts mother matrix to expand is capable, each layer decoding quantity is a mother matrix, the number of plies cyclic extensions factor that is as the criterion does not need interleaving network, does not have the flowing water conflict.
10. hierarchical block irregular low-density check code processing method according to claim 8, it is characterized in that, the posterior probability likelihood ratio of described circulating register stored information node, each time in each layer decoding iteration, circulating register content displacement once, data but also import down one piece of data the last period had not only been exported in several sections junctions of a shift register loop.
CN 201110215391 2011-07-29 2011-07-29 Laminated and partitioned irregular low density parity check (LDPC) code decoder and decoding method Active CN102281125B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110215391 CN102281125B (en) 2011-07-29 2011-07-29 Laminated and partitioned irregular low density parity check (LDPC) code decoder and decoding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110215391 CN102281125B (en) 2011-07-29 2011-07-29 Laminated and partitioned irregular low density parity check (LDPC) code decoder and decoding method

Publications (2)

Publication Number Publication Date
CN102281125A true CN102281125A (en) 2011-12-14
CN102281125B CN102281125B (en) 2013-07-17

Family

ID=45106326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110215391 Active CN102281125B (en) 2011-07-29 2011-07-29 Laminated and partitioned irregular low density parity check (LDPC) code decoder and decoding method

Country Status (1)

Country Link
CN (1) CN102281125B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384153A (en) * 2013-07-03 2013-11-06 清华大学 Quasi-cyclic LDPC code decoding method and system
CN104052495A (en) * 2013-03-15 2014-09-17 翁咏禄 Low density parity check code hierarchical decoding architecture for reducing hardware buffer
CN103929188B (en) * 2014-04-22 2017-03-08 北京经纬恒润科技有限公司 A kind of interpretation method, apparatus and system
CN106911337A (en) * 2017-01-23 2017-06-30 北京联想核芯科技有限公司 Data processing method, device and decoder
CN107294541A (en) * 2016-04-11 2017-10-24 清华大学 Low area overhead from fault-tolerant ldpc decoder
CN109309502A (en) * 2018-08-03 2019-02-05 西安电子科技大学 Hierarchical LDPC base matrix processing decoding method for 5G NR standard
CN109495115A (en) * 2018-11-01 2019-03-19 哈尔滨工业大学 A kind of ldpc decoder and interpretation method based on FPGA
CN111224673A (en) * 2018-11-26 2020-06-02 中兴通讯股份有限公司 Decoding method, device and decoder
CN111384970A (en) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 Decoding method, device and communication equipment
CN111404555A (en) * 2020-02-16 2020-07-10 西安电子科技大学 A cyclic shift network control method, system, storage medium, and decoder
CN112242851A (en) * 2020-11-23 2021-01-19 湖南国科锐承电子科技有限公司 Iterative data processing method in layered decoding of LDPC code and decoder system
CN112636767A (en) * 2020-12-03 2021-04-09 重庆邮电大学 Layered semi-parallel LDPC decoder system with single replacement network
CN112838869A (en) * 2019-11-22 2021-05-25 新岸线(北京)科技集团有限公司 An optimization method for LDPC decoding
CN113590377A (en) * 2021-07-16 2021-11-02 深圳宏芯宇电子股份有限公司 Decoding device, decoding method, storage medium and computer equipment
CN114124110A (en) * 2021-11-29 2022-03-01 北京思朗科技有限责任公司 A kind of LDPC layered decoding method and LDPC decoder
CN114553242A (en) * 2022-03-04 2022-05-27 电子科技大学 Partial parallel LDPC decoder based on semi-probability calculation
CN115001511A (en) * 2022-05-17 2022-09-02 中国电子科技集团公司第三十八研究所 Polar code SCL decoder with low hardware resource consumption and its decoding method
CN116827358A (en) * 2023-07-13 2023-09-29 白盒子(上海)微电子科技有限公司 5G LDPC coding realization method and device
CN118316462A (en) * 2024-03-25 2024-07-09 重庆大学 A high-speed LDPC decoder and interleaved decoding method suitable for near-earth satellite communications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040187129A1 (en) * 2003-02-26 2004-09-23 Tom Richardson Method and apparatus for performing low-density parity-check (LDPC) code operations using a multi-level permutation
US7181676B2 (en) * 2004-07-19 2007-02-20 Texas Instruments Incorporated Layered decoding approach for low density parity check (LDPC) codes
CN101106381A (en) * 2007-08-09 2008-01-16 上海交通大学 Hierarchical LDPC decoder and decoding processing method
CN101262231A (en) * 2008-04-25 2008-09-10 浙江大学 Decoding method and reconfigurable multi-mode decoder of block low density check code
CN101355406A (en) * 2008-09-18 2009-01-28 上海交通大学 Layered irregular low-density check code decoder and decoding processing method
US20100037121A1 (en) * 2008-08-05 2010-02-11 The Hong Kong University Of Science And Technology Low power layered decoding for low density parity check decoders
CN101895375A (en) * 2010-07-28 2010-11-24 上海交通大学 Decoding system of low-density parity-check code

