CN1022233C - 玻璃配合料的热处理方法和设备 - Google Patents

玻璃配合料的热处理方法和设备 Download PDF

Info

Publication number
CN1022233C
CN1022233C CN90102134A CN90102134A CN1022233C CN 1022233 C CN1022233 C CN 1022233C CN 90102134 A CN90102134 A CN 90102134A CN 90102134 A CN90102134 A CN 90102134A CN 1022233 C CN1022233 C CN 1022233C
Authority
CN
China
Prior art keywords
gas
chamber
fuel
glass
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN90102134A
Other languages
English (en)
Other versions
CN1047663A (zh
Inventor
詹姆斯·纳特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1047663A publication Critical patent/CN1047663A/zh
Application granted granted Critical
Publication of CN1022233C publication Critical patent/CN1022233C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0066Disposal of asbestos
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Plasma Technology (AREA)
  • Furnace Details (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Resistance Heating (AREA)
  • Cyclones (AREA)
  • Glass Compositions (AREA)

Abstract

一种制造玻璃的方法,它包括向基本垂直放置的圆筒形预热室中通入玻璃生产原料、燃料和一种氧化性气体的混合物,燃烧燃料和氧化性气体,从而预热该玻璃生产原料,然后,将受热的混合物通入旋风熔化器中,在该熔化器中,玻璃生产原料被熔化,并与燃烧及其它气体分离。根据本发明的一个方面,该氧化性气体至少是在两个垂直隔开的位置上喷入预热室的,而且以相反反向流动,从而在该室中形成两个对流涡旋区,由此,玻璃生产原料与燃烧的燃料强力混和,并快速、均匀地熔化。

