CN102254028A - A personalized product recommendation method and system integrating attribute and structure similarity - Google Patents

A personalized product recommendation method and system integrating attribute and structure similarity Download PDF

Info

Publication number
CN102254028A
CN102254028A CN201110216438XA CN201110216438A CN102254028A CN 102254028 A CN102254028 A CN 102254028A CN 201110216438X A CN201110216438X A CN 201110216438XA CN 201110216438 A CN201110216438 A CN 201110216438A CN 102254028 A CN102254028 A CN 102254028A
Authority
CN
China
Prior art keywords
user
information
similarity
users
commodity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110216438XA
Other languages
Chinese (zh)
Inventor
王金龙
文灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201110216438XA priority Critical patent/CN102254028A/en
Publication of CN102254028A publication Critical patent/CN102254028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a personalized commodity recommendation method integrating attributes and structural similarity. The method integrates attribute and structural similarity information, maps users and commodities as nodes with characteristic information to a network, establishes an information network graph according to the purchasing relation between customers and commodities, measures interest preference between user node pairs by utilizing the integrated attribute and the structural similarity in the information network graph, and selects nearest neighbors according to the interest preference so as to improve recommendation accuracy. On the basis of the recommendation method, the invention also discloses a personalized commodity recommendation system integrating the attribute and the structural similarity measurement. The system accurately measures the interest preference of the user by using a calculation method with similar integration attributes and similar node structure backgrounds in an information network graph, and improves the generation efficiency of nearest neighbors by using a clustering technology in the recommendation process. The method and the system can be used in electronic commerce application and provide personalized commodity recommendation for users.

Description

一种集成属性和结构相似性的个性化商品推荐方法和系统A personalized product recommendation method and system integrating attribute and structure similarity

技术领域 technical field

本发明涉及计算机互联网技术领域,尤其涉及电子商务领域,特别是一种集成属性和结构相似性的个性化商品推荐方法和系统。The present invention relates to the field of computer Internet technology, in particular to the field of e-commerce, in particular to a personalized product recommendation method and system integrating attributes and structural similarities.

背景技术 Background technique

随着电子商务的不断发展,商品个数和种类快速增长,为了能够尽快找到所需要的商品,用户希望一种类似导购员的功能来帮助其选购合适的商品或服务,个性化推荐系统应运而生。个性化推荐基于海量数据分析和挖掘技术,根据用户的行为习惯和兴趣特点,向用户推荐其感兴趣的商品和信息。目前几乎所有的大型电子商务网站都不同程度将个性化推荐技术融入到系统中,其中,协同过滤技术的应用较为广泛。With the continuous development of e-commerce, the number and types of goods are increasing rapidly. In order to find the goods they need as soon as possible, users want a function similar to a shopping guide to help them choose the right goods or services. Personalized recommendation systems should be used. And born. Based on massive data analysis and mining technology, personalized recommendation recommends products and information of interest to users according to their behavior habits and interest characteristics. At present, almost all large-scale e-commerce websites integrate personalized recommendation technology into the system to varying degrees, among which collaborative filtering technology is widely used.

基于协同过滤进行推荐首先收集代表用户兴趣的信息,然后选择近邻用户,最后对目标用户的兴趣进行预测生成推荐结果。其核心问题是寻找与目标用户兴趣相近的一组用户,这组用户与目标用户之间的相似性通过收集并比较代表两个用户兴趣的行为选择矢量得到。目前,比较行为选择矢量的相似性计算方法主要包括泊松相关系数和余弦相似性,它们一般基于用户项目评分矩阵,其特点是计算简便,容易理解。但是,这种基于评分矩阵的方法在对用户或项目进行相似性度量时因为矩阵稀疏而使系统很难发现相同兴趣的用户。此外,通过评分对用户兴趣进行建模不能全面真实地刻画用户兴趣,会丢失部分信息。为了保留数据中更多潜在的反映用户兴趣的信息,一些方法将用户和项目映射到网络作为节点,利用节点结构相似性进行协同推荐。另外,一些基于内容过滤的方法利用用户和项目的属性描述信息度量用户或项目间的相似性,进而进行商品推荐。但是,上述基于结构相似性和基于属性相似性的两种计算方法在进行推荐时都会损失部分信息,依据相似性增强假设:两个对象之间的相似性不仅依赖于自身属性还依赖于和它们相关的其它对象之间的相似性。因此,在进行推荐时如何结合属性描述信息和节点结构信息,提出一种全面有效的刻画用户之间兴趣的相似性度量方法,并据此进行最近邻的选择以提高推荐准确性是一个需要解决的问题。The recommendation based on collaborative filtering first collects information representing user interests, then selects neighboring users, and finally predicts the interests of target users to generate recommendation results. Its core problem is to find a group of users whose interests are similar to the target user. The similarity between this group of users and the target user is obtained by collecting and comparing the behavior selection vectors representing the interests of two users. At present, the similarity calculation methods for comparing behavior selection vectors mainly include Poisson correlation coefficient and cosine similarity, which are generally based on user-item rating matrix, and are characterized by simple calculation and easy understanding. However, this method based on scoring matrix makes it difficult for the system to find users with the same interest because the matrix is sparse when measuring the similarity of users or items. In addition, modeling user interests through scoring cannot fully and truly describe user interests, and some information will be lost. In order to retain more information that potentially reflects user interests in the data, some methods map users and items to the network as nodes, and use node structure similarity for collaborative recommendation. In addition, some content-based filtering methods use the attribute description information of users and items to measure the similarity between users or items, and then recommend products. However, the above two calculation methods based on structural similarity and attribute similarity will lose some information when making recommendations. According to the similarity enhancement hypothesis: the similarity between two objects not only depends on their own attributes but also depends on their attributes. Similarity between related other objects. Therefore, how to combine attribute description information and node structure information when recommending, propose a comprehensive and effective similarity measurement method to describe the interests of users, and select the nearest neighbor accordingly to improve the accuracy of recommendation is a problem that needs to be solved. The problem.

发明内容 Contents of the invention

为了解决上述问题,本发明提出一种集成属性和结构相似性的个性化商品推荐方法,该推荐方法又包括以下步骤:收集电子商务平台的用户、商品基本信息和用户历史购买事务记录;对数据进行预处理,获取用户的基本特征、统计特征和行为特征;将用户和商品作为带有属性信息的节点映射到网络,依据用户和商品间的购买关系建立信息网络图;在信息网络图中利用结合属性和结构相似性的度量方法对用户节点对间的兴趣偏好进行度量;以节点对间的相似性作为输入对用户进行聚类,以此缩小最近邻居的选择范围从而提高推荐速度;从活动用户所在的簇中选取最近邻的M个用户作为其最近邻居用户并生成近邻集;对于活动用户在候选商品数据库中未购买过的商品进行预测评分;对活动用户进行Top-N推荐,以此作为推荐的候选商品集返回。In order to solve the above problems, the present invention proposes a personalized product recommendation method that integrates attributes and structural similarities. Perform preprocessing to obtain the basic characteristics, statistical characteristics and behavioral characteristics of users; map users and products to the network as nodes with attribute information, and establish an information network graph based on the purchase relationship between users and products; use Combine the measurement method of attribute and structure similarity to measure the interest preference between user node pairs; use the similarity between node pairs as input to cluster users, so as to narrow the selection range of nearest neighbors and improve the recommendation speed; from the activity In the cluster where the user is located, select the M nearest neighbor users as their nearest neighbor users and generate a neighbor set; predict and score the products that the active users have not purchased in the candidate product database; make Top-N recommendations for the active users, so as to Returned as a set of recommended candidate items.

作为本发明的一个实施例,数据的收集包括用户的基本信息,商品的基本信息,用户购买商品的事务数据即评论数据。用户的基本信息是指用户在网上进行购物时所提交的注册信息,包括用户注册时的姓名,注册时间,当前级别,来自区域。商品的基本信息是指商品上架时的描述信息如商品编号,商品名称,商品品牌,商品所属领域,商品所属类型,商品上架时间。用户购买商品的事务数据包括商品编号,用户姓名,购买时间,评论时间,评论优点,评论缺点,评论标题,评论主要内容,评分。As an embodiment of the present invention, the collection of data includes the basic information of the user, the basic information of the commodity, and the transaction data of the commodity purchased by the user, that is, the comment data. The user's basic information refers to the registration information submitted by the user when shopping online, including the user's name when registering, registration time, current level, and region from. The basic information of the product refers to the descriptive information of the product when it is put on the shelf, such as the product number, product name, product brand, product field, product type, and product launch time. The transaction data of the product purchased by the user includes the product number, user name, purchase time, review time, review advantages, review disadvantages, review title, review main content, and rating.

作为本发明的一个实施例,数据的预处理,包括去除噪音数据,填充空缺数值项,数据规整,用户特征抽取。其中用户特征抽取是指对用户历史购买事务数据进行统计后获取统计特征和行为特征,这些特征包括用户的历史购买次数,热衷的品牌数,购买时间和评论时间的平均时间间隔,平均消费金额,注册时间与购买新商品的时间间隔,商品上架时间与购买时间的时间间隔,发表评论的有用次数和无用次数,评论为差评的比例,在当前购买商品所属的类别、类型、领域中购买商品的比例,评论中优点、缺点的平均长度,整条评论的平均长度,评论中不足点评论为默认评论所占的比例。As an embodiment of the present invention, data preprocessing includes removing noise data, filling vacant numerical items, data regularization, and user feature extraction. Among them, user feature extraction refers to the acquisition of statistical features and behavioral features after statistics on the user's historical purchase transaction data. These features include the user's historical purchase times, the number of brands he is keen on, the average time interval between purchase time and comment time, and average consumption amount. Time interval between registration time and purchase of new products, time interval between product listing time and purchase time, useful and useless times of comments, proportion of negative reviews, and the category, type, and field of the currently purchased product. ratio, the average length of advantages and disadvantages in the comments, the average length of the entire comment, and the proportion of deficiencies in the comments that are the default comments.

作为本发明的一个实施例,用户商品信息网络图的构建是将数据映射到网络。依据预处理后的数据和信息,将用户和商品表示为网络图中带有属性的节点,如果用户购买了某一个商品则用户和该商品节点间有一条有向连接边,边的方向是从商品指向用户。As an embodiment of the present invention, the construction of the user commodity information network map is to map data to the network. According to the preprocessed data and information, users and products are represented as nodes with attributes in the network graph. If a user purchases a certain product, there is a directed connection edge between the user and the product node, and the direction of the edge is from Items point to users.

作为本发明的一个实施例,用户间相似性度量方法基于图中节点的属性信息和结构信息。如果用户的属性值越相似且用户的历史购买记录越相似则用户间距离越近,进而表明用户间的兴趣和偏好越相似。本推荐方法中用户间相似性的计算公式是:As an embodiment of the present invention, the similarity measurement method between users is based on attribute information and structure information of nodes in the graph. If the user's attribute values are more similar and the user's historical purchase records are more similar, the distance between users is closer, which in turn indicates that the interests and preferences of users are more similar. The formula for calculating the similarity between users in this recommendation method is:

SS ASimRankASimRank (( aa ,, bb )) == (( 11 -- λλ )) ** SS attributeattribute (( aa ,, bb )) ++ λλ ** SS linklink (( aa ,, bb )) ,, (( aa ≠≠ bb )) SS ASimRankASimRank (( aa ,, bb )) == 11 ,, (( aa == bb ))

其中, S attribute ( a , b ) = e - Σ r = 1 p | x ij . A r - x ik . A r | + μ Σ r = p + 1 N δ ( x ij . A r , x ik . A r ) , S link ( a , b ) = C | I ( a ) I ( b ) | Σ i = 1 | I ( a ) | Σ j = 1 | I ( b ) | S link ( I i ( a ) , I j ( b ) ) in, S attribute ( a , b ) = e - Σ r = 1 p | x ij . A r - x ik . A r | + μ Σ r = p + 1 N δ ( x ij . A r , x ik . A r ) , S link ( a , b ) = C | I ( a ) I ( b ) | Σ i = 1 | I ( a ) | Σ j = 1 | I ( b ) | S link ( I i ( a ) , I j ( b ) )