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040187129A1 (en) * 2003-02-26 2004-09-23 Tom Richardson Method and apparatus for performing low-density parity-check (LDPC) code operations using a multi-level permutation
US7181676B2 (en) * 2004-07-19 2007-02-20 Texas Instruments Incorporated Layered decoding approach for low density parity check (LDPC) codes
CN101106381A (en) * 2007-08-09 2008-01-16 上海交通大学 Hierarchical LDPC decoder and decoding processing method
CN101262231A (en) * 2008-04-25 2008-09-10 浙江大学 Decoding method and reconfigurable multi-mode decoder of block low density check code
US20100037121A1 (en) * 2008-08-05 2010-02-11 The Hong Kong University Of Science And Technology Low power layered decoding for low density parity check decoders
CN101355406A (en) * 2008-09-18 2009-01-28 上海交通大学 Layered irregular low-density check code decoder and decoding processing method
CN101895375A (en) * 2010-07-28 2010-11-24 上海交通大学 Decoding system of low-density parity-check code

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈徐薇,甘小莺,俞晖,华颖,徐友云: "非规则低密度奇偶校验码译码器", 《上海交通大学学报》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052495A (en) * 2013-03-15 2014-09-17 翁咏禄 Low density parity check code hierarchical decoding architecture for reducing hardware buffer
CN104052495B (en) * 2013-03-15 2018-09-21 翁咏禄 Low density parity check code hierarchical decoding architecture for reducing hardware buffer
CN103384153B (en) * 2013-07-03 2016-05-18 清华大学 Quasi-cyclic LDPC code decoding method and system
CN103384153A (en) * 2013-07-03 2013-11-06 清华大学 Quasi-cyclic LDPC code decoding method and system
CN103929188B (en) * 2014-04-22 2017-03-08 北京经纬恒润科技有限公司 A kind of interpretation method, apparatus and system
CN107294541B (en) * 2016-04-11 2020-07-10 清华大学 A Self-Fault Tolerant LDPC Decoder with Low Area Overhead
CN107294541A (en) * 2016-04-11 2017-10-24 清华大学 Low area overhead from fault-tolerant ldpc decoder
CN106911337A (en) * 2017-01-23 2017-06-30 北京联想核芯科技有限公司 Data processing method, device and decoder
CN109309502A (en) * 2018-08-03 2019-02-05 西安电子科技大学 Hierarchical LDPC base matrix processing decoding method for 5G NR standard
CN109495115A (en) * 2018-11-01 2019-03-19 哈尔滨工业大学 A kind of ldpc decoder and interpretation method based on FPGA
CN109495115B (en) * 2018-11-01 2022-08-09 哈尔滨工业大学 LDPC decoder based on FPGA and decoding method
CN111224673A (en) * 2018-11-26 2020-06-02 中兴通讯股份有限公司 Decoding method, device and decoder
CN111224673B (en) * 2018-11-26 2024-10-11 中兴通讯股份有限公司 Decoding method, device and decoder
CN111384970A (en) * 2018-12-29 2020-07-07 电信科学技术研究院有限公司 Decoding method, device and communication equipment
CN112838869A (en) * 2019-11-22 2021-05-25 新岸线(北京)科技集团有限公司 An optimization method for LDPC decoding
CN111404555A (en) * 2020-02-16 2020-07-10 西安电子科技大学 A cyclic shift network control method, system, storage medium, and decoder
CN111404555B (en) * 2020-02-16 2023-12-19 西安电子科技大学 Cyclic shift network control method, system, storage medium and decoder
CN112242851A (en) * 2020-11-23 2021-01-19 湖南国科锐承电子科技有限公司 Iterative data processing method in layered decoding of LDPC code and decoder system
CN112242851B (en) * 2020-11-23 2024-03-19 湖南国科锐承电子科技有限公司 Iterative data processing method and decoder system in layered decoding of LDPC code
CN112636767A (en) * 2020-12-03 2021-04-09 重庆邮电大学 Layered semi-parallel LDPC decoder system with single replacement network
CN112636767B (en) * 2020-12-03 2023-04-07 重庆邮电大学 Layered semi-parallel LDPC decoder system with single replacement network
CN113590377A (en) * 2021-07-16 2021-11-02 深圳宏芯宇电子股份有限公司 Decoding device, decoding method, storage medium and computer equipment
CN114124110A (en) * 2021-11-29 2022-03-01 北京思朗科技有限责任公司 A kind of LDPC layered decoding method and LDPC decoder
CN114124110B (en) * 2021-11-29 2025-01-28 北京思朗科技有限责任公司 A LDPC layered decoding method and LDPC decoder
CN114553242B (en) * 2022-03-04 2023-04-25 电子科技大学 Partial parallel LDPC decoder based on semi-probability calculation
CN114553242A (en) * 2022-03-04 2022-05-27 电子科技大学 Partial parallel LDPC decoder based on semi-probability calculation
CN115001511A (en) * 2022-05-17 2022-09-02 中国电子科技集团公司第三十八研究所 Polar code SCL decoder with low hardware resource consumption and its decoding method
CN116827358A (en) * 2023-07-13 2023-09-29 白盒子(上海)微电子科技有限公司 5G LDPC coding realization method and device
CN116827358B (en) * 2023-07-13 2024-04-02 白盒子(上海)微电子科技有限公司 5G LDPC coding realization method and device
CN118316462A (en) * 2024-03-25 2024-07-09 重庆大学 A high-speed LDPC decoder and interleaved decoding method suitable for near-earth satellite communications