Description

本发明涉及玻璃的生产,特别是涉及到在将玻璃生产原料在旋风式熔化室中迅速熔化之前,在燃烧预热器中对玻璃生产原料进行的预热处理。本发明的设备及方法也适用于对其他材料进行熔化以及对有危险性的、有毒的或有传染性的废料进行热处理。
专利文献US-A-2006947;US-A-3077094;US-A-3443921;US-A-3510289;US-A-3748113;苏联专利SU-A-0708129;US-A-4535997和US-A-4544394中已公开了熔化玻璃用旋风式熔化室,这些出版物仅仅作为参考文献在这里引用,为了把配合料升温到玻璃熔化所需的温度,上述出版物提出对最后一步玻璃熔化采用旋风式反应器,而且其中包括燃烧或其它形式的供热,如在旋风式熔化室中的贯穿式燃烧器。
本发明的主要目的在于提供一种用于玻璃生产原料预热处理的方法及设备,以使玻璃生产原料在进入旋风式熔化器之前迅速而均匀地被加热。按照本发明的一个方面,它提供了一种熔化玻璃的方法,该方法包括:将颗粒状玻璃生产原料、燃料和一种氧化性气体的混合物送入一种预热室中,使燃料和氧化性气体在其中燃烧,从而使该玻璃生产原料预加热,然后将加热后的混合物送入一个旋风式熔化室中,玻璃生产原料在其中一起被熔化,并与燃烧和其它气体分离,其特征在于,从一个选择的方向将上述氧化剂喷射到预热室中,以使颗粒状原料与上述燃烧的燃料混合,并均匀地预热。
优选地,该预热室通常是细长型的,而且上述氧化剂基本上是从 至少两个纵向隔开的位置,以垂直角度喷射到预热室中的,最好,该预热室包括一个竖直放置的园筒,而且将氧化剂经入口沿切线方向喷入到预热室的最上部,两个入口的位置成一高一低放置,从一个入口导入的气体,其流动方向与从另一入口导入的气体的流动方向相反,从而在预热室中至少形成两个对流涡旋区。本发明还提供了该方法所用的设备。
由于上述氧化剂的喷入方向,使玻璃生产原料与燃烧燃料充分混合,从而使其被迅速而均匀地加热。
为了改进玻璃生产效率,现有的旋风式熔化法在旋风反应器中熔化之前,通常没有考虑限制挥发性矿物质损失的手段,上述挥发性矿物质是指例如助熔剂、粘度控制剂、澄清剂、或还原剂,特别是在此之前,一直没有对在悬浮预热步骤中挥发性矿物质的时间-温度曲线的控制方法进行改善,由于因煤气化过程或直接燃烧煤而使经济效益变差,现有的利用含灰分燃料的玻璃熔化法一直没有获得成功,因为从质量控制的观点看,玻璃中的灰分掺杂是不能接受的。尽管常用的煤灰中具有与市售玻璃中相同的成份种类,但事实上各种成份的浓度分布是不同的。在煤灰中,氧化铁的浓度一般大大高于市售玻璃中的浓度,一般,煤灰中氧化铁的浓度范围在10~20%,而大部分玻璃组合物中氧化铁的浓度低于0.1~0.2%,无色瓶罐玻璃若要获得满意的着色,其氧化铁浓度通常必须低于0.02%,琥珀色和绿色瓶罐玻璃的质量控制要求较低,但它通常仍要其氧化铁浓度分别低于0.1%和0.3%。
对于绝缘玻璃纤维,较高含量的氧化铁是容许的,可接受的氧化铁浓度为1~2%,氧化铁含量高于1~2%通常会导致绝缘值下降, 且引起与现有成纤器的材料相容性问题,通常用高炉炉渣制成的矿物棉的氧化铁浓度与煤灰具有相同的范围,所以该产品的生产对煤灰杂质是不敏感的,然而由于上述与高效成纤器的材料相容性问题,矿物棉生产的效率事实上比绝缘纤维的生产率要低。
由于上述灰分杂质问题,特别是氧化铁的污染问题,对于用煤或其它含有适量燃烧灰分的燃料作燃料直接燃烧的过程,现有的玻璃熔化技术中几乎均没有获得认可或获得成功的。事实上,由于灰分进入蓄热室,在传统的平炉型熔窑上用煤粉直接燃烧一直未获成功,而且熔窑中的熔渣还会导致耐火材料侵蚀和阻塞问题以及在玻璃液中形成结石和条痕。
用掺杂灰分的燃料熔烧玻璃熔化系统的能力目前从燃料的效率来看,是一个重要的课题,高温加热是可以获得的,但用这些燃料至今还没有获得过成功,在最近的Demarest等人的美国专利4634461中,提出了在快速熔化玻璃过程中使用煤粉的可能性,但实际上,该专利是把煤灰引入玻璃配合料和最后的玻璃产品中,它没有对灰分掺杂进行控制。
本发明进一步的目的是提供一种能使用煤、煤气、油和浆状燃料以及其他产生灰分的燃料的方法。
本发明一方面提供了一种如上所述的方法,其中燃料是一种能产生灰分的燃料,该燃料在进入预热室之前,首先通过一个排渣气化器,以便气化,同时除去一部分产生灰分的成份。
另一方面,本发明还提供了用于在还原条件下处理颗粒状物料的设备,该设备包括:一个用于产生热还原气的气化器;一个用于接收上述物料并处理该物料的还原室;一个用于加热还原室的增焓装置; 以及与还原室出口相连的用于接收上述热颗粒物料,熔化该物料并将该液化物料沉积在熔化器壁上的熔化装置,其特征在于上述增焓装置被设计成这样一种结构,该结构在将加热后的还原气导入还原室时,能在上述混合物中产生斋流,从而将该物料迅速而均匀地加热,并用上述还原气进行处理。
为了理解本发明,用附图作为参考描述各种实施例,其中:
图1是本发明的玻璃熔化设备的立体图,它显示了优选实例的主要部件。
图2是本发明的一个实施例的示意性剖面图,它包括一个对流涡旋悬浮预热器和一个旋风式熔化器。
图3是上述对流涡旋悬浮预热器沿图2中3-3线的剖面图,它表示了气/空气进口的相对涡流方向。
图4是本发明的一个实施例的示意性剖面图,它包括一个碰撞射流涡旋悬浮预热器和一个旋风式熔化器。
图5是本发明的一个实施例的示意性剖面图,它包括在对流涡旋悬浮预热器的顶部的一个等离子体吹管的剖面图。
图6是本发明的一个实施例的示意性剖面图,它包括一个连接到一个对流涡旋悬浮预热器上的排渣旋风气化器。
图7是上述排渣旋风气化器的沿图6中7-7线的一个剖视图,它表示了配合料入口和热的原始气体的出口取向。
图8是本发明的一个实施例的示意性剖面图,它包括与排渣旋风气化器相连的等离子体吹管。