在SASimRank(a,b)的计算公式中,Sattribute(a,b)表示节点a和b的属性相似性得分,Slink(a,b)是依据a和b在信息网络图中的连接关系计算得到的结构相似性得分。在Sattribute的计算中xij.Ar和xik.Ar表示对象xij和xik的第r个属性值;N为属性的总数,第1个到第p个属性为数值属性或有序类别属性,第p+1个属性到第N个属性为无序类别属性。函数δ(xij.Ar,xik.Ar)为属性值差异函数,当两属性值相同时函数值为0否则为1。公式中的参数μ用来调节无序类别属性相对于数值属性在整个属性相似性计算中的重要程度,其取值范围为[0,1],在本发明的实例中,μ取值为0.5。其中Slink(a,b)公式中的参数C是介于[0,1]之间的常数,它表示相似性计算时的衰减速率。在本发明的实施例中,C取值为0.8。I(a)和I(b)分别表示节点a和节点b的入度邻居节点集合。Ii(a)和Ij(b)则分别表示a的第i个入度邻居节点和b的第j个入度邻居节点。|I(a)|和|I(b)|分别表示节点a和节点b的入度。如果a或者b的入度为0,则Slink(a,b)值为0,如果a与b表示同一个节点对象,则Slink(a,b)值为1。从Slink(a,b)的计算公式可以看出,一般来说,a和b的相似性就是a的入度邻居节点与b的入度邻居节点间相似性的平均值。Slink(a,b)计算得到的节点对间的相似性得分具有对称性,即S(a,b)=S(b,a)。利用Slink(a,b)公式,经过多次迭代运算直到收敛便可计算出图中任意用户节点对a和b之间的结构相似性得分。节点a和b的最终相似性得分SASimRank(a,b)由上述两种相似性得分共同决定。Sattribute和Slink两者的相对重要性在公式中由参数λ进行调节,λ的取值为[0,1],在本发明的实例中λ取值为0.5。In the calculation formula of S ASimRank (a, b), S attribute (a, b) represents the attribute similarity score of nodes a and b, and S link (a, b) is based on the connection between a and b in the information network graph Structural similarity scores computed from relationships. In the calculation of S attribute , x ij .A r and x ik .A r represent the rth attribute value of objects x ij and x ik ; N is the total number of attributes, and the first to pth attributes are numerical attributes or have ordinal category attributes, and the p+1th attribute to the Nth attribute are unordered category attributes. The function δ(x ij .A r , x ik .A r ) is an attribute value difference function, and the function value is 0 when the two attribute values are the same, otherwise it is 1. The parameter μ in the formula is used to adjust the importance of the disordered category attribute relative to the value attribute in the calculation of the entire attribute similarity, and its value range is [0,1]. In the example of the present invention, μ takes a value of 0.5 . Among them, the parameter C in the formula of S link (a, b) is a constant between [0, 1], which represents the decay rate when calculating the similarity. In the embodiment of the present invention, the value of C is 0.8. I(a) and I(b) represent the in-degree neighbor node sets of node a and node b respectively. I i (a) and I j (b) respectively represent the i-th in-degree neighbor node of a and the j-th in-degree neighbor node of b. |I(a)| and |I(b)| represent the in-degree of node a and node b, respectively. If the in-degree of a or b is 0, the value of S link (a, b) is 0, and if a and b represent the same node object, the value of S link (a, b) is 1. From the calculation formula of S link (a, b), it can be seen that, generally speaking, the similarity between a and b is the average similarity between the in-degree neighbor nodes of a and the in-degree neighbor nodes of b. The similarity scores between node pairs calculated by S link (a, b) are symmetrical, that is, S(a, b)=S(b, a). Using the S link (a, b) formula, the structural similarity score between any user node pair a and b in the graph can be calculated after multiple iterative operations until convergence. The final similarity score S ASimRank (a, b) of nodes a and b is jointly determined by the above two similarity scores. The relative importance of the S attribute and the S link is adjusted by the parameter λ in the formula, and the value of λ is [0, 1], and the value of λ is 0.5 in the example of the present invention.

作为本发明的一个实施例,为了提高推荐速度,依据用户间的相似性利用聚类技术对所有用户进行聚类。将活动用户最近邻居搜索范围从全局用户缩小到聚类后的某一簇中。As an embodiment of the present invention, in order to improve the recommendation speed, all users are clustered by clustering technology according to the similarity among users. Narrow down the active user nearest neighbor search range from the global user to a certain cluster after clustering.

作为本发明的一个实施例,利用聚类的结果生成活动用户最近邻,从活动用户所在簇中选取与其最相似的M个用户作为其最近邻居用户。As an embodiment of the present invention, the clustering result is used to generate the nearest neighbors of the active users, and the M users most similar to the active users are selected from the cluster where the active users are located as their nearest neighbors.

作为本发明的一个实施例,预测评分是指对于活动用户在候选商品数据库中未购买过的商品进行预测评分,用权相加法对近邻集中所有用户对目标商品的评分加权和作为活动用户对目标商品的评分。As an embodiment of the present invention, predicting scoring refers to predicting and scoring the commodities that active users have not purchased in the candidate commodity database, and using the weighted addition method to weight the scores of all users in the neighbor set to the target commodity. The rating of the target item.

作为本发明的一个实施例,Top-N推荐是指对活动用户所有目标商品的预测评分进行排序,向活动用户推荐评分靠前的N个商品,以此作为推荐的候选商品集返回。As an embodiment of the present invention, Top-N recommendation refers to sorting the predicted scores of all target commodities of an active user, recommending N commodities with the highest scores to the active user, and returning them as recommended candidate commodity sets.

在上述推荐方法的基础上,本发明还提供了一种集成属性和结构相似性的个性化商品推荐系统。本系统至少包括以下部件和模块:用户终端,共享信息服务器,用户和商品信息收集器,用户基本信息数据库,商品基本信息数据库,用户历史交易数据库,用户偏好模型处理器,数据映射转换器,用户偏好度量器,用户匹配度数据库,推荐加速器和个性化推荐处理器。On the basis of the above recommendation method, the present invention also provides a personalized commodity recommendation system integrating attributes and structural similarities. The system at least includes the following components and modules: user terminal, shared information server, user and commodity information collector, user basic information database, commodity basic information database, user history transaction database, user preference model processor, data mapping converter, user Preference Metric, User Match Database, Recommendation Accelerator and Personalized Recommendation Processor.

其中用户终端用于提交用户推荐请求,返回终端显示系统推荐的商品列表。共享信息服务器用于存储系统所共享的信息。用户和商品信息收集器用于收集数据,收集的数据分别存入用户基本信息数据库,商品基本信息数据库,用户历史交易数据库。用户偏好模型处理器是指对数据进行处理并建立用户偏好模型。数据映射转换器是将用户和商品映射到网络图表示成为带有属性信息的节点,依据用户和商品间的购买关系构建信息网络图。用户偏好度量器是用本发明中提出的集成属性和结构相似性的度量方法对信息网络图中用户间的偏好进行度量,度量的结果存入用户匹配度数据库。推荐加速器以用户节点对间的相似性作为输入,利用聚类技术缩小活动用户最近邻居的搜索范围从而提高推荐效率。基于最近邻居集合,个性化推荐处理器用于预测活动用户对目标项目的预测评分。The user terminal is used to submit a user recommendation request, and the return terminal displays a list of products recommended by the system. The shared information server is used to store the information shared by the system. The user and commodity information collectors are used to collect data, and the collected data are respectively stored in the user basic information database, commodity basic information database, and user historical transaction database. The user preference model processor refers to processing data and establishing a user preference model. The data mapping converter maps users and products to the network graph and represents them as nodes with attribute information, and constructs an information network graph based on the purchase relationship between users and products. The user preference measurer measures the preferences among users in the information network graph by using the measure method of integrated attribute and structure similarity proposed in the present invention, and the result of the measure is stored in the user matching degree database. The recommendation accelerator takes the similarity between user node pairs as input, and uses clustering technology to narrow down the search range of active users' nearest neighbors to improve recommendation efficiency. Based on the set of nearest neighbors, a personalized recommendation processor is used to predict the predicted ratings of target items by active users.

本发明采用用户的多种特征和属性建立用户偏好模型;在信息网络图中利用集成属性相似和节点结构背景相似的相似性计算方法对用户兴趣偏好进行准确度量;推荐过程中利用聚类技术提高最近邻居的生成效率,系统最终能够实时快速地响应用户的推荐请求,给客户端提供个性化商品推荐。The present invention adopts various characteristics and attributes of users to establish a user preference model; uses the similarity calculation method of similarity in integrated attributes and similarity in node structure background in the information network graph to accurately measure user interest preferences; uses clustering technology to improve With the generation efficiency of the nearest neighbor, the system can finally respond to the user's recommendation request in real time and quickly, and provide the client with personalized product recommendation.

本发明的优点和特色之处将会在下文的详细分析中着重给出,或通过系统实践中得到体现。本发明结合属性和结构相似性能够深层次地挖掘出用户的兴趣和偏好,更为精确地构建用户兴趣模型,从而生成准确的推荐内容。The advantages and features of the present invention will be given emphatically in the detailed analysis below, or be reflected through system practice. Combining attributes and structural similarities, the present invention can deeply dig out user interests and preferences, and more accurately construct user interest models, thereby generating accurate recommendation content.

附图说明 Description of drawings

图1是本发明推荐方法中对用户兴趣进行度量的流程图。Fig. 1 is a flow chart of measuring user interests in the recommendation method of the present invention.

图2是用户商品关系信息示例图。Fig. 2 is an example diagram of user product relationship information.

图3是用户商品信息网络图的构建示意图。Fig. 3 is a schematic diagram of the construction of the user product information network graph.

图4是本发明中个性化商品推荐方法的总体流程图。Fig. 4 is an overall flow chart of the personalized commodity recommendation method in the present invention.

图5是本发明实施例中推荐加速器的工作流程图。Fig. 5 is a flowchart of the recommended accelerator in the embodiment of the present invention.

图6是本发明中集成属性和结构相似性的个性化商品推荐系统的结构图。Fig. 6 is a structural diagram of a personalized commodity recommendation system integrating attributes and structural similarities in the present invention.

具体实施方式 Detailed ways

为了能够更清晰地说明本发明技术方案中的各个细节,下面结合附图,通过实施例来对本发明进行详细的讲解和说明。In order to illustrate the details of the technical solutions of the present invention more clearly, the present invention will be explained and described in detail below through embodiments in conjunction with the accompanying drawings.

本发明主要特征在于提出一种有效的推荐方法并设计出高效实用的个性化推荐系统。本发明方法的重要特征在于,结合属性和结构相似性对处于信息网络图中用户的兴趣和偏好进行准确度量,利用聚类技术缩小最近邻居的搜索范围。系统实时响应用户的推荐请求并及时向客户端返回用户真正感兴趣的商品列表。The main feature of the invention is to propose an effective recommendation method and design an efficient and practical personalized recommendation system. The important feature of the method of the present invention is to accurately measure the user's interest and preference in the information network graph in combination with the attribute and structure similarity, and use the clustering technology to narrow the search range of the nearest neighbor. The system responds to the user's recommendation request in real time and promptly returns the list of products that the user is really interested in to the client.

图1所示为结合属性和结构相似性的度量方法计算用户间相似性的流程。本发明中所公开的推荐方法以用户兴趣偏好模型和商品基本信息作为输入s101;将用户和商品数据映射到网络表示成节点,节点带有属性信息,有向连接边表示用户和商品间的购买关系,如果用户购买了某一商品,则连接边的方向从商品指向用户,据此形成信息网络图s102;利用结合属性相似和结构背景相似的相似性计算方法度量网络图中任意用户节点对间的兴趣偏好相似情况s103;返回所有用户节点对间的相似性,并存入用户匹配度数据库s104。Figure 1 shows the process of calculating the similarity between users by combining the measurement method of attribute and structural similarity. The recommendation method disclosed in the present invention takes the user interest preference model and basic commodity information as input s101; the user and commodity data are mapped to the network and represented as nodes, the nodes have attribute information, and the directed connection edge represents the purchase between the user and the commodity relationship, if the user purchases a product, the direction of the connecting edge is from the product to the user, and the information network graph s102 is formed accordingly; the similarity calculation method combining attribute similarity and structural background similarity is used to measure the distance between any user node pair in the network graph similarity of interests and preferences s103; return the similarity between all user node pairs, and store them in the user matching degree database s104.

作为本发明的一个实施例,下面以推荐系统中用户购买商品数据构建信息网络图,以一个小型实例来详细描述结合属性和结构相似性的度量方法的计算过程。As an embodiment of the present invention, the information network graph is constructed with user purchased product data in the recommendation system, and a small example is used to describe in detail the calculation process of the measurement method combining attribute and structure similarity.

本发明中的相似性计算基于信息网络中有向图模型,如G=(V,E),其中V表示图中结点集合,E表示图中边<u,v>的集合,<u,v>∈E,(u,v∈V)。在用户和商品信息网络图G中,用户和商品对应着G中的某个结点v,本发明用I(v)表示结点v的入度邻居结点集合,Ii(v)表示v的第i个入度结点,其中1≤i≤|I(v)|,此处G中的每个结点对象具有多个属性特征。用户商品信息网络图中连接边的生成借助于用户和商品间的购买关系,这种关系在评论表中体现,如图2所示。用户对某一商品发表过评论,则用户和商品间有一条边相连接。同时,用户和商品节点有属于自己的属性列表。The similarity calculation in the present invention is based on the directed graph model in the information network, such as G=(V, E), wherein V represents the set of nodes in the figure, and E represents the set of edges <u, v> in the figure, <u, v>∈E, (u, v∈V). In the user and commodity information network graph G, users and commodities correspond to a certain node v in G, the present invention uses I(v) to represent the in-degree neighbor node set of node v, and I i (v) represents v The i-th in-degree node of , where 1≤i≤|I(v)|, where each node object in G has multiple attribute characteristics. The generation of connection edges in the user product information network graph relies on the purchase relationship between users and products, which is reflected in the comment table, as shown in Figure 2. If a user has commented on a product, there is an edge connecting the user and the product. At the same time, user and product nodes have their own attribute lists.