Also Published As

Publication number Publication date
CN102281125B (en) 2013-07-17

Similar Documents

Publication Publication Date Title
CN102281125B (en) Laminated and partitioned irregular low density parity check (LDPC) code decoder and decoding method
CN101106381B (en) Hierarchical LDPC decoder and decoding processing method
CN103220003B (en) Improve the implementation method of the QC-LDPC decoder of node processing degree of parallelism
CN101499804B (en) Multi-code rate decoder for quasi-cyclic low density parity check code
CN103684474B (en) A kind of implementation method of high speed LDPC decoder
CN101355406B (en) Decoder for layered non-rule low density checkout code and method for processing decode
CN102857235B (en) LDPC (low-density parity-check) encoder and encoding method in DTMB (digital terrestrial multimedia broadcasting) system based on shared register
CN103501210B (en) High-performance multistandard FEC (Forward Error Correction) decoder
CN102195655B (en) A quasi-cyclic LDPC decoder and decoding method
CN102075198A (en) Quasi-cyclic low-density odd-even check convolution code coding-decoding system and coding-decoding method thereof
CN102857236B (en) Based on LDPC encoder and coding method in the CMMB of sum array
CN101599302A (en) An Efficient Storage Method for Decoded Codewords of FPGA-Based LDPC Decoder
Liu et al. A miniaturized LDPC encoder: Two-layer architecture for CCSDS near-Earth standard
CN102820890B (en) Encoder device and method for short code length multi-ary system weighted repetitive accumulation code
CN101692611A (en) Multi-standard LDPC encoder circuit base on SIMD architecture
CN110730003B (en) LDPC (Low Density parity check) coding method and LDPC coder
Ren et al. The design and implementation of high-speed codec based on FPGA
US9037938B2 (en) Hardware architecture and implementation of low power layered multi-level LDPC decoder
Xiang et al. An area-efficient and low-power multirate decoder for quasi-cyclic low-density parity-check codes
CN101895375B (en) Decoding system of low-density parity-check code
Gong et al. A reusable and efficient architecture for qc-ldpc encoder with less expansion factors
CN102611462B (en) LDPC-CC (Low-Density Parity-Check Convolution Codes) decoding algorithm and decoder
CN118473423A (en) Low-complexity DVB-S2 LDPC decoder and decoding method
CN105515588B (en) A kind of LDPC CC high speed decoders
WO2020001212A1 (en) Decoder, decoding method, and computer storage medium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160206

Address after: 200120 Shanghai, Pudong New Area, east of the three lane road, No. 1018, 1-2 floor, 3

Patentee after: Shanghai NERC-DTV National Engineering Research Center Co., Ltd.

Address before: 200240 Minhang District, Shanghai, Dongchuan Road, No. 800, No.

Patentee before: Shanghai Jiao Tong University