图9是沿图8中9-9线的剖视图,它表示了等离子体吹管相对于气化器出口部件的取向。
图10是本发明的一个实施例的立体图,它包括等离子体吹管,该吹管与碰撞射流悬浮预热器/还原室的气/空气进口相连。
图11是本发明的一个实施例的示意性剖面图,它包括与对流涡旋悬浮预热器/还原室的气/空气进口相连的等离子体吹管。
图12是本发明的一个实施例沿图11中12-12线的剖视图。
下面将对本发明优选的实施例作详细描述,这里主要针对的是氧化条件下的玻璃熔化过程,业已发现,该氧化条件对本发明是特别适用的,然而,实际上上述用于熔化玻璃的同一设备也能用于熔化熔块粉,熔渣粉或粉煤灰。粉煤灰和熔渣的熔点一般要比玻璃熔块的熔点高,玻璃熔块是预先熔化好的玻璃制品,所以,上述预热器和熔化室的操作温度必须增高到可熔化这些高熔点物料的温度,在这两种操作中,所用的基本步骤是相同的,当熔化单一成份的材料(如粉煤灰)时,就没有必要使原料的挥发损失降至最小,除非为了降低原料的熔化温度又向系统中加入了助熔剂。
本发明也可用于在氧化条件下对危险的或有毒的废料进行锻烧和玻璃封装,用本发明处理有毒或危险废料的一个实例是对污染土或其他含有一定量惰性矿物质的废料进行锻烧,从石棉纤维制备玻璃材料是本发明的另一应用实例,当作为有毒废料锻烧器时,应将该装置的温度提高到矿渣或灰分的熔渣温度以上,以便形成熔融物料,根据所锻烧的有毒废料,可以向其中加入粉碎了的玻璃片或其他的玻璃形成成份,以形成一种玻璃基料,该玻璃基料可以被适当地成形并包装,从而用于安全陆地填充,如形成玻璃大理石或颗粒状的、表面积/体积比率较小的碎玻璃,这是处理所形成的玻璃封装材料的一种适宜方式。由于本发明需要使用粉状原料,因此,必须提供减小原料颗粒尺 寸以及把上述有毒废料输送到加工处理部位的装置,胶粘的或不能靠气动装置运送的物料可以在油或水浆中输送到热处理部位,当用油浆输送时,可以用该油作为锻烧过程的燃料,由于处理部分的操作温度一般在2600°F以上,有毒废料中的任何一种烃类都会被分离出来,并在悬浮预热器内燃烧,一般该预热器中供有过量的空气,以便在有毒废料悬浮预热过程中挥发的烃类燃烧。
更详细的描述可以参照各页附图进行,附图中相似的部分具有类似的特征,本发明的熔化设备主要用图1表示,本发明的设备的主要部分包括:一个悬浮式预热室100,在该预热室100卸料端的旋风熔化室200,在熔化室200的卸料端的旋风出口部件300,一个排渣旋风气化器400,一个等离子体吹管气体预热部件600,和一个将气化器400和等离子体吹管装置与预热室100连接起来的气化器/预热器连接部件500。
图1表示了所有上述部件的相互联接关系,起基本作用的装置仅包括:园筒形燃烧预热器100,旋风熔化室200和旋风出口部件300。其结构如图2所示。如图2所示,燃料30被送入预热器100的顶部或头部102,燃料30与玻璃配合料10一起通过一个喷射部件104引入,该喷射部件104位于预热器100的顶部102处,并与预热室100的纵轴同轴。
预热步骤对于本发明是非常重要的,当预热容器内发生燃烧时,一旦燃烧稳定,均匀搅动/柱流的悬浮预热器100将增强对颗粒物料的对流传热,由于强力混合,就会在发生的燃烧过程中产生快速热释放,通过选择适当的喷射位置和速度,可以使颗粒物料与预热器壁的相互作用达到最小,也可以达到最大,轴向喷射造成与预热器壁的 相互作用最小,而切向喷射造成与反应器壁的相互作用最大,特别是在利用高速旋转的实施例中。
如图3所示,已预热的空气或其它相应的气体氧化性物质20a、20b通过两个或两个以上进口106a、106b引入到上述预热器100中,这些气体氧化性物质20a、20b以这样一种方式引入,即,使氧化性物质20a、20b和玻璃配合料10与喷入的燃料30形成斋流混合,结果使燃料、氧化物质和玻璃配合料在预热器100的上部108区中形成混合物,在上部108区中,气体在充分搅动或充分混合,但是该108区中的颗粒物料(如玻璃配合料)不一定非要充分搅动或均匀分布在整个108区域内。
当使用如图2和3所示的对流涡旋预热器时,进气口106a、106b是切向地装在上述器壁上,旦以不同的高度放置,一般地,喷口的垂直间隔范围为反应器直径的1/4~1,当使用如图4所示的相对或碰撞式喷口的预热器时,喷嘴的进口107a、107b是在同一个高度上,且优选的喷射方向是朝上约45°角,该角度的范围为30°~60°,该相对喷口预热器的进口107a、107b的位置应使流出的气流或喷流相互碰撞,或与第三股沿预热室100的顶端102的中心线流出的、方向朝下的气流相撞,虽然朝上碰撞的喷流更好些,但正如人们在某些煤气化装置中发现的那样,方法向下的喷流也是可能的。
在预热室100的上部区域108中,燃料30和氧化物质20a、20b的燃烧产生高强度的热释放,同时还导致了向悬浮于该区域内的颗粒物料(如玻璃配合料)的快速热传递,通过在反应器的充分搅动区域内混和并搅动燃料和氧化物质,可以使预热室中发生燃烧,借 助于一种引火燃烧器或常用的电子点火装置,可以在预热室内点火,在优选的实施例中,高温空气预热(高于1200°F)可以由一种市场上可买到的换热器来实现,在此情况下,来自耐火材料(作反应器壁的衬里)的热辐射将使所用的各种燃料和氧化物质的混合物自动点火,在预热器100的上部区域108中,通过对流涡旋流或碰撞射流引起强力循环,从而在预热器内提供了使火焰稳定的基本手段,如果没有燃烧气体的这种强力循环,在该预热装置中由于惰性配合料或其他矿物质可能会使火焰淬火,从而使火焰熄灭,这一点对矿物质(如石灰石)是特别有用的,该矿物加热后释放出一定量的CO2。当使用低热值燃料时,还需用辅助气体喷射,独立的点火器或引火燃烧器作为在预热器内提供火焰稳定作用的一种手段。
当预热器是一种园筒形燃烧室时,主火焰和热释放将在上部区域108中产生,该区域的长度和直径比率的范围约为0.5∶1~1.5∶1,而最好是1∶1,在这个区域内,燃料和氧化物质的强力混合能使多种燃料(其中包括气体、液体、固体或液-固浆状燃料)在一定量的粉状玻璃配合料(自然情况下基本不燃烧)存在下有效地燃烧。