如图3所示,我们以推荐系统中用户、商品这两类对象为例,其中P表示商品,C1,C2和C3分别表示不同的用户,图例所示为商品P同时被用户C1,C2和C3购买。为了能够对网络图中用户节点对间相似性的计算有一个清晰的认识,以此示例来描述用户间相似性的计算过程。为了计算方便起见,在此只考虑用户级别,用户所在区域,用户发表评论时间和购买商品时间的时间间隔,用户对商品的评分等4个属性。3位用户的属性值如下表所示。As shown in Figure 3, we take the two types of objects in the recommendation system as an example, users and products, where P represents a product, C1, C2 and C3 represent different users, and the legend shows that product P is simultaneously used by users C1, C2 and C3 buys. In order to have a clear understanding of the calculation of the similarity between user node pairs in the network graph, this example is used to describe the calculation process of the similarity between users. For the sake of calculation convenience, only four attributes are considered here: the user level, the region where the user is located, the time interval between the time when the user posts a comment and the time when the product is purchased, and the user's rating of the product. The attribute values of the 3 users are shown in the table below.

  用户 user   级别 level   区域 area   时间间隔(天) Interval (days)   评分 score   C1 C1   D D   SC SC   10 10   5 5   C2 C2   T T   EC EC   16 16   4 4   C3 C3   T T   NC NC   15 15   4 4

从图3示例来看,如果仅考虑节点间的结构相似性,则无法区分{C1,C2},{C1,C3}和{C2,C3}节点对间的相似情况,因为它们均被同一个商品P所指,C1,C2和C3有着相同的入度邻居节点为商品P。依据公式 S link ( a , b ) = C | I ( a ) I ( b ) | &Sigma; i = 1 | I ( a ) | &Sigma; j = 1 | I ( b ) | S link ( I i ( a ) , I j ( b ) ) , 则当C取0.8时,{C1,C2},{C1,C3}和{C2,C3}节点对间的结构相似性值均为0.8。而在相似性计算时同时考虑属性特征则{C1,C2},{C1,C3}和{C2,C3}节点对的相似性得到了较好的区分。下面将详细介绍它们之间相似性得分的计算过程。在利用公式进行属性相似性计算之前,需要先对数据进行处理。如用户当前级别应用有序数值进行量化,用户级别一共分为6个等级,分别是T(钻石会员),A(金牌会员),B(银牌会员),C(铜牌会员),D(铁牌会员),E(注册会员),这些级别对应的量化数值为5,4,3,2,1,0。区域属性属于无序类别属性值只需判断其异同即可。依据公式 S attribute ( a , b ) = e - ( &Sigma; r = 1 p | x ij . A r - x ik . A r | + &mu; &Sigma; r = p + 1 N &delta; ( x ij . A r , x ik . A r ) ) , 可以计算得到用户节点对间的属性相似性值,如下所示:From the example in Figure 3, if only the structural similarity between nodes is considered, the similarity between {C1, C2}, {C1, C3} and {C2, C3} node pairs cannot be distinguished, because they are all controlled by the same Commodity P refers to, C1, C2 and C3 have the same in-degree neighbor nodes as commodity P. According to the formula S link ( a , b ) = C | I ( a ) I ( b ) | &Sigma; i = 1 | I ( a ) | &Sigma; j = 1 | I ( b ) | S link ( I i ( a ) , I j ( b ) ) , Then when C is 0.8, the structural similarity values between {C1, C2}, {C1, C3} and {C2, C3} node pairs are all 0.8. However, considering the attribute features in the similarity calculation, the similarity of {C1, C2}, {C1, C3} and {C2, C3} node pairs is better distinguished. The calculation process of the similarity score between them will be introduced in detail below. Before using the formula to calculate the attribute similarity, the data needs to be processed first. If the user's current level is quantified by an ordered numerical value, the user level is divided into 6 levels, namely T (Diamond Member), A (Gold Member), B (Silver Member), C (Bronze Member), D (Iron Member) Member), E (registered member), the quantitative values corresponding to these levels are 5, 4, 3, 2, 1, 0. The area attribute belongs to the disorder category attribute value only needs to judge its similarity and difference. According to the formula S attribute ( a , b ) = e - ( &Sigma; r = 1 p | x ij . A r - x ik . A r | + &mu; &Sigma; r = p + 1 N &delta; ( x ij . A r , x ik . A r ) ) , The attribute similarity value between user node pairs can be calculated as follows:

Sattribute(C1,C2)=e-(|1-5|+|10-16|+|5-4|+0.5*1)=1.013*10-5S attribute (C1, C2)=e -(|1-5|+|10-16|+|5-4|+0.5*1) =1.013* 10-5 ,

Sattribute(C1,C3)=e-(|1-5|+|10-15|+|5-4|+0.5*1)=2.754*10-5S attribute (C1, C3)=e -(|1-5|+|10-15|+|5-4|+0.5*1) =2.754* 10-5 ,

Sattribute(C2,C3)=e-(|5-5|+|16-15|+|4-4|+0.5*1)=0.2231。S attribute (C2, C3) = e - (|5-5|+|16-15|+|4-4|+0.5*1) = 0.2231.

利用公式SASimRank(a,b)=(1-λ)*Sattribute(a,b)+λ*Slink(a,b),当λ=0.5时,计算得到如下值:Using the formula S ASimRank (a, b)=(1-λ)*S attribute (a, b)+λ*S link (a, b), when λ=0.5, the following values are calculated:

SASimRank(C1,C2)=(1-0.5)*1.013*10-5+0.5*0.8=0.4+5.065*10-6S ASimRank (C1, C2)=(1-0.5)*1.013*10 −5 +0.5*0.8=0.4+5.065*10 −6 ,

SASimRank(C1,C3)=(1-0.5)*2.754*10-5+0.5*0.8=0.4+1.377*10-5S ASimRank (C1, C3)=(1-0.5)*2.754*10 −5 +0.5*0.8=0.4+1.377*10 −5 ,

SASimRank(C2,C3)=(1-0.5)*0.2231+0.5*0.8=0.51155。S ASimRank (C2, C3)=(1−0.5)*0.2231+0.5*0.8=0.51155.

由最终的相似性得分可见,虽然C1,C2和C3均被同一个P所指,具有相同的入度邻居节点,但是{C1,C2}两者属性值相差较大使得两者的相似性得分最低为0.400005065,而{C2,C3}因为两者属性值基本相同而使得两者的相似性得分最高为0.51155。从此实例可以说明结合属性和结构相似性可以保留更多真实信息从而使得获取的相似性得分能更好地区分用户间的兴趣偏好匹配情况。It can be seen from the final similarity score that although C1, C2 and C3 are all referred to by the same P and have the same in-degree neighbor nodes, but the attribute values of {C1, C2} are quite different, making the similarity score of the two The lowest is 0.400005065, while {C2, C3} has the highest similarity score of 0.51155 because the attribute values of the two are basically the same. From this example, it can be shown that the combination of attribute and structural similarity can retain more real information, so that the obtained similarity score can better distinguish the interest preference matching between users.

图4所示为本发明中个性化商品推荐方法的总体流程图。整个流程分为8大步骤,各个步骤的简要说明如下:收集数据s401,数据预处理和建立用户模型s402,数据转换建立信息网络图s403,用户节点兴趣相似性度量s404,生成最近邻居s405,选择最近邻居s406,预测评分s407,推荐Top-N商品s408。Fig. 4 is a general flow chart of the personalized commodity recommendation method in the present invention. The whole process is divided into 8 major steps, and the brief description of each step is as follows: collecting data s401, data preprocessing and establishing user model s402, data conversion and establishing information network graph s403, user node interest similarity measurement s404, generating nearest neighbors s405, selecting Nearest neighbor s406, predicted score s407, recommended Top-N products s408.

更为详细地,在s401中,收集数据是指整理电子商务平台上注册的用户信息,上架的商品信息以及用户在网站的购买事务记录。所有的数据以统一的格式进行保存。如商品基本信息格式为:商品[编号=143076,名称=金士顿DDR3 1333 2G,品牌=金士顿,领域=电脑产品,类型=核心配件,上架时间=2008-12-11 17:18:45];用户基本信息格式为:用户[用户名称=lihui581203,来自区域=上海,当前级别=银牌会员,注册时间=2009-11-13];用户的购买事务在评论信息中体现,其格式为:评论[商品编号=143076,用户姓名=lihui581203,购买时间=2010-05-12,评论时间=2010-07-02 14:11,优点=兼容好质量有保证,缺点=暂时还没发现缺点哦!,标题=货真价实,主要内容=一直用这产品心里踏实,评分=5]。In more detail, in s401, collecting data refers to organizing user information registered on the e-commerce platform, product information on the shelves, and user purchase transaction records on the website. All data are stored in a unified format. For example, the format of the basic information of the product is: product [ID=143076, name=Kingston DDR3 1333 2G, brand=Kingston, field=computer product, type=core accessories, launch time=2008-12-11 17:18:45]; user The basic information format is: user [user name=lihui581203, region from=Shanghai, current level=silver member, registration time=2009-11-13]; the user’s purchase transaction is reflected in the comment information, and its format is: comment[commodity ID = 143076, user name = lihui581203, purchase time = 2010-05-12, comment time = 2010-07-02 14:11, advantage = compatibility, good quality and guaranteed, disadvantage = no disadvantage found yet! , title = genuine goods at a fair price, main content = have been using this product with peace of mind, score = 5].

在s402中,数据预处理是指对一些空缺的数据项利用默认值或平均值进行填充,去除一些噪音数据。将用户,商品,评论数据存入相对应的数据库。在数据库中利用SQL语句对数据进行统计和表间的连接操作,以获取最终的用户属性特征并建立用户模型。In s402, data preprocessing refers to filling some vacant data items with default values or average values, and removing some noise data. Store user, product, and comment data into the corresponding database. In the database, SQL statements are used to perform statistics on the data and join operations between tables to obtain the final user attribute characteristics and establish a user model.

在s403中,数据转换并建立信息网络图利用s402中建立好的用户模型和处理好的数据,将商品和用户映射到网络图作为节点,节点间连接边的生成依据用户和商品间的购买关系。由于在结构相似性计算度量时需要节点的入度信息,因此连接边的方向由商品指向用户。据此方法可以构建商品和用户的信息关系网络图。图中节点带有属性信息,为下一步网络图中节点相似性的计算提供输入。In s403, data conversion and establishment of information network graph Utilize the user model and processed data established in s402 to map products and users to the network graph as nodes, and the generation of connection edges between nodes is based on the purchase relationship between users and products . Since the in-degree information of nodes is needed when calculating the measure of structural similarity, the direction of the connection edge is from the product to the user. According to this method, the information relationship network graph of products and users can be constructed. The nodes in the graph have attribute information, which provides input for the calculation of node similarity in the next step in the network graph.

在s404中,本发明中的推荐方法基于用户兴趣,因此用户节点兴趣相似性度量是本方法流程中关键的一步。本发明中采用结合属性和结构相似性度量方法可以全面准确刻画用户间的兴趣偏好情况。此相似性度量方法基于相似性增强假设:两个数据对象之间的相似性不仅依赖于自身属性还依赖于和它们相关的其他对象之间的相似性。本发明中提出的相似性度量方法既考虑了数据转换到网络图中节点的结构背景信息又考虑了节点的属性信息,据此极大程度地保留了用户潜在的兴趣信息。利用本发明中公开的相似性计算公式,通过对信息网络图中的节点间相似性得分进行迭代运算,最终可以获取网络图中任意用户节点对间的相似性。In s404, the recommendation method in the present invention is based on user interests, so the measurement of user node interest similarity is a key step in the flow of the method. In the present invention, the combination of attribute and structure similarity measurement method can comprehensively and accurately describe the interest preferences among users. This similarity measurement method is based on the assumption of similarity enhancement: the similarity between two data objects not only depends on their own attributes but also depends on the similarity between other objects related to them. The similarity measurement method proposed in the present invention not only considers the structural background information of the node in the data conversion to the network graph, but also considers the attribute information of the node, thereby greatly retaining the potential interest information of the user. Using the similarity calculation formula disclosed in the present invention, the similarity between any pair of user nodes in the network graph can be finally obtained by iteratively calculating the similarity scores between nodes in the information network graph.

在s405中,为了提高推荐速度,大大缩小最近邻居的搜索范围,本方法中采用K-modies聚类技术对用户进行聚类。将最近邻居的搜索范围从全局所有用户定位至某一个用户簇中,以此达到提高推荐速度的效果。In s405, in order to improve the recommendation speed and greatly reduce the search range of the nearest neighbors, this method adopts the K-modies clustering technology to cluster the users. Locate the search scope of the nearest neighbor from all global users to a certain user cluster, so as to improve the recommendation speed.

结合附图5详细描述s405这一步骤的执行。首先,在所有用户节点中随机选择K个用户作为聚类中心,利用s404中保存的用户相似性结果将其他用户对象分配到和某个聚类中心最相似的簇中,然后重新选择簇中心。在每个簇中,顺序选取一个用户对象,计算用选取的对象代替原来簇中心后的消耗和代价E。选择E最小的那个用户对象代替原来簇中心作为新的簇中心。如此循环重复进行直到满足收敛条件为K个簇中心不再变化。接下来,依据聚类后的结果,从需要进行推荐的用户所在的簇中选取最相似的M个用户作为最近邻居,由此生成活动用户最近邻集合。The execution of step s405 is described in detail in conjunction with FIG. 5 . First, randomly select K users from all user nodes as clustering centers, use the user similarity results saved in s404 to assign other user objects to the cluster most similar to a certain clustering center, and then reselect the clustering center. In each cluster, a user object is sequentially selected, and the consumption and cost E of replacing the original cluster center with the selected object are calculated. Select the user object with the smallest E to replace the original cluster center as the new cluster center. This cycle is repeated until the convergence condition is met and the centers of K clusters do not change. Next, according to the clustering results, the most similar M users are selected as the nearest neighbors from the cluster where the users needing to be recommended are located, thereby generating the nearest neighbor set of active users.