浆状燃料,如煤-水浆或煤-油浆既能通过利用合适的市场上可买到的或改进的喷射/雾化装置,在充分搅动/柱形流动的预热器100中直接燃烧,也可以先在旋风气化器中气化,然后将热原气体在预热室中燃烧。后一种方法能从燃料中分离出灰分,从而使煤灰对产品的污染降至最小。
在预热室100内上部区域108的下游是一个位置低一些的或或柱形流区域110,在该区域中产生了气体和固体或液体颗粒的柱形流动,同时燃料30进行最后的燃烧。所谓“柱形流”,就是说气 体的循环图形已消失,流动的主要方向与该反应器的纵轴平行,该柱形流区域110的有效长度一直径比也是约0.5∶1~1.5∶1,最好是1∶1。在该柱形流区域110内,气体物料、燃料30和氧化剂20a、20b以及带入的玻璃配合料10被加速通过预热室100的收缩部分112。从该收缩部分112出来的气体和带入的配合料不再燃烧,在平均温度超过玻璃制品熔点的条件下被输入到一个旋风式熔化室200中,在该熔化室中,经过预热的配合料无需再燃烧燃料,就沿着侧壁202发生分离,分散,混合和熔化。
加热悬浮中的配合料并将沿着预热器100的侧壁而形成的液态玻璃减至最小是本发明的目的,然而,当混合料中包括低熔点组分并作为配合料的一部分时,由于气相凝结或涡旋沉积,将会沿着预热器的侧壁形成一些液态玻璃,沿预热器侧壁形成的玻璃量与在旋风式熔化器中形成的玻璃量相比应是很少的,一般低于10%。
在旋风熔化室200的侧壁202上形成的熔化玻璃产品16和来自旋风室的热气32经过卸料管道300离开旋风熔化室200,该管道最好与旋风熔化室的侧壁相切。
为了在对流涡旋预热室100的下部柱流区域110中产生适当的柱流,需要正确地分配氧化物质进口射流20a,20b的动量,通过利用适当的常用控制阀调节进入预热器的氧化物质射流20a,20b的质量流量和进口速度,以及通过调节进口处106a、106b的大小尺寸,可以完成该分配。在对流涡旋燃烧器中,已经发现相等动量的进口射流不一定能使充分搅动区域108产生向下的柱流,所以,为了在预热器的下部区域中获得合适的柱流图形,必须对各个射流进行动量调节,在设计碰撞喷流反应器时,为了在预热器 的下部区域中获得良性柱形流(即剩余旋流最小),通常需使氧化物质的射流具有相等的动量。
如果在上部区域和下部区域中适当建立了气体流动图形,通过适当调节配合料的进口位置、进口方向、进口处配合料的速度以及各种配合料的粒度分布可以控制喷射的、离开预热室的玻璃配合料的时间-温度曲线。当对将配合料10与预热器侧壁的相互作用降至最小(例如在碎玻璃或玻璃熔块熔化过程中)的要求不高时,可以通过进口106a、106b将这些配合料与氧化物质一起送入预热器中,例如,如图3所示,可以将进口106′、106″接到进口部分106a、106b中,进口106′可用来将附加配合料10喷入该进口部分中,以喷入预热器100中,进口106″可用来将附加燃料30喷入进口部分中。在这个实施例中,循环涡流中的颗粒浓度较大,且颗粒与预热器侧壁的相互作用也较大。如果导入的物料很容易熔化且沿着反应器的侧壁形成可不断除去的液态玻璃层,那么上述颗粒与反应器侧壁的相互作用就不是一个重要的问题,然而,优选的配合料预热方法是使颗粒与预热器侧壁的相互作用降至最小。
单独把低熔点的配合料喷入到预热器100的出口区116中,或喷入到进入旋风装置200的进口204附近也是可行的,这样一个位置是在穿过收缩部分112侧壁118的进口114处。
向悬浮于燃烧预热器100中的配合料对流传热是主要的传热方式,辐射传热在该过程中的作用比在普通平炉中的要小,预热器100中的平均气体温度影响通过其中的配合料获得的最终预热温度,所以,在本发明中预热温度是另一个控制参量,预热器100的温度是靠调节燃烧配比用量,氧化剂存在量、富氧量和所用的燃料种类来控制的。 燃烧配比用量是靠调节燃料/空气的比值来控制的,这一点可以通过常用的燃料和空气流量控制技术来实现。富氧量是通过利用一个外部氧气源和利用常用的技术混合并按比例分配该过程中所用的空气和氧气量来调节的,对于本发明来说,将空气和氧气先混合后再导入预热室中,温度也可以通过使用一个辅助热源来控制(这些将在下文中讨论)。
在普通的平炉中,辅助热常常是通过电辅助加热加到熔化过程中,常用的电辅助加热手段是将一对电极浸入到炉中玻璃熔体中,在本发明中,用等离子体吹管600或电弧放电增加对玻璃熔化过程的热输入。等离子体吹管在本领域中是已知的,它是用来产生气体等离子体的装置,气体等离子体是一种已经被高度电离的气体,即大量的电子从上述气体的原子中逃离出来,使该气体导电,大部分普通型等离子体吹管既可以是迁移电弧型,也可以是非迁移电弧型。在迁移电弧设计中,等离子支承气体在一个电极(通常是阴极)和要处理的物质(也作为一种电极,通常是阳极)之间通过,热量主要靠传导,从等离子体传送到所处理的物质上。在非迁移电弧型装置中,等离子体支承气体通过自持电极(阴极和阳极),同时将热传送到上述等离子支承气体上,然后,该气体通过辐射和对流把热传送到所处理的物质上。在本发明中,对于大多数目前所想到的应用来说,非迁移等离子体吹管是优选的一种设计,其他类型的等离子体发生装置,例如利用随时间变化的磁场的无电极等离子发生器也适用于实验室中,但是,现在还不适用于商业化生产。
在如图5所示的结构中,等离子体吹管600和进口120、122一起被安装在对流涡旋预热器100的顶端102处,燃料 30和配合料10分别通过进口120、122进入预热器100中,通过将经过其间的热传送气体40加热到高于预热器中平均气体温度的温度,并将被加热气体40′喷入到预热器100中,可以使通过等离子体吹管600增热的目的得以实现,喷入的传热气体40′的温度高于在没有辅助加热时所存在的温度,通过将加热后的传热气体40′与喷入的配合料10、燃料30和氧化气流20a、20b在预热器100中混合,就可以在预热器100的上部区域108中形成较高温度的气-固悬浮体。
上述传热气体可以是空气、燃料气体或惰性气体。实际使用时,传热气体(即氧化剂、燃料或惰性气体)的性质要考虑到在预热器中产生完全燃烧的配比用量,在一些期望在预热器中保持氧化条件的运用中,传热气体一般是空气。在一些期望在预热器中保持还原条件的运用中,上述传热气体通常是一种还原剂或一种燃料气。
如果使用等离子体吹管或其他能产生高热的热源(如电弧放电)来提高燃烧预热室的温度,就没有必要通过换热器或增加氧气浓度来增加燃烧空气的预热温度,使用换热器来提高燃烧气体的温度以及用提高氧气含量的方法来使燃烧过程获得高温是常用的手段,换热量和富氧量常常受限于经济因素,由于建筑材料以及其他工程因素常常限制用换热器来获得高空气预热温度。所以,等离子发生器的使用提供了一种增加反应器温度的方法,它给燃料气体或氧化剂提供了辅助加热,而无需辅助热量回收设备或氧气储存/发生设备。在本发明中,等离子发生器并不是该过程的基本热源,它只不过用作一种过程补充或一种输入调节,因此,采用等离子体吹管时,其它的设备和方法仍和针对图2中所示设备所述的一样。
在本发明如图6所示的实施例中,包括了一种排渣气化器400,用来提供高温燃料气体403,该气体被喷入到对流预热器100的上部区域108中,该排渣气化器400与该预热器紧密相连,以便使该连接管道中的热损失降至最小,其它类型的气化器也能用,但通常它们只在较低温度下操作,热效率不高且价格较高,因此,紧密相连的排渣气化器是优选的一种气化器,但并不是该过程唯一合适的燃料气体源。排渣旋风气化器400也是优选使用的,这是因为它能以熔渣401形式除去大部分燃料灰分。
在旋风气化器400中,燃料30(典型地如粉状煤)通过一种合适的喷射部件408(如市场上可买到的煤喷射器)在该氧化器顶部406处引入。此外,最好将该预热的燃烧空气或其他氧化性物料20,通过进口409切向引入到气化器园筒400内,从而在该气化器中引起强力的旋转运动。气体在该氧化器中旋转的结果是使大多数燃料灰分以熔渣401形式、由煤中分离到该气化器的壁上,通过一种合适的熔渣收集器410将熔渣从气化器中除去,一般,仍有少量的煤灰(如低于30%)未在该旋风气化器中分离,它们随加热的燃料气体403一起被带入到配合料预热器100中。
在进入预热器100之前,原燃料气体403和灰分携带物离开气化器400,进入气化器1预热器连接部件500中,该连接部件500还含有进口502、504,用来将配合料10喷入到热原气体403中,热原气体403和配合料10在该连接部件中混合,从而产生了一种热的气-固悬浮体,该悬浮体被导入预热器100的上部区域108中,通过导管或喷嘴506(位于预热器100的纵轴上),将该气-固混合物喷入到预热器中。
连接部件500是用来使离开旋风气化器的旋转气体产生直线流动,从而使壁的传热损失降至最小,成直线流动是通过一个与旋转方向相顺的切向出口505来实现的,它还是引入配合料502、504的一个较方便的位置,也是等离子体吹管的一个可能连接点(图8)。在所有情况下,优选的配合料引入方向应和该连接部件的出口导管方向相一致。图6中所示的预热器及其操作与图2所示的实施例基本相同。
除了图6所示的本发明的实施例以外(在该实施例中有排渣气化器400),如图8所示,还可以将一种等离子体吹管600连接到连接部件500上,该连接部件500将排渣气化器400与燃烧预热器100连接在一起。也可以用电弧放电使该过程电升温,但是,它们不能与该过程紧密且方便地连接,而且很难放入结构中,等离子体吹管600可用来向经过其间的传热气体提供热能,加热的传热气体40′(即,等离子体支承气体)一般将被加热到7000°F~17000°F,而用换热器预热的空气一般其温度在1200°F~2200°F之间,该过程所能达到的最终温度主要取决于壁壳材料的承受能力。通过进口602将被等离子体吹管加热的传热气体40′导入园筒型连接部件500中,该进口602最好与连接部件500的内部成切向放置(图9),气体40′、403与配合料10一起在连接部件中混和,从而形成高温气-固悬浮体404′,该气-固悬浮体404′的温度高于在没有辅助加热源/等离子体吹管600下可能达到的温度。
图8实施例的其它部分与前面所述的相同。
图1~9所述的方法及设备主要是针对将该设备在轻度配比不足 或氧化条件下用于熔化玻璃配合料或其它矿物质而进行的。所谓氧化条件,是指氧气量高于燃料完全燃烧所需的量,因此,氧气将成为燃烧产物中的一种组分,而且在燃烧产物中几乎没有一氧化碳或氢存在。相反,还原条件是指氧气量不足以进行完全燃烧。在还原条件下,氢气和一氧化碳的比例较高,且基本上没有游离的氧存在。
玻璃熔化气氛将对玻璃熔化工艺化学产生影响,例如,燃烧配比用量影响氧化铁的氧化-还原状态,该状态又影响制得的玻璃的颜色在某些运用中,例如熔炼含金属矿石或含金属废料(如来自电弧炉的废尘)时,只要能够达到有效的还原水平,就必须在高还原条件下进行该熔化过程。在如图10-12所示的实施例中,即表示了能对含金属矿物或废料进行还原的设备,和别处一样,其中的相似部分用相似数字代表。
该还原实施例的一个目的在于较经济地由矿物或含金属废料制备铁或其它金属。适宜使用这种技术的例子有熔炼粉状矿物,从电弧炉废尘中回收金属。在本发明中,将等离子体吹管600a-c作为向该还原过程提供补充焓的一种手段,但是该还原步骤的基本能源来自煤的高温气化,以前仅用电驱动的等离子技术的尝试之所以未能成功,是因为该过程经济上不合算。