在s406中,利用步骤s405中生成的最近邻集合,返回所选取的M个邻居用户。In s406, the selected M neighbor users are returned using the nearest neighbor set generated in step s405.

在s407中,预测评分利用权相加法对近邻集中所有用户对目标商品的评分加权和作为活动用户对目标商品的评分。假设基于活动用户ua的近邻集U={u1,u2,...,un},那么用户ua对未评分商品ti的评价定义为近邻集U中所有用户对商品ti评分值的加权和,公式如下:In s407, the weighted sum of the scores of all users in the neighbor set for the target product is used as the score of the active user for the target product by using the weighted addition method in predicting the score. Assuming that the neighbor set U={u 1 , u 2 ,..., u n } based on the active user u a , then the evaluation of the unrated product t i by the user u a is defined as the evaluation of the product t i by all users in the neighbor set U The weighted sum of the score values, the formula is as follows:

PP (( uu aa ,, tt ii )) == RR (( uu aa )) &OverBar;&OverBar; ++ &lambda;&lambda; &Sigma;&Sigma; kk == 11 nno sthe s (( uu aa ,, uu kk )) (( RR (( uu kk ,, tt ii )) -- RR (( uu jj )) &OverBar;&OverBar; ))

其中,s(ua,uk)为活动用户ua和邻居uk的相似性;R(uk,ti)为uk对商品ti的评分;

Figure BSA00000547599100072
为uk对所有已评价商品的平均评分;
Figure BSA00000547599100081
为当前活动用户ua先验平均评分;λ为规范化系数。Among them, s(u a , u k ) is the similarity between active user u a and neighbor u k ; R(u k , t i ) is u k ’s rating on product t i ;
Figure BSA00000547599100072
is the average rating of u k on all evaluated products;
Figure BSA00000547599100081
is the prior average score of the current active user u a ; λ is the normalization coefficient.

在s408中,利用s407中计算得到的预测评分对活动用户所有目标商品的预测评分进行排序,向活动用户推荐评分靠前的N个商品,即Top-N推荐。In s408, use the predicted scores calculated in s407 to sort the predicted scores of all target commodities of the active user, and recommend N commodities with the highest scores to the active user, ie Top-N recommendation.

图6为根据本发明所公开的推荐方法而设计的个性化商品推荐系统结构图。该系统主要由以下部件构成:用户终端,共享信息服务器,用户和商品信息收集器600,用户基本信息数据库610,商品基本信息数据库620,用户历史交易数据库630,用户偏好模型处理器640,数据映射转换器650,用户偏好度量器660,用户匹配度数据库670,推荐加速器680,个性化推荐处理器690。Fig. 6 is a structural diagram of a personalized commodity recommendation system designed according to the recommendation method disclosed in the present invention. The system is mainly composed of the following components: user terminal, shared information server, user and commodity information collector 600, user basic information database 610, commodity basic information database 620, user history transaction database 630, user preference model processor 640, data mapping A converter 650 , a user preference measurer 660 , a user matching degree database 670 , a recommendation accelerator 680 , and a personalized recommendation processor 690 .

作为本发明的一个实施例,所述终端主要是指PC机但不仅限于此,还可以指移动手持设备等一切具有网络通信功能的电子设备。As an embodiment of the present invention, the terminal mainly refers to a PC, but is not limited thereto, and may also refer to any electronic device with a network communication function such as a mobile handheld device.

作为本发明的一个实施例,所述的共享信息服务器用于存储电子商务平台的所有公用信息和知识。As an embodiment of the present invention, the shared information server is used to store all public information and knowledge of the e-commerce platform.

作为本发明的一个实施例,所述用户和商品信息收集器600用于收集用户在电子商务平台上的原始注册信息,对注册信息进行处理存入用户基本信息数据库610。收集器还收集了网站上所有上架商品的基本信息,对商品基本信息进行预处理存入商品基本信息数据库620。此外,还包括用户在电子商务网站上的评论行为以体现其购买记录和事务信息,信息收集器600监视用户的评论行为并将数据处理后存入用户历史交易数据库630。As an embodiment of the present invention, the user and product information collector 600 is used to collect the user's original registration information on the e-commerce platform, process the registration information and store it in the user basic information database 610 . The collector also collects the basic information of all the commodities on the website, and preprocesses the basic information of the commodities and stores them in the basic commodity information database 620 . In addition, user comments on e-commerce sites are also included to reflect their purchase records and transaction information. The information collector 600 monitors user comments and processes the data and stores the data in the user history transaction database 630 .

作为本发明的一个实施例,所述用户基本信息数据库610用于存放用户和商品信息收集器600所输出的用户基本信息,作为建立用户偏好模型处理器640的输入之一,其中的存储内容是指用户在网上进行购物时所提交的注册信息,包括用户级别,用户来自区域,用户注册时用户名,注册时间。As an embodiment of the present invention, the user basic information database 610 is used to store the user basic information output by the user and product information collector 600, as one of the inputs to the user preference model processor 640, and the stored content is Refers to the registration information submitted by the user when shopping online, including the user level, the region the user comes from, the user name when the user registers, and the registration time.

作为本发明的一个实施例,所述商品基本信息数据库620用于存放用户和商品信息收集器600所输出的商品基本信息。其中存储的内容是指电子商务网站上商品上架时的描述信息如商品编号,商品名称,商品上架时间,商品价格,商品类别,商品类型,商品所属领域,商品所属品牌。As an embodiment of the present invention, the basic commodity information database 620 is used to store the basic commodity information output by the user and the commodity information collector 600 . The stored content refers to the descriptive information of the product on the e-commerce website when it is put on the shelf, such as the product number, product name, product launch time, product price, product category, product type, product field, and product brand.

作为本发明的一个实施例,用户历史交易数据库630用于存放用户购买商品后所发表的评论信息,其中包括了用户名称,商品名称,购买时间,发表评论时间以及评论内容等,这些信息蕴含了用户的购买行为特征。As an embodiment of the present invention, the user historical transaction database 630 is used to store the comment information published by the user after purchasing the product, which includes the user name, product name, purchase time, comment time and comment content, etc. These information contain The user's purchasing behavior characteristics.

作为本发明的一个实施例,所述用户偏好模型处理器640利用存放在用户基本信息数据库610和用户历史交易数据库630中的数据对用户建立模型。该处理器在执行时包括了数据预处理,用户特征抽取和整合等步骤。最终利用用户所有特征对用户建立模型以此准确描述一个用户。用户偏好模型的建立在用户提出商品推荐请求时实时进行,如用户浏览某一类型商品则会触发用户模型的建立,利用用户基本信息和用户历史购买事务记录对用户建立模型,用户模型的建立除了基于用户基本信息之外还包括统计和行为信息,包括用户历史购买商品次数,热衷的品牌数,购买时间和发表评论的平均时间间隔,平均每次消费金额,注册时间与购买新商品的时间间隔,商品上架时间与购买时间的时间间隔,用户发表评论的有用次数和无用次数,评论为差评的比例,在当前购买商品所属的类别、类型、领域中购买商品的比例,评论中优点、缺点的平均长度,整条评论的平均长度,评论中不足点评论为默认评论所占的比例。As an embodiment of the present invention, the user preference model processor 640 uses the data stored in the user basic information database 610 and the user history transaction database 630 to establish a model for the user. The processor includes steps such as data preprocessing, user feature extraction and integration during execution. Finally, all the characteristics of the user are used to build a model for the user to accurately describe a user. The establishment of the user preference model is carried out in real time when the user makes a product recommendation request. If the user browses a certain type of product, the establishment of the user model will be triggered. The user’s basic information and user historical purchase transaction records are used to establish a model for the user. The establishment of the user model is not only In addition to basic user information, it also includes statistics and behavioral information, including the number of times users have purchased products in history, the number of brands they are passionate about, the average time interval between purchase time and comments, the average amount of consumption per time, the time interval between registration time and new product purchases , the time interval between the time when the product was put on the shelf and the time when the product was purchased, the number of useful and useless comments posted by users, the proportion of negative reviews, the proportion of purchased products in the category, type, and field of the currently purchased product, and the advantages and disadvantages of the comments The average length of the entire comment, the average length of the entire comment, and the proportion of the default comment in the comment.

作为本发明的一个实施例,所述数据映射转换器650,是指利用建立好的用户偏好模型将带有属性信息的用户和商品作为节点映射到网络,依据用户和商品间的购买关系将用户节点和商品节点用有向边进行连接,从而构建信息网络图。据此实现商品用户信息转换到网络中,进而表示成节点和连接边形成网络图。As an embodiment of the present invention, the data mapping converter 650 refers to using the established user preference model to map users and commodities with attribute information to the network as nodes, and map users to the network according to the purchase relationship between users and commodities. Nodes and product nodes are connected with directed edges to construct an information network graph. Based on this, the commodity user information is converted into the network, and then expressed as nodes and connection edges to form a network graph.

作为本发明的一个实施例,所述用户偏好度量器660,利用结合属性和结构相似性的方法对处于信息网络图中的用户节点对进行兴趣偏好度量。度量值依赖于节点的属性描述信息和结构背景信息,此处的结构背景信息是指用户节点对的入度邻居节点,度量结果将作为用户匹配度数据库670的输入。具体讲,用户偏好度量时包括以下步骤:As an embodiment of the present invention, the user preference measurer 660 measures the interest preference of the user node pairs in the information network graph by using a method combining attributes and structural similarities. The measurement value depends on the attribute description information and structural background information of the node. The structural background information here refers to the in-degree neighbor nodes of the user node pair, and the measurement result will be used as the input of the user matching degree database 670 . Specifically, user preference measurement includes the following steps:

针对用户节点的属性信息,利用属性相似性计算方法得到用户节点对间的属性相似性;According to the attribute information of user nodes, the attribute similarity between user node pairs is obtained by using the attribute similarity calculation method;

针对用户节点的结构背景信息,利用结构相似性计算方法得到用户节点对间的结构相似性;According to the structural background information of user nodes, the structural similarity between user node pairs is obtained by using the structural similarity calculation method;

针对集成属性相似和结构相似的用户节点对,结合前面两种相似性度量值并调节权重因子度量最终用户对之间的偏好相似性。For user node pairs with similar attribute and structure, combine the previous two similarity measures and adjust the weight factor to measure the preference similarity between end user pairs.

作为本发明的一个实施例,所述用户匹配度数据库670,用于存放用户节点对之间的相似性值,以此作为活动用户选择最近邻居的依据。As an embodiment of the present invention, the user matching degree database 670 is used to store similarity values between user node pairs, and use this as a basis for active users to select nearest neighbors.

作为本发明的一个实施例,所述推荐加速器680,以用户匹配度数据库670中的数据作为输入,利用聚类技术大大缩小用户的最近邻居搜索范围,从而提高推荐的实时性。具体讲,对网络图中用户节点进行聚类主要包括以下步骤。As an embodiment of the present invention, the recommendation accelerator 680 uses the data in the user matching database 670 as input, and uses clustering technology to greatly narrow the user's nearest neighbor search range, thereby improving the real-time performance of the recommendation. Specifically, clustering the user nodes in the network graph mainly includes the following steps.

首先,随机选择M个簇中心用户;First, randomly select M cluster center users;

其次,将非簇中心用户分配到离它最近的簇中;Second, assign non-cluster center users to the nearest cluster;

再次,调节簇中心直到聚类结果不再发生变化;Again, adjust the cluster center until the clustering result no longer changes;

最后,形成用户簇,每一个用户均属于自己所在的簇中。Finally, user clusters are formed, and each user belongs to its own cluster.

作为本发明的一个实施例,所述个性化推荐处理器690基于用户偏好模型,利用权相加法对活动用户在候选商品数据库中未购买过的商品进行评分,活动用户的评分依赖于推荐加速器680中所产生的最近邻居用户对目标商品的评分,然后对商品预测评分进行排序,向活动用户推荐评分靠前的N个商品。实时反馈用户提出的商品推荐请求,将推荐结果返回所述用户端。As an embodiment of the present invention, based on the user preference model, the personalized recommendation processor 690 uses the weighted addition method to score the commodities that the active user has not purchased in the candidate commodity database, and the scoring of the active user depends on the recommendation accelerator According to the ratings of the nearest neighbor users on the target products generated in 680, the predicted ratings of the products are sorted, and N products with the highest ratings are recommended to active users. Feedback the product recommendation request made by the user in real time, and return the recommendation result to the client.

Claims (6)

1.一种集成属性和结构相似性的个性化商品推荐方法,其特征在于,包括步骤:1. A personalized product recommendation method integrating attributes and structural similarities, characterized in that it comprises steps: 步骤A、收集电子商务平台的用户基本信息,商品基本信息,用户历史购买记录信息;Step A. Collect basic user information, basic product information, and user historical purchase record information on the e-commerce platform; 步骤B、收集数据后,对数据进行预处理并抽取用户的属性特征,数据的预处理是指对数据中不完整的、含噪声的、不一致的数据利用相应的技术进行处理,用户的属性特征包括基本属性,行为特征和统计特征,获取用户所有特征后对用户建立模型;Step B. After collecting the data, preprocess the data and extract the user's attribute characteristics. Data preprocessing refers to processing the incomplete, noisy, and inconsistent data in the data using corresponding technologies. The user's attribute characteristics Including basic attributes, behavioral characteristics and statistical characteristics, and building a model for users after obtaining all characteristics of users; 步骤C、利用用户和商品的属性特征,用户和商品间的购买关系,将用户和商品映射到网络形成节点,并构建用户、商品信息网络图;Step C, using the attribute characteristics of users and products, and the purchase relationship between users and products, mapping users and products to network forming nodes, and constructing user and product information network diagrams; 步骤D、集成属性和结构相似性度量方法对步骤C中构建的用户模型进行兴趣偏好度量;Step D, the integrated attribute and structural similarity measurement method performs interest preference measurement on the user model constructed in step C; 步骤E、以用户节点对间的相似性作为输入,利用聚类技术对用户节点进行聚类,从而缩小最近邻居的搜索范围,以此提高推荐速度;Step E, taking the similarity between pairs of user nodes as input, using clustering technology to cluster user nodes, thereby narrowing the search range of nearest neighbors, thereby improving the recommendation speed; 步骤F、依据聚类结果,生成最近邻居集合,对节点对间相似性进行降序排序,返回排序靠前的M个邻居用户;Step F, according to the clustering result, generate the nearest neighbor set, sort the similarity between the node pairs in descending order, and return the top M neighbor users; 步骤G、利用权相加法和步骤F中返回的M个邻居用户对目标商品的评分预测活动用户对未评价商品的评分;Step G, using the weighted addition method and the ratings of the M neighbor users returned to the target product in step F to predict the rating of the active user on the unevaluated product; 步骤H、对所有目标商品的预测评分进行排序,向活动用户推荐评分靠前的N个商品。Step H, sort the predicted scores of all target commodities, and recommend N commodities with the highest scores to the active user. 2.根据权利要求1所述的方法,其特征在于,所述步骤D具体包括以下步骤:2. The method according to claim 1, wherein said step D specifically comprises the following steps: 步骤D1、输入步骤C所构建的用户商品信息网络图,网络图中包括带有属性特征信息的用户节点,商品节点以及它们之间的连接关系;Step D1, inputting the user commodity information network diagram constructed in step C, the network diagram includes user nodes with attribute feature information, commodity nodes and the connection relationship between them; 步骤D2、计算网络图中用户节点对间的属性相似性,依据属性类型的不同选择不同的属性值匹配方法;Step D2, calculating the attribute similarity between user node pairs in the network graph, and selecting different attribute value matching methods according to different attribute types; 步骤D3、计算网络图中用户节点对间的结构相似性,结构相似性的计算依赖于用户节点对的入度邻居节点间相似性的平均值;Step D3, calculating the structural similarity between the user node pairs in the network graph, the calculation of the structural similarity depends on the average value of the similarity between the in-degree neighbor nodes of the user node pair; 步骤D4、选取合适的权衡因子,利用步骤D2和D3的结果对属性相似性和结构相似性加权求和以获取网络图中用户节点对间的最终相似性得分;Step D4, selecting an appropriate trade-off factor, using the results of steps D2 and D3 to weight and sum the attribute similarity and structural similarity to obtain the final similarity score between user node pairs in the network graph; 3.根据权利要求1所述的方法,其特征在于,所述步骤E具体包括以下步骤:3. The method according to claim 1, wherein said step E specifically comprises the following steps: 步骤E1、输入用户、商品信息网络图中所有用户节点对间的相似性得分;Step E1, input the similarity scores between all user node pairs in the user and product information network graph; 步骤E2、在信息网络图中随机选择K个用户节点作为聚类中心;Step E2, randomly selecting K user nodes in the information network diagram as clustering centers; 步骤E3、以步骤E1中用户节点对的相似性为依据,将其它非簇中心用户对象分配到与某个聚类中心最相似的簇中;Step E3, based on the similarity of user node pairs in step E1, assign other non-cluster center user objects to the cluster most similar to a certain cluster center; 步骤E4、重新选择聚类中心,选择的方法是在每个簇中顺序选取一个用户对象,计算用选取的对象代替原来的簇中心后的消耗和代价E,选择E最小的那个用户对象代替原来簇中心作为新的簇中心,重复本步骤直到所有用户簇簇中心不再发生变化为止;Step E4. Reselect the cluster center. The method of selection is to sequentially select a user object in each cluster, calculate the consumption and cost E after replacing the original cluster center with the selected object, and select the user object with the smallest E to replace the original The cluster center is used as the new cluster center, and this step is repeated until all user cluster centers no longer change; 步骤E5、以步骤E4中的聚类结果为输入,对用户簇中所有用户与当前活动用户的相似性进行降序排序,选取排序靠前的M个用户作为最近邻居用户集合。Step E5, taking the clustering result in step E4 as input, sorting the similarity between all users in the user cluster and the current active user in descending order, and selecting the top M users as the nearest neighbor user set. 4.根据权利要求1所述的方法,其特征在于,所述步骤F具体包括以下步骤:4. The method according to claim 1, wherein said step F specifically comprises the following steps: 步骤F1、输入步骤E中所产生的活动用户的近邻集和用户对商品的评分;Step F1, input the neighbor set of the active user generated in step E and the user's rating on the product; 步骤F2、利用权相加法对近邻集中所有用户对活动用户未评分商品的评分加权和预测活动用户对目标商品的评分;Step F2, using the weight addition method to weight the ratings of all users in the neighbor set on the unrated items of the active users and predict the ratings of the active users on the target items; 步骤F3、返回活动用户对所有目标商品的预测评分。Step F3, returning the active user's predicted scores for all target commodities. 5.一种集成属性和结构相似性的个性化商品推荐系统,其特征在于,所述部件和模块包括:用户终端,共享信息服务器,用户和商品信息收集器,用户基本信息数据库,商品基本信息数据库,用户历史交易数据库,用户偏好模型处理器,数据映射转换器,用户偏好度量器,用户匹配度数据库,推荐加速器和个性化推荐处理器,其特征在于:5. A personalized commodity recommendation system integrating attributes and structural similarities, characterized in that the components and modules include: user terminals, shared information servers, user and commodity information collectors, user basic information databases, commodity basic information Database, user history transaction database, user preference model processor, data mapping converter, user preference measurer, user matching degree database, recommendation accelerator and personalized recommendation processor, characterized in that: 所述终端,主要指PC机,还可以是移动手持设备等一切具有网络通信功能的电子设备;The terminal mainly refers to a PC, and can also be any electronic device with network communication functions such as a mobile handheld device; 所述共享信息服务器,是指存储电子商务平台所有公用信息和知识的计算机;The shared information server refers to a computer that stores all public information and knowledge of the e-commerce platform; 所述用户和商品信息收集器,收集用户在电子商务平台上的原始注册信息,对注册信息进行处理存入用户基本信息数据库,收集器还收集了网站上所有上架商品的基本信息,对商品基本信息进行预处理存入商品基本信息数据库,此外,还包括用户在电子商务网站上的评论行为,信息收集器监视用户的评论行为并将数据处理后存入用户历史交易数据库;The user and product information collector collects the original registration information of the user on the e-commerce platform, processes the registration information and stores it in the user basic information database, and the collector also collects the basic information of all the products on the website, and the basic information of the products The information is pre-processed and stored in the basic information database of the product. In addition, it also includes the user's comment behavior on the e-commerce website. The information collector monitors the user's comment behavior and stores the data in the user's historical transaction database after processing; 所述用户基本信息数据库,是指用于存放用户和商品信息收集器所输出的用户基本信息如用户姓名,来自区域,当前级别,注册时间,以此作为用户偏好模型的输入之一;The basic user information database is used to store basic user information output by the user and commodity information collector, such as user name, region from, current level, and registration time, as one of the inputs of the user preference model; 所述商品基本信息数据库,是指用于存放用户和商品信息收集器所输出的商品基本信息,如商品编号,商品名称,商品品牌,商品所属领域,商品所属类型,商品上架时间;The commodity basic information database is used to store basic commodity information output by users and commodity information collectors, such as commodity numbers, commodity names, commodity brands, commodity fields, commodity types, and commodity on-shelf time; 所述用户历史交易数据库,是指用于存放用户和商品信息收集器所输出的用户购买商品的事务数据,其中隐含着用户的行为特征,用户和商品间的购买关系等信息,其信息包括:商品编号,用户姓名,购买时间,评论时间,评论优点,评论缺点,评论标题,评论主要内容,评分,如果某一用户对某一商品发表了评论则表示该用户购买了这件商品,用户和商品间的这种购买关系和用户购买商品所表现出来的行为特征分别将作为数据映射转换器和用户偏好模型处理器的输入;The user history transaction database refers to the transaction data used to store the user and the commodity information collector output by the user to purchase the commodity, which contains information such as the behavior characteristics of the user, the purchase relationship between the user and the commodity, and its information includes : product number, user name, purchase time, review time, review advantages, review disadvantages, review title, review main content, rating, if a user has commented on a product, it means that the user has purchased the product, the user The purchase relationship between the user and the product and the behavioral characteristics of the user's purchase of the product will be used as the input of the data mapping converter and the user preference model processor respectively; 所述用户偏好模型处理器,是指利用用户基本信息数据库,商品基本信息数据库和用户历史交易数据库的数据抽取用户各种类型的特征如基本属性特征,统计特征和行为特征等对用户兴趣和偏好建立模型,以此模型来描述一个用户,称之为建立用户模型;The user preference model processor refers to the use of the user basic information database, commodity basic information database and user history transaction database to extract various types of user characteristics such as basic attribute characteristics, statistical characteristics and behavioral characteristics, etc. Building a model, using this model to describe a user, is called building a user model; 所述数据映射转换器,是指利用建立好的用户偏好模型将带有属性信息的用户和商品作为节点映射到网络,依据用户和商品间的购买关系将用户节点和商品节点用有向边进行连接,从而构建信息网络图,由此实现将原始数据转换和映射到网络图中的节点和连接边;The data mapping converter refers to using the established user preference model to map users and commodities with attribute information to the network as nodes, and use directed edges to connect user nodes and commodity nodes according to the purchase relationship between users and commodities. Connect to build an information network graph, thereby converting and mapping raw data to nodes and connection edges in the network graph; 所述用户偏好度量器,是指利用集成属性和结构相似性的方法对处于信息网络图中的用户节点对进行兴趣偏好度量,度量值依赖于节点的属性描述信息和结构背景信息,此处的结构背景信息是指用户节点的入度邻居节点的相异情况,度量的结果将作为用户匹配度数据库的输入;The user preference measurer refers to the use of the method of integrating attributes and structural similarities to measure the interest preference of user nodes in the information network graph, and the measurement value depends on the attribute description information and structural background information of the nodes. Here, Structural background information refers to the difference between the in-degree neighbor nodes of the user node, and the measurement result will be used as the input of the user matching database; 所述用户匹配度数据库,是指用于存放用户节点对之间的相似性值,此数据将反映用户间兴趣偏好的相似性情况并且用户匹配度数据库中的数据还将作为活动用户选择最近邻居的依据;The user matching degree database refers to the similarity value used to store user node pairs. This data will reflect the similarity of interest preferences between users and the data in the user matching degree database will also be selected as the nearest neighbor for active users. basis; 所述推荐加速器,是指以用户匹配度数据库中的数据作为输入,利用聚类技术大大缩小用户最近邻居搜索范围,从而提高推荐效率;The recommendation accelerator refers to using the data in the user matching database as input, using clustering technology to greatly narrow the search range of the user's nearest neighbors, thereby improving the recommendation efficiency; 所述个性化推荐处理器,是指基于用户偏好模型和用户匹配度数据库中的数据,利用权相加法对活动用户在候选商品数据库中未购买过的商品进行评分,活动用户的评分依赖于推荐加速器中所产生的最近邻居用户对目标项目的评分,然后对商品的预测评分进行排序,向活动用户推荐评分靠前的N个商品,系统能实时反馈用户提出的商品推荐请求,将推荐结果返回所述用户端。The personalized recommendation processor is based on the user preference model and the data in the user matching degree database, and uses the weight addition method to score the commodities that the active user has not purchased in the candidate commodity database, and the scoring of the active user depends on The recommendation accelerator generates the ratings of the nearest neighbor users on the target items, and then sorts the predicted ratings of the products, and recommends the top N products with the highest ratings to the active users. Return the client. 6.如权利要求5所述的个性化商品推荐系统,其特征在于,所述用户偏好度量器中的用户偏好相似性计算方法,包括以下步骤:6. The personalized commodity recommendation system according to claim 5, wherein the user preference similarity calculation method in the user preference measurer comprises the following steps: 步骤I、针对用户节点的属性信息,利用属性相似性计算方法得到用户节点对间的属性相似性;Step 1, for the attribute information of the user node, utilize the attribute similarity calculation method to obtain the attribute similarity between the user node pairs; 步骤J、针对用户节点的结构背景信息,利用结构相似性计算方法得到用户节点对间的结构相似性;Step J, according to the structural background information of the user node, using the structural similarity calculation method to obtain the structural similarity between the user node pairs; 步骤K、针对集成属性相似和结构相似的用户节点对,结合前面两种相似性度量值并调节权重因子计算最终用户对之间的偏好相似性。Step K: For the user node pairs with similar attributes and similar structures, combine the previous two similarity measures and adjust the weight factor to calculate the preference similarity between the end user pairs.
CN201110216438XA 2011-07-22 2011-07-22 A personalized product recommendation method and system integrating attribute and structure similarity Pending CN102254028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110216438XA CN102254028A (en) 2011-07-22 2011-07-22 A personalized product recommendation method and system integrating attribute and structure similarity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110216438XA CN102254028A (en) 2011-07-22 2011-07-22 A personalized product recommendation method and system integrating attribute and structure similarity

Publications (1)

Publication Number Publication Date
CN102254028A true CN102254028A (en) 2011-11-23

Family

ID=44981292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110216438XA Pending CN102254028A (en) 2011-07-22 2011-07-22 A personalized product recommendation method and system integrating attribute and structure similarity

Country Status (1)

Country Link
CN (1) CN102254028A (en)

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411754A (en) * 2011-11-29 2012-04-11 南京大学 Personalized recommendation method based on commodity property entropy
CN102567900A (en) * 2011-12-28 2012-07-11 尚明生 Method for recommending commodities to customers
CN102722524A (en) * 2012-05-07 2012-10-10 北京邮电大学 Website recommendation result displaying method and device and terminal with the device
CN102750895A (en) * 2012-06-28 2012-10-24 宇龙计算机通信科技(深圳)有限公司 Intelligent building information terminal and system as well as communication method
CN103136683A (en) * 2011-11-24 2013-06-05 阿里巴巴集团控股有限公司 Method and device for calculating product reference price and method and system for searching products
WO2014036892A1 (en) * 2012-09-10 2014-03-13 腾讯科技(深圳)有限公司 Method and system for generating list of associated recommended items
CN103744966A (en) * 2014-01-07 2014-04-23 Tcl集团股份有限公司 Item recommendation method and device
CN103778214A (en) * 2014-01-16 2014-05-07 北京理工大学 Commodity property clustering method based on user comments
CN103793837A (en) * 2012-10-31 2014-05-14 Ncr公司 Techniques for recommending a retailer, retail product, or retail services
CN103886001A (en) * 2013-09-22 2014-06-25 天津思博科科技发展有限公司 Personalized commodity recommendation system
CN104035983A (en) * 2014-05-29 2014-09-10 西安理工大学 Classified variable clustering method based on attribute weight similarity
CN104239020A (en) * 2013-06-21 2014-12-24 Sap欧洲公司 Decision-making standard driven recommendation
CN104361507A (en) * 2014-11-20 2015-02-18 携程计算机技术(上海)有限公司 Commodity recommending method and system
CN104394231A (en) * 2014-12-10 2015-03-04 合肥城市云数据中心有限公司 Data interaction processing method based on intelligent terminal and cloud data technique
CN104392003A (en) * 2014-12-15 2015-03-04 北京国双科技有限公司 Displaying method and device for network search keywords
WO2015027828A1 (en) * 2013-08-26 2015-03-05 腾讯科技(深圳)有限公司 Method and apparatus for implementing clustering of user information
CN104463637A (en) * 2014-12-23 2015-03-25 北京石油化工学院 Commodity recommendation method and device based on electronic business platform and server
CN104615721A (en) * 2015-02-06 2015-05-13 北京京东尚科信息技术有限公司 Method and system for recommending communities based on returned goods related information
CN104615658A (en) * 2014-12-31 2015-05-13 中国科学院深圳先进技术研究院 A way to determine the identity of a user
CN104636419A (en) * 2013-11-11 2015-05-20 国际商业机器公司 Information processing device, information processing method
CN104778607A (en) * 2015-04-13 2015-07-15 南京八天在线网络科技有限公司 Data mining system based on campus cloud supermarket
CN104778237A (en) * 2015-04-03 2015-07-15 电子科技大学 Individual recommending method and system based on key users
CN104809626A (en) * 2015-03-17 2015-07-29 徐邑江 Customized commodity recommending method based on user credit assessment
CN104969224A (en) * 2013-03-13 2015-10-07 谷歌公司 Tailoring user experience for unrecognized and new users
CN105023175A (en) * 2015-07-24 2015-11-04 金鹃传媒科技股份有限公司 Online advertisement classified pushing method and system based on consumer behavior data analysis and classification technology
CN105022614A (en) * 2014-04-21 2015-11-04 上海墨盾电脑科技有限公司 Generic architecture of electronic commerce
CN105205702A (en) * 2015-09-28 2015-12-30 魔线科技(深圳)有限公司 Method and system for pushing targeted advertisement based on consumption pattern
CN105247552A (en) * 2013-06-24 2016-01-13 英特尔公司 Digital receipt economy
CN105260922A (en) * 2015-10-15 2016-01-20 广东欧珀移动通信有限公司 Commodity information matching method and commodity information matching device
CN105320719A (en) * 2015-01-16 2016-02-10 焦点科技股份有限公司 Crowdfunding website project recommendation method based on project tag and graphical relationship
CN105354729A (en) * 2015-12-14 2016-02-24 电子科技大学 Commodity recommendation method in electronic commerce system
CN105528716A (en) * 2015-12-03 2016-04-27 山东烟草研究院有限公司 Tobacco brand remote intelligent recommendation method facing retailer individual need
CN105590234A (en) * 2014-12-30 2016-05-18 中国银联股份有限公司 Method and system for recommending commodities to target users
CN105653543A (en) * 2014-11-11 2016-06-08 阿里巴巴集团控股有限公司 Method and device for setting user label in information system
CN105869024A (en) * 2016-04-20 2016-08-17 北京小米移动软件有限公司 Commodity recommending method and device
CN105956048A (en) * 2016-04-27 2016-09-21 上海遥薇(集团)有限公司 Community service big data algorithm mining system
CN105989037A (en) * 2015-02-03 2016-10-05 阿里巴巴集团控股有限公司 Information display method and device
CN106021269A (en) * 2015-03-27 2016-10-12 国际商业机器公司 Transforming social media re-shares to track referrer history and identify influencers
WO2016183898A1 (en) * 2015-05-18 2016-11-24 向莉妮 Personalized commodity matching and recommendation system and method, and electronic device
CN106227835A (en) * 2016-07-25 2016-12-14 中南大学 Team's research direction method for digging based on two subnetwork figure hierarchical clusterings
CN106446943A (en) * 2016-09-19 2017-02-22 大连海事大学 A Fast Clustering Method for Commodity-associated Big Data Sparse Networks
WO2017028687A1 (en) * 2015-08-14 2017-02-23 阿里巴巴集团控股有限公司 Unused commodity object information processing method and device
WO2017050188A1 (en) * 2015-09-24 2017-03-30 中国银联股份有限公司 Transaction data processing method and device
CN106570573A (en) * 2015-10-13 2017-04-19 阿里巴巴集团控股有限公司 Parcel attribute information prediction method and device
CN106651432A (en) * 2016-10-31 2017-05-10 南京魔格信息科技有限公司 Building advertisement accurate putting system and method
CN106779985A (en) * 2017-02-24 2017-05-31 武汉奇米网络科技有限公司 A kind of method and system of personalized commercial sequence
WO2017114276A1 (en) * 2015-12-31 2017-07-06 中国银联股份有限公司 User analysis method and system based on image
CN106951436A (en) * 2017-02-09 2017-07-14 华南理工大学 A kind of extensive online recommendation method based on mobile contextual
CN107016589A (en) * 2016-08-10 2017-08-04 阿里巴巴集团控股有限公司 The determination method and device of recommended products
CN107103499A (en) * 2017-04-26 2017-08-29 中国人民大学 Method is recommended in a kind of cross-site cold start-up based on deep learning
CN107103028A (en) * 2017-03-03 2017-08-29 北京小度信息科技有限公司 A kind of information processing method and device
CN107123016A (en) * 2017-03-22 2017-09-01 重庆允升科技有限公司 A kind of industrial material Method of Commodity Recommendation
CN107154109A (en) * 2017-06-02 2017-09-12 深圳正品创想科技有限公司 A kind of commodity rendering method, device and self-service cabinet
CN107274247A (en) * 2017-05-03 2017-10-20 浙江工商大学 Wisdom based on cloud computing perceives recommendation method
CN107424012A (en) * 2017-07-31 2017-12-01 京东方科技集团股份有限公司 A kind of intelligent shopping guide method, intelligent shopping guide equipment
CN107515943A (en) * 2017-09-01 2017-12-26 安徽教育网络出版有限公司 User preferences modeling construction method based on collaborative filtering
CN107633073A (en) * 2017-09-22 2018-01-26 广州阿里巴巴文学信息技术有限公司 Resource determining method, apparatus and system
CN107665451A (en) * 2016-07-29 2018-02-06 百度在线网络技术(北京)有限公司 A kind of method and device that product push is carried out based on client characteristics data
CN107730337A (en) * 2016-08-12 2018-02-23 北京京东尚科信息技术有限公司 Information-pushing method and device
CN107862566A (en) * 2017-10-17 2018-03-30 杨明 A kind of Method of Commodity Recommendation and system
CN107909421A (en) * 2017-09-29 2018-04-13 中国船舶重工集团公司第七0九研究所 A kind of implicit feedback of more GRU layers of neutral net based on user's space recommends method and system
CN108140203A (en) * 2015-08-18 2018-06-08 万事达卡国际股份有限公司 For passing through the system and method for property graphical model production Methods
CN108154425A (en) * 2018-01-19 2018-06-12 广州天源信息科技股份有限公司 Method is recommended by the Xian Xia trade companies of a kind of combination community network and position
CN108230029A (en) * 2017-12-29 2018-06-29 西南大学 Client trading behavior analysis method
CN108256018A (en) * 2018-01-09 2018-07-06 北京奇艺世纪科技有限公司 A kind of item recommendation method and device
CN105023175B (en) * 2015-07-24 2018-08-31 金鹃传媒科技股份有限公司 A kind of online advertisement classification method for pushing and its system based on consumer behaviour data analysis and classification technology
CN108696418A (en) * 2017-04-06 2018-10-23 腾讯科技(深圳)有限公司 Method for secret protection and device in a kind of social networks
CN108763496A (en) * 2018-05-30 2018-11-06 南京讯高科技有限公司 A kind of sound state data fusion client segmentation algorithm based on grid and density
CN108876537A (en) * 2018-06-15 2018-11-23 重庆知遨科技有限公司 A kind of mixed recommendation method for on-line mall system
CN109034960A (en) * 2018-07-12 2018-12-18 电子科技大学 A method of more inferred from attributes based on user node insertion
CN109118330A (en) * 2018-08-09 2019-01-01 珠海格力电器股份有限公司 Household appliance recommendation method and device, storage medium and server
CN109242656A (en) * 2018-11-27 2019-01-18 广东珍三叶电子商务有限公司 A kind of commodity supplying system based on cloud computing sales data and user's evaluation
CN109345348A (en) * 2018-09-30 2019-02-15 重庆誉存大数据科技有限公司 The recommended method of multidimensional information portrait based on travel agency user
CN109446402A (en) * 2017-08-29 2019-03-08 阿里巴巴集团控股有限公司 A kind of searching method and device
CN109474703A (en) * 2018-12-24 2019-03-15 杭州云纪网络科技有限公司 Personalized product combines method for pushing, apparatus and system
CN109615460A (en) * 2018-11-09 2019-04-12 北京京东尚科信息技术有限公司 Gather the selection method and selection system of single commodity
CN109670107A (en) * 2018-12-07 2019-04-23 杭州飞弛网络科技有限公司 A kind of stranger's social activity recommended method and system based on interest big data
CN109740054A (en) * 2018-12-27 2019-05-10 丹翰智能科技(上海)有限公司 It is a kind of for determining the method and apparatus of the association financial information of target user
CN109858985A (en) * 2017-11-30 2019-06-07 阿里巴巴集团控股有限公司 Merchandise news processing, the method shown and device
CN109934646A (en) * 2017-12-15 2019-06-25 北京京东尚科信息技术有限公司 Predict the method and device of new commodity complementary buying behavior
CN110348876A (en) * 2019-05-28 2019-10-18 成都美美臣科技有限公司 A kind of customer personalized data method for building up of e-commerce website
CN110557422A (en) * 2018-06-01 2019-12-10 上海沛香信息科技有限公司 Consumption information pushing method and system and big data platform
CN111291904A (en) * 2020-02-06 2020-06-16 腾讯科技(深圳)有限公司 Preference prediction method and device and computer equipment
CN111340601A (en) * 2020-03-30 2020-06-26 贝壳技术有限公司 Commodity information recommendation method and device, electronic equipment and storage medium
CN111353862A (en) * 2020-03-30 2020-06-30 贝壳技术有限公司 Commodity recommendation method and device, electronic equipment and storage medium
WO2020135144A1 (en) * 2018-12-29 2020-07-02 北京世纪好未来教育科技有限公司 Method and apparatus for predicting object preference, and computer-readable medium
CN111429161A (en) * 2020-04-10 2020-07-17 杭州网易再顾科技有限公司 Feature extraction method, feature extraction device, storage medium, and electronic apparatus
CN111428143A (en) * 2020-06-11 2020-07-17 北京每日优鲜电子商务有限公司 Commodity recommendation method and system, server and storage medium
CN111523918A (en) * 2019-02-02 2020-08-11 北京极智嘉科技有限公司 Commodity clustering method, commodity clustering device, commodity clustering equipment and storage medium
CN111611496A (en) * 2020-04-09 2020-09-01 浙江口碑网络技术有限公司 Product recommendation method and device
CN111951035A (en) * 2019-05-17 2020-11-17 上海树融数据科技有限公司 Consumption analysis method, system, device and consumption analysis platform
US20210073732A1 (en) * 2019-09-11 2021-03-11 Ila Design Group, Llc Automatically determining inventory items that meet selection criteria in a high-dimensionality inventory dataset
CN112487297A (en) * 2020-12-09 2021-03-12 贝壳技术有限公司 Information pushing method and device, electronic equipment and storage medium
CN112767085A (en) * 2021-01-22 2021-05-07 武汉蔚来能源有限公司 Commodity similarity analysis and commodity recommendation method, commodity similarity analysis and commodity recommendation device, and computer storage medium
CN112847376A (en) * 2021-02-02 2021-05-28 广东技术师范大学 Safe medicine purchasing robot and control method thereof
CN113674043A (en) * 2020-05-15 2021-11-19 北京沃东天骏信息技术有限公司 Commodity recommendation method and device, computer-readable storage medium and electronic equipment
CN114049180A (en) * 2021-12-13 2022-02-15 浙江创邻科技有限公司 Commodity recommendation method and system based on graph model
CN114090891A (en) * 2021-11-24 2022-02-25 土巴兔集团股份有限公司 Personalized content recommendation method, device, equipment and storage medium
CN114201610A (en) * 2020-09-17 2022-03-18 阿里巴巴集团控股有限公司 Information processing method, apparatus, storage medium and processor
CN114202395A (en) * 2022-01-21 2022-03-18 福州大学 Online product recommendation method and system based on key product identification
CN114358785A (en) * 2021-12-23 2022-04-15 号百信息服务有限公司 Electronic subscription recommendation system and method based on user payment behavior analysis
CN114493747A (en) * 2021-12-23 2022-05-13 阿里巴巴(中国)有限公司 Interactive method and electronic device based on data object
CN114780861A (en) * 2022-06-20 2022-07-22 上海二三四五网络科技有限公司 Clustering technology-based user multi-interest recommendation method, device, equipment and medium
CN114862492A (en) * 2022-03-29 2022-08-05 孟煜 Method and system for recommending online shopping mall commodities
CN114912015A (en) * 2022-03-30 2022-08-16 阿里巴巴(中国)有限公司 Object recommendation method, model training method, device, equipment and medium
TWI787196B (en) * 2016-11-29 2022-12-21 香港商阿里巴巴集團服務有限公司 Method, device and system for generating business object attribute identification
US20230101182A1 (en) * 2021-09-30 2023-03-30 Intuit Inc. Generating estimates by combining unsupervised and supervised machine learning
CN117934113A (en) * 2024-01-19 2024-04-26 广州千分位科技有限公司 Commodity recommendation method and device based on big data
CN118134610A (en) * 2024-05-08 2024-06-04 东莞巨正源科技有限公司 Commodity recommendation method and system based on user information processing
CN118365404A (en) * 2023-08-16 2024-07-19 杭州阿里巴巴海外网络科技有限公司 Method and electronic device for providing commodity object information
US12051038B2 (en) 2018-12-30 2024-07-30 Beijing Geekplus Technology Co., Ltd. Order processing method, apparatus and device, and storage medium
CN119444226A (en) * 2024-10-24 2025-02-14 福州贝姿兰网络科技有限公司 A merchant cash register data monitoring and management system based on data analysis

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103136683B (en) * 2011-11-24 2017-03-01 阿里巴巴集团控股有限公司 Calculate method, device and product search method, the system of product reference price
CN103136683A (en) * 2011-11-24 2013-06-05 阿里巴巴集团控股有限公司 Method and device for calculating product reference price and method and system for searching products
CN102411754A (en) * 2011-11-29 2012-04-11 南京大学 Personalized recommendation method based on commodity property entropy
CN102567900A (en) * 2011-12-28 2012-07-11 尚明生 Method for recommending commodities to customers
CN102722524A (en) * 2012-05-07 2012-10-10 北京邮电大学 Website recommendation result displaying method and device and terminal with the device
CN102750895A (en) * 2012-06-28 2012-10-24 宇龙计算机通信科技(深圳)有限公司 Intelligent building information terminal and system as well as communication method
CN102750895B (en) * 2012-06-28 2016-03-09 宇龙计算机通信科技(深圳)有限公司 A kind of intelligent building information terminal and system, exchange method
CN103679489A (en) * 2012-09-10 2014-03-26 腾讯科技(深圳)有限公司 Item-based collaborative recommendation method and system
WO2014036892A1 (en) * 2012-09-10 2014-03-13 腾讯科技(深圳)有限公司 Method and system for generating list of associated recommended items
CN104685522A (en) * 2012-09-10 2015-06-03 上海阅潮网络科技有限公司 Method and system for generating list of associated recommended items
CN103793837A (en) * 2012-10-31 2014-05-14 Ncr公司 Techniques for recommending a retailer, retail product, or retail services
CN104969224B (en) * 2013-03-13 2020-02-14 谷歌有限责任公司 Improved user experience for unacknowledged and new users
CN104969224A (en) * 2013-03-13 2015-10-07 谷歌公司 Tailoring user experience for unrecognized and new users
CN104239020A (en) * 2013-06-21 2014-12-24 Sap欧洲公司 Decision-making standard driven recommendation
CN105247552A (en) * 2013-06-24 2016-01-13 英特尔公司 Digital receipt economy
CN105247552B (en) * 2013-06-24 2020-09-08 英特尔公司 Digital receipt economy
WO2015027828A1 (en) * 2013-08-26 2015-03-05 腾讯科技(深圳)有限公司 Method and apparatus for implementing clustering of user information
CN103886001A (en) * 2013-09-22 2014-06-25 天津思博科科技发展有限公司 Personalized commodity recommendation system
CN104636419B (en) * 2013-11-11 2018-08-17 国际商业机器公司 Information processing unit, information processing method
CN104636419A (en) * 2013-11-11 2015-05-20 国际商业机器公司 Information processing device, information processing method
CN103744966B (en) * 2014-01-07 2018-06-22 Tcl集团股份有限公司 A kind of item recommendation method, device
CN103744966A (en) * 2014-01-07 2014-04-23 Tcl集团股份有限公司 Item recommendation method and device
CN103778214A (en) * 2014-01-16 2014-05-07 北京理工大学 Commodity property clustering method based on user comments
CN103778214B (en) * 2014-01-16 2017-08-01 北京理工大学 A Product Attribute Clustering Method Based on User Comments
CN105022614A (en) * 2014-04-21 2015-11-04 上海墨盾电脑科技有限公司 Generic architecture of electronic commerce
CN104035983A (en) * 2014-05-29 2014-09-10 西安理工大学 Classified variable clustering method based on attribute weight similarity
CN105653543A (en) * 2014-11-11 2016-06-08 阿里巴巴集团控股有限公司 Method and device for setting user label in information system
CN104361507A (en) * 2014-11-20 2015-02-18 携程计算机技术(上海)有限公司 Commodity recommending method and system
CN104394231B (en) * 2014-12-10 2018-03-20 合肥城市云数据中心有限公司 A kind of data interactive processing method based on intelligent terminal Yu cloud data technique
CN104394231A (en) * 2014-12-10 2015-03-04 合肥城市云数据中心有限公司 Data interaction processing method based on intelligent terminal and cloud data technique
CN104392003B (en) * 2014-12-15 2018-09-18 北京国双科技有限公司 Web search keyword shows method and device
CN104392003A (en) * 2014-12-15 2015-03-04 北京国双科技有限公司 Displaying method and device for network search keywords
CN104463637A (en) * 2014-12-23 2015-03-25 北京石油化工学院 Commodity recommendation method and device based on electronic business platform and server
CN105590234A (en) * 2014-12-30 2016-05-18 中国银联股份有限公司 Method and system for recommending commodities to target users
CN104615658A (en) * 2014-12-31 2015-05-13 中国科学院深圳先进技术研究院 A way to determine the identity of a user
CN104615658B (en) * 2014-12-31 2018-01-16 中国科学院深圳先进技术研究院 A kind of method for determining user identity
CN105320719A (en) * 2015-01-16 2016-02-10 焦点科技股份有限公司 Crowdfunding website project recommendation method based on project tag and graphical relationship
CN105320719B (en) * 2015-01-16 2019-02-05 焦点科技股份有限公司 A Crowdfunding Website Item Recommendation Method Based on Item Labels and Graph Relationships
CN105989037A (en) * 2015-02-03 2016-10-05 阿里巴巴集团控股有限公司 Information display method and device
CN104615721A (en) * 2015-02-06 2015-05-13 北京京东尚科信息技术有限公司 Method and system for recommending communities based on returned goods related information
CN104615721B (en) * 2015-02-06 2018-02-16 北京京东尚科信息技术有限公司 For the method and system based on return of goods related information Recommendations
CN104809626A (en) * 2015-03-17 2015-07-29 徐邑江 Customized commodity recommending method based on user credit assessment
US10614471B2 (en) 2015-03-27 2020-04-07 International Business Machines Corporation Transforming social media re-shares to track referrer history and identify influencers
CN106021269B (en) * 2015-03-27 2019-06-14 国际商业机器公司 The method and system shared again for converting social media
CN106021269A (en) * 2015-03-27 2016-10-12 国际商业机器公司 Transforming social media re-shares to track referrer history and identify influencers
CN104778237A (en) * 2015-04-03 2015-07-15 电子科技大学 Individual recommending method and system based on key users
CN104778607A (en) * 2015-04-13 2015-07-15 南京八天在线网络科技有限公司 Data mining system based on campus cloud supermarket
WO2016183898A1 (en) * 2015-05-18 2016-11-24 向莉妮 Personalized commodity matching and recommendation system and method, and electronic device
CN105023175B (en) * 2015-07-24 2018-08-31 金鹃传媒科技股份有限公司 A kind of online advertisement classification method for pushing and its system based on consumer behaviour data analysis and classification technology
CN105023175A (en) * 2015-07-24 2015-11-04 金鹃传媒科技股份有限公司 Online advertisement classified pushing method and system based on consumer behavior data analysis and classification technology
WO2017028687A1 (en) * 2015-08-14 2017-02-23 阿里巴巴集团控股有限公司 Unused commodity object information processing method and device
CN108140203A (en) * 2015-08-18 2018-06-08 万事达卡国际股份有限公司 For passing through the system and method for property graphical model production Methods
CN108140203B (en) * 2015-08-18 2022-06-03 万事达卡国际股份有限公司 System and method for generating relationships through a property graph model
WO2017050188A1 (en) * 2015-09-24 2017-03-30 中国银联股份有限公司 Transaction data processing method and device
CN105205702A (en) * 2015-09-28 2015-12-30 魔线科技(深圳)有限公司 Method and system for pushing targeted advertisement based on consumption pattern
CN106570573B (en) * 2015-10-13 2022-05-27 菜鸟智能物流控股有限公司 Method and device for predicting package attribute information
CN106570573A (en) * 2015-10-13 2017-04-19 阿里巴巴集团控股有限公司 Parcel attribute information prediction method and device
CN105260922A (en) * 2015-10-15 2016-01-20 广东欧珀移动通信有限公司 Commodity information matching method and commodity information matching device
CN105528716A (en) * 2015-12-03 2016-04-27 山东烟草研究院有限公司 Tobacco brand remote intelligent recommendation method facing retailer individual need
CN105354729A (en) * 2015-12-14 2016-02-24 电子科技大学 Commodity recommendation method in electronic commerce system
WO2017114276A1 (en) * 2015-12-31 2017-07-06 中国银联股份有限公司 User analysis method and system based on image
CN105869024A (en) * 2016-04-20 2016-08-17 北京小米移动软件有限公司 Commodity recommending method and device
CN105956048A (en) * 2016-04-27 2016-09-21 上海遥薇(集团)有限公司 Community service big data algorithm mining system
CN106227835B (en) * 2016-07-25 2018-01-19 中南大学 Team's research direction method for digging based on two subnetwork figure hierarchical clusterings
CN106227835A (en) * 2016-07-25 2016-12-14 中南大学 Team's research direction method for digging based on two subnetwork figure hierarchical clusterings
CN107665451B (en) * 2016-07-29 2021-09-21 百度在线网络技术(北京)有限公司 Method and device for pushing product based on customer characteristic data
CN107665451A (en) * 2016-07-29 2018-02-06 百度在线网络技术(北京)有限公司 A kind of method and device that product push is carried out based on client characteristics data
CN107016589A (en) * 2016-08-10 2017-08-04 阿里巴巴集团控股有限公司 The determination method and device of recommended products
CN107730337A (en) * 2016-08-12 2018-02-23 北京京东尚科信息技术有限公司 Information-pushing method and device
CN106446943A (en) * 2016-09-19 2017-02-22 大连海事大学 A Fast Clustering Method for Commodity-associated Big Data Sparse Networks
CN106651432A (en) * 2016-10-31 2017-05-10 南京魔格信息科技有限公司 Building advertisement accurate putting system and method
TWI787196B (en) * 2016-11-29 2022-12-21 香港商阿里巴巴集團服務有限公司 Method, device and system for generating business object attribute identification
CN106951436A (en) * 2017-02-09 2017-07-14 华南理工大学 A kind of extensive online recommendation method based on mobile contextual
CN106951436B (en) * 2017-02-09 2020-06-19 华南理工大学 Large-scale online recommendation method based on mobile situation
CN106779985A (en) * 2017-02-24 2017-05-31 武汉奇米网络科技有限公司 A kind of method and system of personalized commercial sequence
CN107103028A (en) * 2017-03-03 2017-08-29 北京小度信息科技有限公司 A kind of information processing method and device
CN107123016A (en) * 2017-03-22 2017-09-01 重庆允升科技有限公司 A kind of industrial material Method of Commodity Recommendation
CN108696418A (en) * 2017-04-06 2018-10-23 腾讯科技(深圳)有限公司 Method for secret protection and device in a kind of social networks
CN107103499A (en) * 2017-04-26 2017-08-29 中国人民大学 Method is recommended in a kind of cross-site cold start-up based on deep learning
CN107274247A (en) * 2017-05-03 2017-10-20 浙江工商大学 Wisdom based on cloud computing perceives recommendation method
CN107154109A (en) * 2017-06-02 2017-09-12 深圳正品创想科技有限公司 A kind of commodity rendering method, device and self-service cabinet
CN107424012A (en) * 2017-07-31 2017-12-01 京东方科技集团股份有限公司 A kind of intelligent shopping guide method, intelligent shopping guide equipment
CN109446402B (en) * 2017-08-29 2022-04-01 阿里巴巴集团控股有限公司 Searching method and device
CN109446402A (en) * 2017-08-29 2019-03-08 阿里巴巴集团控股有限公司 A kind of searching method and device
CN107515943A (en) * 2017-09-01 2017-12-26 安徽教育网络出版有限公司 User preferences modeling construction method based on collaborative filtering
CN107633073A (en) * 2017-09-22 2018-01-26 广州阿里巴巴文学信息技术有限公司 Resource determining method, apparatus and system
CN107909421A (en) * 2017-09-29 2018-04-13 中国船舶重工集团公司第七0九研究所 A kind of implicit feedback of more GRU layers of neutral net based on user's space recommends method and system
CN107862566A (en) * 2017-10-17 2018-03-30 杨明 A kind of Method of Commodity Recommendation and system
CN109858985A (en) * 2017-11-30 2019-06-07 阿里巴巴集团控股有限公司 Merchandise news processing, the method shown and device
CN109934646B (en) * 2017-12-15 2021-09-17 北京京东尚科信息技术有限公司 Method and device for predicting associated purchasing behavior of new commodity
CN109934646A (en) * 2017-12-15 2019-06-25 北京京东尚科信息技术有限公司 Predict the method and device of new commodity complementary buying behavior
CN108230029A (en) * 2017-12-29 2018-06-29 西南大学 Client trading behavior analysis method
CN108256018A (en) * 2018-01-09 2018-07-06 北京奇艺世纪科技有限公司 A kind of item recommendation method and device
CN108154425B (en) * 2018-01-19 2021-03-26 广州天源信息科技股份有限公司 Offline merchant recommendation method combining social network and location
CN108154425A (en) * 2018-01-19 2018-06-12 广州天源信息科技股份有限公司 Method is recommended by the Xian Xia trade companies of a kind of combination community network and position
CN108763496A (en) * 2018-05-30 2018-11-06 南京讯高科技有限公司 A kind of sound state data fusion client segmentation algorithm based on grid and density
CN110557422A (en) * 2018-06-01 2019-12-10 上海沛香信息科技有限公司 Consumption information pushing method and system and big data platform
CN108876537B (en) * 2018-06-15 2021-08-17 上海百秋电子商务有限公司 Mixed recommendation method for online marketplace system
CN108876537A (en) * 2018-06-15 2018-11-23 重庆知遨科技有限公司 A kind of mixed recommendation method for on-line mall system
CN109034960B (en) * 2018-07-12 2022-09-06 电子科技大学 Multi-attribute inference method based on user node embedding
CN109034960A (en) * 2018-07-12 2018-12-18 电子科技大学 A method of more inferred from attributes based on user node insertion
CN109118330A (en) * 2018-08-09 2019-01-01 珠海格力电器股份有限公司 Household appliance recommendation method and device, storage medium and server
CN109118330B (en) * 2018-08-09 2020-09-22 珠海格力电器股份有限公司 Household appliance recommendation method and device, storage medium and server
CN109345348A (en) * 2018-09-30 2019-02-15 重庆誉存大数据科技有限公司 The recommended method of multidimensional information portrait based on travel agency user
CN109615460A (en) * 2018-11-09 2019-04-12 北京京东尚科信息技术有限公司 Gather the selection method and selection system of single commodity
CN109242656A (en) * 2018-11-27 2019-01-18 广东珍三叶电子商务有限公司 A kind of commodity supplying system based on cloud computing sales data and user's evaluation
CN109670107A (en) * 2018-12-07 2019-04-23 杭州飞弛网络科技有限公司 A kind of stranger's social activity recommended method and system based on interest big data
CN109474703A (en) * 2018-12-24 2019-03-15 杭州云纪网络科技有限公司 Personalized product combines method for pushing, apparatus and system
CN109740054A (en) * 2018-12-27 2019-05-10 丹翰智能科技(上海)有限公司 It is a kind of for determining the method and apparatus of the association financial information of target user
US11651255B2 (en) 2018-12-29 2023-05-16 Beijing Century Tal Education Technology Co., Ltd. Method and apparatus for object preference prediction, and computer readable medium
WO2020135144A1 (en) * 2018-12-29 2020-07-02 北京世纪好未来教育科技有限公司 Method and apparatus for predicting object preference, and computer-readable medium
US12051038B2 (en) 2018-12-30 2024-07-30 Beijing Geekplus Technology Co., Ltd. Order processing method, apparatus and device, and storage medium
CN111523918A (en) * 2019-02-02 2020-08-11 北京极智嘉科技有限公司 Commodity clustering method, commodity clustering device, commodity clustering equipment and storage medium
CN111523918B (en) * 2019-02-02 2023-09-19 北京极智嘉科技股份有限公司 Commodity clustering method, device, equipment and storage medium
CN111951035A (en) * 2019-05-17 2020-11-17 上海树融数据科技有限公司 Consumption analysis method, system, device and consumption analysis platform
CN111951035B (en) * 2019-05-17 2024-06-11 嘉兴树融数据科技有限公司 Consumption analysis method, system, device and platform
CN110348876A (en) * 2019-05-28 2019-10-18 成都美美臣科技有限公司 A kind of customer personalized data method for building up of e-commerce website
US11494734B2 (en) * 2019-09-11 2022-11-08 Ila Design Group Llc Automatically determining inventory items that meet selection criteria in a high-dimensionality inventory dataset
US20210073732A1 (en) * 2019-09-11 2021-03-11 Ila Design Group, Llc Automatically determining inventory items that meet selection criteria in a high-dimensionality inventory dataset
CN111291904B (en) * 2020-02-06 2023-04-18 腾讯科技(深圳)有限公司 Preference prediction method and device and computer equipment
CN111291904A (en) * 2020-02-06 2020-06-16 腾讯科技(深圳)有限公司 Preference prediction method and device and computer equipment
CN111353862A (en) * 2020-03-30 2020-06-30 贝壳技术有限公司 Commodity recommendation method and device, electronic equipment and storage medium
CN111340601A (en) * 2020-03-30 2020-06-26 贝壳技术有限公司 Commodity information recommendation method and device, electronic equipment and storage medium
CN111353862B (en) * 2020-03-30 2024-03-26 贝壳技术有限公司 Commodity recommendation method and device, electronic equipment and storage medium
CN111611496A (en) * 2020-04-09 2020-09-01 浙江口碑网络技术有限公司 Product recommendation method and device
CN111429161B (en) * 2020-04-10 2023-10-10 杭州网易再顾科技有限公司 Feature extraction method, feature extraction device, storage medium and electronic equipment
CN111429161A (en) * 2020-04-10 2020-07-17 杭州网易再顾科技有限公司 Feature extraction method, feature extraction device, storage medium, and electronic apparatus
CN113674043A (en) * 2020-05-15 2021-11-19 北京沃东天骏信息技术有限公司 Commodity recommendation method and device, computer-readable storage medium and electronic equipment
CN111428143A (en) * 2020-06-11 2020-07-17 北京每日优鲜电子商务有限公司 Commodity recommendation method and system, server and storage medium
CN114201610A (en) * 2020-09-17 2022-03-18 阿里巴巴集团控股有限公司 Information processing method, apparatus, storage medium and processor
CN112487297A (en) * 2020-12-09 2021-03-12 贝壳技术有限公司 Information pushing method and device, electronic equipment and storage medium
CN112767085B (en) * 2021-01-22 2024-05-24 武汉蔚来能源有限公司 Commodity similarity analysis and commodity recommendation method and device and computer storage medium
CN112767085A (en) * 2021-01-22 2021-05-07 武汉蔚来能源有限公司 Commodity similarity analysis and commodity recommendation method, commodity similarity analysis and commodity recommendation device, and computer storage medium
CN112847376A (en) * 2021-02-02 2021-05-28 广东技术师范大学 Safe medicine purchasing robot and control method thereof
US20230101182A1 (en) * 2021-09-30 2023-03-30 Intuit Inc. Generating estimates by combining unsupervised and supervised machine learning
CN114090891A (en) * 2021-11-24 2022-02-25 土巴兔集团股份有限公司 Personalized content recommendation method, device, equipment and storage medium
CN114049180A (en) * 2021-12-13 2022-02-15 浙江创邻科技有限公司 Commodity recommendation method and system based on graph model
CN114493747A (en) * 2021-12-23 2022-05-13 阿里巴巴(中国)有限公司 Interactive method and electronic device based on data object
CN114358785A (en) * 2021-12-23 2022-04-15 号百信息服务有限公司 Electronic subscription recommendation system and method based on user payment behavior analysis
CN114202395A (en) * 2022-01-21 2022-03-18 福州大学 Online product recommendation method and system based on key product identification
CN114202395B (en) * 2022-01-21 2024-07-23 福州大学 Online commodity recommendation method and system based on key commodity identification
CN114862492A (en) * 2022-03-29 2022-08-05 孟煜 Method and system for recommending online shopping mall commodities
CN114912015A (en) * 2022-03-30 2022-08-16 阿里巴巴(中国)有限公司 Object recommendation method, model training method, device, equipment and medium
CN114912015B (en) * 2022-03-30 2025-01-24 杭州阿里巴巴海外互联网产业有限公司 Object recommendation method, model training method, device, equipment and medium
CN114780861A (en) * 2022-06-20 2022-07-22 上海二三四五网络科技有限公司 Clustering technology-based user multi-interest recommendation method, device, equipment and medium
WO2023245999A1 (en) * 2022-06-20 2023-12-28 上海二三四五网络科技有限公司 User multi-interest recommendation method and apparatus based on clustering technology, and device and medium
CN118365404A (en) * 2023-08-16 2024-07-19 杭州阿里巴巴海外网络科技有限公司 Method and electronic device for providing commodity object information
CN117934113A (en) * 2024-01-19 2024-04-26 广州千分位科技有限公司 Commodity recommendation method and device based on big data
CN118134610A (en) * 2024-05-08 2024-06-04 东莞巨正源科技有限公司 Commodity recommendation method and system based on user information processing
CN119444226A (en) * 2024-10-24 2025-02-14 福州贝姿兰网络科技有限公司 A merchant cash register data monitoring and management system based on data analysis

Similar Documents

Publication Publication Date Title
CN102254028A (en) A personalized product recommendation method and system integrating attribute and structure similarity
CN112131480B (en) Personalized commodity recommendation method and system based on multilayer heterogeneous attribute network representation learning
CN107220365B (en) Precise recommendation system and method based on collaborative filtering and parallel processing of association rules
CN109918563B (en) Book recommendation method based on public data
US8346782B2 (en) Method and system of information matching in electronic commerce website
CN102419779B (en) Commodity personalized search method and device based on attribute sorting
CN104700152B (en) A kind of tobacco Method for Sales Forecast method of fusion season sales information and search behavior information
CN113157752B (en) Scientific and technological resource recommendation method and system based on user portrait and situation
CN109684538A (en) A kind of recommended method and recommender system based on individual subscriber feature
CN107909433A (en) A kind of Method of Commodity Recommendation based on big data mobile e-business
CN103345698A (en) Personalized recommendation method based on cloud processing mode and applied in e-business environment
CN115860880B (en) Personalized commodity recommendation method and system based on multi-layer heterogeneous graph convolution model
CN102789462A (en) Project recommendation method and system
CN103353880B (en) A kind of utilization distinctiveness ratio cluster and the data digging method for associating
CN103136683A (en) Method and device for calculating product reference price and method and system for searching products
CN109543840A (en) A kind of Dynamic recommendation design method based on multidimensional classification intensified learning
CN106528812B (en) A cloud recommendation method based on USDR model
Lu et al. Personalized information recommendation model based on context contribution and item correlation
CN118071400A (en) Application method and system based on graph computing technology in information consumption field
CN112861017B (en) An information recommendation method based on neural collaborative filtering based on graph convolution
CN114861079B (en) A collaborative filtering recommendation method and system integrating product features
CN118799040A (en) Automatic recommendation marketing method and system for online figures
CN114418602B (en) A method and system for online retailer product inventory decision-making based on demand forecasting
US20150142782A1 (en) Method for associating metadata with images
CN105590234A (en) Method and system for recommending commodities to target users

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111123