当用本发明来还原矿物或其它含金属氧化物物料时,就必须在强还原条件下,在高温下操作悬浮预热室100和旋风熔化器200,优选的还原工艺实施例应包括:一种排渣旋风气化器400,用于向悬浮预热器(现在的还原室100′)提供热还原气体,旋风熔化器200和等离子体吹管600a-c,用于向该过程加热器中提供焓增量及附加的高温还原气体。该排渣旋风气化器400仅除去约70% 引入到旋风气化器中的煤灰,因此,在该过程的金属制备步骤中,仍需使除去的熔渣还原。配比用量低于60%时,气化器的标准出口温度为2800°F~3500°F,将需还原的物料引入连接部件500中,该连接部件将气化器400和还原室100′部件相连,结果降低了还原气体的温度,然后气-固悬浮体404进入充分搅动/柱流的还原室100′中,附加的高温还原气体通过等离子体吹管600b-600c喷入到上述还原室100′中,从而向该预热部件中的气体和矿物提供附加焓,优选的还原气体是氢气和一氧化碳,它们可以通过将天然气重整而获得。
离开预热装置的气-固悬浮体的平均温度取决于要还原的物料的种类,当用于制备铁时,离开预热装置的气-固悬浮体的温度一般在2800°F以上,经预热的矿物然后进入旋风熔化器200,颗粒物料在其中沿熔化器壁202分离并沉积。
为了达到高度还原,最好将粉碎的固体碳源如焦炭或煤与矿物一起引入到连接部件500中,或者分别引入到还原室100′中,固体碳与液态矿物相互作用,从而使金属氧化物高度还原。进行铁还原时,所发生的反应可以表达成:
FeO+C=Fe+CO;H=+37084卡/摩尔。
由于一氧化碳是反应产物之一,一般可以认为用碳还原氧化铁是由一氧化碳间接进行的,且形成的二氧化碳然后又与碳反应,再次形成一氧化碳,过程如下:
FeO+CO=Fe+CO2;H=-4136卡/摩尔
C+CO2=2CO;H=+41220卡/摩尔
由于碳被CO2气化的过程是高吸热的,而且需要高温才能以一 定速率进行,所以,总反应速率受碳的气化速率控制,而碳的气化速率则取决于碳的活性,温度以及保持反应的热量的使用率,因此,用固体碳的还原速率最终将取决于热能由热源传送到反应物料上的速率,在本发明中,利用在悬浮中加热的细颗粒以及将在旋风熔化器中形成的液体层对流混和来提高总反应过程的速率。
为使金属氧化物有效还原,人们已知按下列方式定义的还原气体比(RGR)至少应为0.6或更高:
RGR=(CO+H2)/(CO+CO2+H2+H2O)
如前所述,这些实施例的基本组成部分包括:排渣旋风气化器400;连接气化器400与预热器/还原室100′的气化器/预热器连接部件500;在还原室100′出口端的旋风熔化室200;在旋风熔化室200出口端的旋风出口部件300;一个或多个辅助气体加热装置,一个与连接部件500相连的部件600a和与还原室100′相连的其它部件600b和600c。
预热器/还原熔化室100′实际上与预热室100相同,但室100′的耐火衬里将有所不同,以承受其中存在的强还原条件。
排渣旋风气化器400产生热还原气体403,该气体成为引入还原室100′的粉碎矿物或含金属废料的主要还原剂。矿物料15和附加的还原剂50、例如粉煤、粉状焦炭、液态烃类燃料或气态烃类燃料通过进口502、504引入到连接部件500中。
由于提高离开连接件500、随后进入还原室100′上部区域108的气-固悬浮体404的温度总是有利无害的,故如图10-12所示,采用了等离子体吹管600b、600c来加热还原气体,这些气体通过与还原室100′相连的进口606b、606c喷入, 这些等离子体吹管可用来在室100′中获得所需的高温(3000°F左右),为了在还原室中保持高还原条件,就没有必要象前面的实施例那样向室100′中引入其它的氧化性物料,但是,引入一些附加的还原剂则是允许的和合乎需要的,这些附加的还原剂可以通过等离子体吹管600b、600c或其它的加热手段导入并加热,并通过进口606b、606c导入还原室中,这些进口的功能与图1、2中所示的进入燃烧室的进口106a、106b的功能相似,也就是说是用来在室100′中产生一个区域,在该区域中,悬浮的液-固物料和/或其他还原剂如焦炭或煤粒被预热器中的气体补偿加热,还原室/预热器100′的结构是如图11所示的对流涡旋反应器,在这种反应器中,人们可以通过控制进入其中的质量流量和进口速度来控制室100′中上部区域108中的混合过程,正如前面对预热器100所述的。
还原室100′的另一种结构是如图10所示的相对喷流结构,其中,来自等离子体吹管600b、600c的热还原气体被向上,相互正对地喷入室100′的上部区域108中,从而使气体优选地以45°角碰撞并在上部区域108中产生充分混和的条件。45°角是优选的等离子吹管600b、600c的倾斜角,该角度的范围为30°~60°,该结构与图4中所述的结构相似。
优选的要被辅助热源600a、600b、和600c加热的还原气体包括氢气、一氧化碳、天然气或其各种混合物,天然气可以用作为燃料并作为一种还原气体。但是,直接用天然气作为等离子体吹管的还原气会因CH4的裂解而形成烟灰,而氢气和一氧化碳的混合物就没有这个问题。如果时间-温度要求确定的话,可以通过靠近室 100′出口端118导管114喷射附加的矿物物料。其它的还原剂50可以在将附加矿物物料通过进口114喷入预热器的同时加入到室100′中的悬浮体中,借助于一个适当的进口导管部件204,预热的气-固悬浮体116(由悬浮的矿物物料和加热的还原气体组成)离开室100′、进入旋风熔化室200中。和前面所述的本发明的实施例一样,预热的矿物料沿着矿物发生熔化的旋风熔化器壁202分离、分散并混和。
为了达到高度还原,有必要在熔化过程中使固体碳与熔化的矿物物料在该旋风熔化室中形成物理接触,以促进液-固还原反应,为了确保该固体碳物料适用于旋风熔化室200中,应按前面所述对导入预热器的粉状含碳物料的时间-温度曲线进行控制,优选的另一种引入固体还原剂52的位置是连接部件500上进口502、504,还原室100′的顶端处进口122,以及靠近室100′出口的进口114。

Claims (21)

1、一种熔化玻璃的方法,包括:将颗粒状玻璃生产原料、燃料、和一种氧化性气体的混合物通入一个预热室中,使燃料与氧化性气体燃烧,从而预热该玻璃生产原料,然后将该受热的混合物通入一种旋风熔化器中,在该熔化器中,玻璃生产原料被熔化并与燃烧及其它气体分离,其特征在于预热室包括垂直安置的细长型预热室,氧化性气体通过在纵向且上下安置的两个位置上的进口切向喷入预热室的上部,一个进口的气体以相反于另一进口的气流方向流动,从而在该室中至少形成两个对流涡旋区。
2、根据权利要求1的方法,所述室为圆筒形。
3、根据权利要求2所述的方法,其特征在于上述两个位置的隔开距离是该室直径的1/4~1。
4、根据权利要求1或2所述的方法,其特征在于玻璃生产原料在预热室的上部被悬浮于受热气体混合物中。
5、根据权利要求1或2所述的方法,其特征在于预热室中的温度被升高到至少与玻璃生产原料的熔化温度相等。
6、根据权利要求1所述的方法,其特征在于玻璃生产原料是沿一与预热室纵轴基本同轴的通道喷入该室上部中的。
7、根据权利要求1或2所述的方法,其特征在于使该受热混合物在进入旋风熔化器之前由该室上部通过一柱流区域,在该区域中,剩余燃料燃烧而且混合物以与该室侧壁基本平行的方向流动。
8、根据权利要求1或2所述的方法,其特征在于一种受热的传热气体被引入该预热室中,以提高其中的温度。
9、根据权利要求8所述的方法,其特征在于该传热气体被一种等离子体吹管加热。
10、根据权利要求1或2所述的方法,其特征在于该传热气体是空气、气体燃料或一种惰性气体。
11、根据权利要求1或2所述的方法,其特征在于供给预热室的燃料是气体、液体或固体状的。
12、根据权利要求11所述的方法,其特征在于该燃料被预先气化,并将形成的气体供入预热室中。
13、根据权利要求11所述的方法,其特征在于该燃料是一种会产生灰分的燃料,该燃料在一种排渣气化器中被预先气化,在该气化器中至少除去了部分灰分产生组分。
14、根据权利要求1或2所述的方法,其特征在于对喷入预热室的氧化剂的质量流量和流速加以控制,从而使玻璃生产原料在该室上部中悬浮一段时间,该时间应足以使该物料在仍保持固体状态下被加热到最高温度范围。
15、根据权利要求1或2所述的方法,其特征在于将另一种熔点比上述玻璃生产原料低的物料导入预热室较冷的下部区域中。
16、根据权利要求1的方法在氧化或还原条件下处理物料的设备,该设备包括:一种用于接受至少一种待处理的第一种物料、燃料、氧化或还原气体并能在氧化或还原条件下处理第一种物料的预热室;
位于预热室下方,用来分离经处理的第一种物料并将该物料沉积在其壁上的旋风熔化装置,其特征在于,预热室是细长型的并垂直安装,氧化剂或还原气体的切向进口装置设置在预热室壁的附近并设置成通过在两个垂直间隔位置上的进口将氧化剂或还原气体喷入上室的上部区域中,一个进口的气流方向与另一进口的气流方向相反,以使其中的混合物对流涡旋紊流。
17、根据权利要求16的设备,其特征在于,预热室是圆筒形的。
18、根据权利要求16或17的在还原条件下处理颗粒状物料的设备,该设备包括:
用于产生热还原气体的气化器;
用来接收并用该还原气处理物料的还原室;
用来加热还原气并将受热的还原气喷入还原室中的增焓装置;以及
与还原室出口相连的,用来接收热颗粒物料,熔化该物料并将液化的物料沉积在壁上的熔化装置;
其特征在于:
所述的增焓装置其结构通过在两个位置上的进口能将受热的还原气导入还原室,一个进口的气流方向与另一进口的气流方向相反,以便在混合物中产生紊流。从而,物料被迅速均匀地加热并由还原气处理。
19、根据权利要求18所述的设备,其特征在于该增焓装置包括至少两个垂直隔开的等离子发生器。
20、根据权利要求18所述的设备,其特征在于该增焓装置包括至少两个等离子发生器,该等离子发生器被设计成能以与还原室纵轴成30°~60°角的角度喷射热还原气。
21、根据权利要求18所述的设备,其特征在于它还包括一个连接气化器和还原室的连接部件,还有用于将热还原气导入该连接部件的增焓装置。
CN90102134A 1989-03-08 1990-03-08 玻璃配合料的热处理方法和设备 Expired - Fee Related CN1022233C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US320,737 1989-03-08
US07/320,737 US4957527A (en) 1989-03-08 1989-03-08 Method and apparatus for heat processing glass batch materials

Publications (2)

Publication Number Publication Date
CN1047663A CN1047663A (zh) 1990-12-12
CN1022233C true CN1022233C (zh) 1993-09-29

Family

ID=23247682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN90102134A Expired - Fee Related CN1022233C (zh) 1989-03-08 1990-03-08 玻璃配合料的热处理方法和设备

Country Status (14)

Country Link
US (1) US4957527A (zh)
EP (1) EP0460103B1 (zh)
JP (2) JP3054191B2 (zh)
KR (1) KR0147688B1 (zh)
CN (1) CN1022233C (zh)
AT (1) ATE124023T1 (zh)
AU (2) AU651063B2 (zh)
BR (1) BR9007200A (zh)
CA (1) CA2050323C (zh)
DE (1) DE69020336T2 (zh)
DK (1) DK0460103T3 (zh)
ES (1) ES2076361T3 (zh)
WO (1) WO1990010604A1 (zh)
ZA (1) ZA901739B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188649A (en) * 1991-08-07 1993-02-23 Pedro Buarque de Macedo Process for vitrifying asbestos containing waste, infectious waste, toxic materials and radioactive waste
DE4325726A1 (de) * 1993-07-30 1995-02-02 Gruenzweig & Hartmann Verfahren und Einrichtung zur Herstellung von Mineralwolle unter Verwendung von Mineralwolleabfällen als Recyclingrohstoff
US5558690A (en) * 1994-12-23 1996-09-24 Vortec Corporation Manufacture of ceramic tiles from spent aluminum potlining
DE19510874A1 (de) * 1995-03-24 1996-09-26 Gruenzweig & Hartmann Verfahren und Vorrichtung zum Erschmelzen von silikatischen Recycling-Rohstoffen
NO300510B1 (no) * 1995-04-07 1997-06-09 Kvaerner Eng Fremgangsmåte og anlegg til smelting av flyveaske til et utlutningsbestandig slagg
US5584255A (en) * 1995-06-07 1996-12-17 Proler Environmental Services, Inc. Method and apparatus for gasifying organic materials and vitrifying residual ash
US5665137A (en) * 1995-08-15 1997-09-09 Owens-Corning Fiberglas Technology, Inc. Method for controlling secondary foam during glass melting
US5678236A (en) * 1996-01-23 1997-10-14 Pedro Buarque De Macedo Method and apparatus for eliminating volatiles or airborne entrainments when vitrifying radioactive and/or hazardous waste
EP0892765A4 (en) * 1996-04-09 2000-03-15 Vortec Corp PRODUCTION OF CERAMIC TILES FROM FLYING BAGS
US5830251A (en) * 1996-04-10 1998-11-03 Vortec Corporation Manufacture of ceramic tiles from industrial waste
US5979191A (en) 1997-06-02 1999-11-09 Owens Corning Fiberglas Technology, Inc. Method and apparatus for melting of glass batch materials
RU2115182C1 (ru) * 1997-09-09 1998-07-10 Московское государственное предприятие Объединенный эколого-технологический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды Устройство для остекловывания радиоактивных отходов, содержащих ионообменные смолы
FR2770158B1 (fr) * 1997-10-27 2000-12-01 Sunnen Technologies Procede et dispositif de traitement de machefers par fusion a haute temperature
US8176754B2 (en) * 2001-06-27 2012-05-15 Rockwool International A/S Process and apparatus for making mineral fibres
FR2869896B1 (fr) * 2004-05-04 2006-07-28 Saint Gobain Isover Sa Procede et dispositif de formation de fibres minerales
EP1889816A1 (en) * 2006-08-15 2008-02-20 Rockwool International A/S Process and apparatus for making mineral fibres
EP1944272A1 (en) * 2007-01-15 2008-07-16 Rockwool International A/S Process and apparatus for making a mineral melt
US7621154B2 (en) * 2007-05-02 2009-11-24 Air Products And Chemicals, Inc. Solid fuel combustion for industrial melting with a slagging combustor
EP2078704A1 (en) 2008-01-14 2009-07-15 Rockwool International A/S Process and device for making mineral fibres
EP2105415A1 (en) 2008-03-27 2009-09-30 Rockwool International A/S Process and apparatus for making a mineral melt
US7854908B2 (en) 2008-08-20 2010-12-21 Hnat James G Method and apparatus for the recovery of molybdenum from spent catalysts
US20110268643A1 (en) * 2008-10-09 2011-11-03 Leblanc Johon R Production of Silicon
CN102039070A (zh) * 2010-05-04 2011-05-04 陈志伟 分离高温气体携带的熔化状态粉尘的方法、设备和应用
DE102010025365B3 (de) * 2010-06-28 2011-06-16 Beteiligungen Sorg Gmbh & Co. Kg Vorrichtung zum Trocknen und Vorwärmen von partikelförmigem Beschickungsgut
KR101223237B1 (ko) * 2010-11-22 2013-01-17 한국에너지기술연구원 플라즈마/가스 연소 융합을 이용한 저탄소형 기중 용해로, 이를 이용한 용융방법 및 이를 이용한 소재 제조방법
CN102206514B (zh) * 2011-04-15 2013-09-11 哈尔滨工业大学 两段式生物质旋风高温热解气化炉
WO2014057127A1 (en) * 2012-10-12 2014-04-17 Rockwool International A/S Process and apparatus for forming man-made vitreous fibres
FR3025732B1 (fr) * 2014-09-15 2019-05-31 Pyro Green Innovations Procede et installation de vitrification en continu de materiaux fibreux
US11512260B2 (en) 2018-06-11 2022-11-29 Donald Gene Taylor Pulse detonation shockwave gasifier
JP2021075410A (ja) * 2019-11-06 2021-05-20 日本電気硝子株式会社 ガラス板及びガラス板の製造方法
CN115557667B (zh) * 2021-07-02 2024-06-07 南京鼎日新材料有限公司 一种玻璃纤维熔融拉丝用的预热加料装置
CN114425553A (zh) * 2022-01-17 2022-05-03 陕西东鑫垣化工有限责任公司 一种氢氧化镁固废的提纯精制方法及搅拌干燥设备
CN115093063A (zh) * 2022-08-04 2022-09-23 贾思宇 一种环保型污水处理用氧化催化装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2006947A (en) * 1930-06-14 1935-07-02 Ferguson John Centrifugal glass-melting furnace
US2878110A (en) * 1949-02-12 1959-03-17 Basf Ag Production of fuel gases from granular to pulverulent fuels
US2958161A (en) * 1957-08-13 1960-11-01 Delos M Palmer Method of melting glass
US3077094A (en) * 1957-09-10 1963-02-12 Piikington Brothers Ltd Melting of glass batch
FR1375847A (fr) * 1963-08-22 1964-10-23 Saint Gobain Perfectionnements à la fusion du verre
GB1214671A (en) * 1968-02-07 1970-12-02 Robert Julian Hansford A construction process and apparatus therefor
US3563722A (en) * 1968-04-17 1971-02-16 Jury Vasilievich Troyankin Glass-melting furnace
US3748113A (en) * 1970-12-29 1973-07-24 Tokyo Shibaura Electric Co Glass melting apparatus
US4533997A (en) * 1972-08-25 1985-08-06 Westinghouse Electric Corp. Computer monitored or controlled system which may be modified and de-bugged on-line by one not skilled in computer programming
US4135904A (en) * 1976-11-15 1979-01-23 Kawasaki Jukogyo Kabushiki Kaisha Premelting method for raw materials for glass and apparatus relevant thereto
US4535997A (en) * 1983-06-24 1985-08-20 Brust John E Sealing system
US4553997A (en) * 1984-03-05 1985-11-19 Hnat James G Process for melting glass in a toroidal vortex reactor
US4544394A (en) * 1984-03-05 1985-10-01 Hnat James G Vortex process for melting glass
US4631080A (en) * 1985-10-04 1986-12-23 Gas Research Institute Method and apparatus for the heat processing of glass and glass forming material
SE8802890D0 (sv) * 1988-08-12 1988-08-12 Harry Ericsson Sett och anordning for smeltning av smeltbart material

Also Published As

Publication number Publication date
ZA901739B (en) 1991-11-27
AU5271190A (en) 1990-10-09
CA2050323C (en) 1996-08-20
WO1990010604A1 (en) 1990-09-20
ATE124023T1 (de) 1995-07-15
JP3180911B2 (ja) 2001-07-03
ES2076361T3 (es) 1995-11-01
JPH04503940A (ja) 1992-07-16
DK0460103T3 (da) 1995-11-20
BR9007200A (pt) 1992-02-18
EP0460103B1 (en) 1995-06-21
KR920701056A (ko) 1992-08-11
US4957527A (en) 1990-09-18
JP2000093783A (ja) 2000-04-04
AU677862B2 (en) 1997-05-08
CN1047663A (zh) 1990-12-12
JP3054191B2 (ja) 2000-06-19
AU651063B2 (en) 1994-07-14
KR0147688B1 (ko) 1998-08-17
CA2050323A1 (en) 1990-09-09
AU7585094A (en) 1995-01-05
DE69020336D1 (de) 1995-07-27
DE69020336T2 (de) 1996-02-29
EP0460103A1 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
CN1022233C (zh) 玻璃配合料的热处理方法和设备
US8574475B2 (en) Process of and apparatus for making mineral fibers
US10040712B2 (en) Process and apparatus for making a mineral melt
JP5574708B2 (ja) 鉱物繊維の製造方法及び製造装置
JP4456861B2 (ja) 鉱物繊維の製造方法および製造装置
US5114122A (en) Apparatus for heat processing glass batch materials
CA2858438C (en) A method for recycling material when making a mineral melt
CA2809898A1 (en) An apparatus and method for making a mineral melt
EP3230217A1 (en) Process and apparatus for making a mineral melt

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee