CN102218542A - 一种纳米金的制备方法 - Google Patents

一种纳米金的制备方法 Download PDF

Info

Publication number
CN102218542A
CN102218542A CN 201110122832 CN201110122832A CN102218542A CN 102218542 A CN102218542 A CN 102218542A CN 201110122832 CN201110122832 CN 201110122832 CN 201110122832 A CN201110122832 A CN 201110122832A CN 102218542 A CN102218542 A CN 102218542A
Authority
CN
China
Prior art keywords
preparation
gold
nanogold
solution
polyethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110122832
Other languages
English (en)
Other versions
CN102218542B (zh
Inventor
杨辉
杨改
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyuxin fiber technology (Suzhou) Co.,Ltd.
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN 201110122832 priority Critical patent/CN102218542B/zh
Publication of CN102218542A publication Critical patent/CN102218542A/zh
Application granted granted Critical
Publication of CN102218542B publication Critical patent/CN102218542B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种纳米金的制备方法,采用加热均匀沉淀和高温热分解相结合的方法制备纳米金以水为溶剂,AuCl3.HCl.4H2O为原料,CO(NH2)2为添加剂,聚乙二醇为分散剂制备纳米金,合成体系为单一水相,相对于其它制备技术,本发明不需要添加絮凝剂,采用的设备及工艺更为简单、易于操作、易于工业化生产、产率高,结晶好,所得纳米金粒径均匀,粒径大小为20~30nm的晶体,制备过程中产生的废水是NH4Cl和聚乙二醇溶液,聚乙二醇对生物植物没有毒害作用,所得废水可作为化肥灌溉农田使用,整个生产过程可达到洁净和绿色环保的要求。该方法亦可推广到其它纳米贵金属粒子如纳米银、铂、铜等的制备。

Description

一种纳米金的制备方法
技术领域
本发明属于光、电学,生物材料和纳米材料等技术领域,具体涉及一种纳米金的制备方法。
背景技术
纳米金具有优异的导电性、良好的稳定性以及小尺寸效应、表面效应、光学效应及催化特性等,使它在光学探针、电化学探针、传感器、DNA检测葡萄糖传感器、植物保护、药物传递及表面增强拉曼散射等方面得到了应用(1、殷焕顺,艾仕云,汪建民.制备金纳米粒子的研究进展[J].材料研究与应用,2007,1(4):277-280;2、魏春萍,陈中芹,徐小华.金纳米粒子的制备及其在生化分析中的应用[J].内蒙古石油化工,2008(16):16-17;3、Hussain I,Graham S,Brust M,etal.J.Am.Chem.Soc.2005,127:16398-16399;4、谭碧生,曹晓红,莫志宏.金纳米粒子的制备方法及在DNA检测中的应用[J].重庆大学学报,2003,26(4):58-62;5、孙双姣,蒋治良.金纳米微粒的制备和表征及其在生化分析的应用[J].贵金属,2005,26(3):55-65;6、赫丽娜,刘帅,孙瑾.纳米金溶胶的制备与应用研究[J].科技信息,2009(13):30-31;7、吕秉峰,李国平,罗运军.金纳米颗粒的水相法合成及荧光性能[J].高等学校化学学报,2010,31(8):1502-1505),其制备是目前人们研究的热点之一。
纳米金的制备方法主要有:物理法和化学法。其中,物理法主要有真空蒸镀法、软着陆法、电分散法和激光消融法等(余琴仙,李涛,李竟先.纳米材料的制备表征及应用研究进展[J].中国陶瓷工业,2002,9(6):56-59)。物理方法原理简单,所得产品杂质少、质量高,其缺点是对仪器设备要求较高、生产费用昂贵,主要适用于对纳米金粒子的尺寸和形状要求都不高的产业化制备。化学法主要有氧化还原法(李自静,董守安.一种尺寸均匀的金纳米粒子制备及表征[J].纳米科技,2010,7(3):49-51)、电化学法(李亚宁,张文彦,李广忠.脱合金法制备纳米多孔金研究进展[J].纳米加工工艺,2008,5(5):50-54)、晶种法、溶胶法(余琴仙,李涛,李竟先.纳米材料的制备表征及应用研究进展[J].中国陶瓷工业,2002,9(6):56-59)、微乳液法、相转移法、模板法(李巧铃,陈辉.金纳米粒子的制备及自组装[J].功能材料与器件学报,2007,13(6):580-587)、微波法(黄国波.绿色纳米合成技术在纳米技术研究中的应用[J].浙江化工,2008,39(4):8-12)和光化学法等。化学制备的金粒子最小可达几纳米,操作简单,容易控制,缺点是得到的金粒子不易转移和组装,容易包含杂质,而且易发生聚集,主要适用于对纳米金粒子性能要求较高的光学、电学和生物医学等领域。以上化学制备法在制备中往往需要添加多种分散剂,稳定剂或絮凝剂(1、黄德欢.制备纳米金溶液的方法[P].中国发明专利.200410089252.2007-3-7;2、昆明贵金属研究所.纳米金粒子材料制备方法[P].中国发明专利.200310104170.2005-9-21;3、中国科学院大连化学物理研究所.一种纳米贵金属的制备方法[P].中国发明专利.02124740.2004-12-22),成本较高,耗时长。
发明内容
本发明的目的在于提供一种不需要添加絮凝剂,所用原料为环境友好试剂,绿色环保,操作简单,所得纳米金粒径均匀的纳米金的制备方法。
为达到上述目的,本发明采用的技术方案是:
1)将氯金酸晶体溶解于蒸馏水中配制成100mL浓度为0.001mol/L的氯金酸溶液,然后再向氯金酸溶液中加入1-2g的尿素搅拌使其溶解,同时加10~50ml的聚乙二醇400搅拌均匀得到混合溶液;
2)将上述混合溶液置于烧杯中,避光的状态下边搅拌边加热,搅拌速度2000r/min,溶液中Au3+均匀沉淀,持续加热使部分溶剂蒸发,然后把混合物在6000r/min条件下离心,收集沉淀物用蒸馏水多次冲洗,将得到的混合物放入烘箱中在100~150℃下干燥;
3)将上述干燥混合物置于研钵中研磨,研碎后放入坩埚中在马弗炉中于280℃灼烧3h,然后随炉自然冷却至室温,研磨后得到尺寸为20~30nm的纳米金晶体。
本发明采用加热均匀沉淀和高温热分解相结合的方法制备纳米金以水为溶剂,(AuCl3.HCl.4H2O)为原料,(CO(NH2)2)为添加剂,聚乙二醇为分散剂制备纳米金,合成体系为单一水相,相对于其它制备技术,本发明不需要添加絮凝剂,采用的设备及工艺更为简单、易于操作、易于工业化生产、产率高,结晶好,所得纳米金粒径均匀,为20~30nm的纳米晶体,制备过程中产生的废水是NH4Cl和聚乙二醇溶液,聚乙二醇对生物植物没有毒害作用,所得废水可作为化肥灌溉农田使用,整个生产过程可达到洁净和绿色环保的要求。该方法亦可推广到其它纳米贵金属粒子(如纳米银、铂等)的制备。
附图说明
图1是本发明实施例1制备的纳米金晶体的X-射线衍射谱。
具体实施方式
实施例1:
1)将氯金酸晶体溶解于蒸馏水中配制成100mL浓度为0.001mol/L的氯金酸溶液,然后再向氯金酸溶液中加入1g的尿素搅拌使其溶解,同时加10ml的聚乙二醇400搅拌均匀得到混合溶液;
2)将上述混合溶液置于烧杯中,避光的状态下边搅拌边加热,搅拌速度2000r/min,溶液中Au3+均匀沉淀,持续加热使部分溶剂蒸发,然后把混合物在6000r/min条件下离心,收集沉淀物用蒸馏水多次冲洗,将得到的混合物放入烘箱中在100℃下干燥;
3)将上述干燥混合物置于研钵中研磨,研碎后放入坩埚中在马弗炉中于280℃灼烧3h,然后随炉自然冷却至室温,研磨后得到尺寸为27.9nm的纳米金晶体。本实施例所得纳米金晶体的X-射线衍射谱如图1所示,与JCPDS标准卡对照,各个衍射峰对应良好,衍射谱中没有出现杂峰,与金标准图谱吻合良好,所得晶体为高纯度的纳米金晶体。以(111)晶面(2-Theta=38.100)为基础用Sherri公式计算,晶粒尺寸为27.9nm。表明所得样品为纯纳米金晶体。
实施例2:
1)将氯金酸晶体溶解于蒸馏水中配制成100mL浓度为0.001mol/L的氯金酸溶液,然后再向氯金酸溶液中加入2g的尿素搅拌使其溶解,同时加50ml的聚乙二醇400搅拌均匀得到混合溶液;
2)将上述混合溶液置于烧杯中,避光的状态下边搅拌边加热,搅拌速度2000r/min,溶液中Au3+均匀沉淀,持续加热使部分溶剂蒸发,然后把混合物在6000r/min条件下离心,收集沉淀物用蒸馏水多次冲洗,将得到的混合物放入烘箱中在120℃下干燥;
3)将上述干燥混合物置于研钵中研磨,研碎后放入坩埚中在马弗炉中于280℃灼烧3h,然后随炉自然冷却至室温,研磨后得到尺寸为20~30nm的纳米金晶体。
实施例3:
1)将氯金酸晶体溶解于蒸馏水中配制成100mL浓度为0.001mol/L的氯金酸溶液,然后再向氯金酸溶液中加入1.5g的尿素搅拌使其溶解,同时加30ml的聚乙二醇400搅拌均匀得到混合溶液;
2)将上述混合溶液置于烧杯中,避光的状态下边搅拌边加热,搅拌速度2000r/min,溶液中Au3+均匀沉淀,持续加热使部分溶剂蒸发,然后把混合物在6000r/min条件下离心,收集沉淀物用蒸馏水多次冲洗,将得到的混合物放入烘箱中在140℃下干燥;
3)将上述干燥混合物置于研钵中研磨,研碎后放入坩埚中在马弗炉中于280℃灼烧3h,然后随炉自然冷却至室温,研磨后得到尺寸为20~30nm的纳米金晶体。
实施例4:
1)将氯金酸晶体溶解于蒸馏水中配制成100mL浓度为0.001mol/L的氯金酸溶液,然后再向氯金酸溶液中加入1.3g的尿素搅拌使其溶解,同时加20ml的聚乙二醇400搅拌均匀得到混合溶液;
2)将上述混合溶液置于烧杯中,避光的状态下边搅拌边加热,搅拌速度2000r/min,溶液中Au3+均匀沉淀,持续加热使部分溶剂蒸发,然后把混合物在6000r/min条件下离心,收集沉淀物用蒸馏水多次冲洗,将得到的混合物放入烘箱中在130℃下干燥;
3)将上述干燥混合物置于研钵中研磨,研碎后放入坩埚中在马弗炉中于280℃灼烧3h,然后随炉自然冷却至室温,研磨后得到尺寸为20~30nm的纳米金晶体。
实施例5:
1)将氯金酸晶体溶解于蒸馏水中配制成100mL浓度为0.001mol/L的氯金酸溶液,然后再向氯金酸溶液中加入1.8g的尿素搅拌使其溶解,同时加40ml的聚乙二醇400搅拌均匀得到混合溶液;
2)将上述混合溶液置于烧杯中,避光的状态下边搅拌边加热,搅拌速度2000r/min,溶液中Au3+均匀沉淀,持续加热使部分溶剂蒸发,然后把混合物在6000r/min条件下离心,收集沉淀物用蒸馏水多次冲洗,将得到的混合物放入烘箱中在150℃下干燥;
3)将上述干燥混合物置于研钵中研磨,研碎后放入坩埚中在马弗炉中于280℃灼烧3h,然后随炉自然冷却至室温,研磨后得到尺寸为20~30nm的纳米金晶体。

Claims (1)

1.一种纳米金的制备方法,其特征在于:
首先,将氯金酸晶体溶解于蒸馏水中配制100mL浓度为0.001mol/L的氯金酸溶液,然后再向氯金酸溶液中加入1-2g的尿素搅拌使其溶解,同时加10~50ml的聚乙二醇400搅拌均匀得到混合溶液;
其次,将上述混合溶液置于烧杯中,避光的状态下边搅拌边加热,搅拌速度2000r/min,溶液中Au3+均匀沉淀,持续加热使部分溶剂蒸发,然后把混合物在6000r/min条件下离心,收集沉淀物用蒸馏水多次冲洗,将得到的混合物放入烘箱中在100~150℃下干燥;
最后,将上述干燥混合物置于研钵中研磨,研碎后放入坩埚中在马弗炉中于280℃灼烧3h,然后随炉自然冷却至室温,研磨后得到尺寸为20~30nm的纳米金晶体。
CN 201110122832 2011-05-12 2011-05-12 一种纳米金的制备方法 Expired - Fee Related CN102218542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110122832 CN102218542B (zh) 2011-05-12 2011-05-12 一种纳米金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110122832 CN102218542B (zh) 2011-05-12 2011-05-12 一种纳米金的制备方法

Publications (2)

Publication Number Publication Date
CN102218542A true CN102218542A (zh) 2011-10-19
CN102218542B CN102218542B (zh) 2013-04-10

Family

ID=44775383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110122832 Expired - Fee Related CN102218542B (zh) 2011-05-12 2011-05-12 一种纳米金的制备方法

Country Status (1)

Country Link
CN (1) CN102218542B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407345A (zh) * 2011-11-18 2012-04-11 江西农业大学 一种制备有孔金微米片的方法
CN103418800A (zh) * 2013-07-19 2013-12-04 长沙铂鲨环保设备有限公司 一种纳米金的制备方法
CN108210515A (zh) * 2018-01-18 2018-06-29 南京林业大学 一种新型纳米金复合抗菌剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806972A (zh) * 2005-01-19 2006-07-26 中国科学院化学研究所 纳米金超微粒子粉末的制备方法
CN101077528A (zh) * 2006-05-26 2007-11-28 徐健宏 超微细纳米贵重金属溶液的制造方法
CN101658944A (zh) * 2009-09-18 2010-03-03 陕西科技大学 一种纳米银的制备方法
WO2010031890A1 (es) * 2008-09-22 2010-03-25 Consejo Superior De Investigaciones Científicas (Csic) Síntesis de partículas subnanometricas de au catalíticas soportadas en superficies con grupos amino
CN101934379A (zh) * 2010-10-13 2011-01-05 中南大学 一种纳米金粒子的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806972A (zh) * 2005-01-19 2006-07-26 中国科学院化学研究所 纳米金超微粒子粉末的制备方法
CN101077528A (zh) * 2006-05-26 2007-11-28 徐健宏 超微细纳米贵重金属溶液的制造方法
WO2010031890A1 (es) * 2008-09-22 2010-03-25 Consejo Superior De Investigaciones Científicas (Csic) Síntesis de partículas subnanometricas de au catalíticas soportadas en superficies con grupos amino
CN101658944A (zh) * 2009-09-18 2010-03-03 陕西科技大学 一种纳米银的制备方法
CN101934379A (zh) * 2010-10-13 2011-01-05 中南大学 一种纳米金粒子的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407345A (zh) * 2011-11-18 2012-04-11 江西农业大学 一种制备有孔金微米片的方法
CN102407345B (zh) * 2011-11-18 2013-08-07 江西农业大学 一种制备有孔金微米片的方法
CN103418800A (zh) * 2013-07-19 2013-12-04 长沙铂鲨环保设备有限公司 一种纳米金的制备方法
CN103418800B (zh) * 2013-07-19 2016-06-29 长沙铂鲨环保设备有限公司 一种纳米金的制备方法
CN108210515A (zh) * 2018-01-18 2018-06-29 南京林业大学 一种新型纳米金复合抗菌剂及其制备方法

Also Published As

Publication number Publication date
CN102218542B (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
Tan et al. Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method
Cao et al. Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance
Jia et al. Highly uniform Gd (OH) 3 and Gd2O3: Eu3+ nanotubes: facile synthesis and luminescence properties
Wang et al. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers
Chakraborty et al. Room temperature chemical synthesis of flower-like ZnO nanostructures
Liu et al. Semiconductor rings fabricated by self-assembly of nanocrystals
Liang et al. ZnMoO4 micro-and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties
Luo et al. Facile synthesis and luminescent properties of novel flowerlike BaMoO4 nanostructures by a simple hydrothermal route
Zhao et al. Fabrication of electrospun Bi2WO6 microbelts with enhanced visible photocatalytic degradation activity
Chen et al. Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties
Tian et al. N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange
CN103466702B (zh) 一种无模板制备多孔氧化铋纳米材料的方法
Huang et al. Preparation of highly dispersed and small-sized ZnO nanoparticles in a membrane dispersion microreactor and their photocatalytic degradation
Li et al. Growth and characterization of single-crystal Y2O3: Eu nanobelts prepared with a simple technique
CN105032397A (zh) 一种利用淀粉自蔓延燃烧合成钒酸铋光催化剂的方法
Song et al. Controllable synthesis of hexagonal, bullet-like ZnO microstructures and nanorod arrays and their photocatalytic property
Musić et al. Formation of hollow ZnO particles by simple hydrolysis of zinc acetylacetonate
CN102218542B (zh) 一种纳米金的制备方法
CN101786661B (zh) 一种硫化锑纳米棒的制备方法
Sarkar et al. Visible light photocatalysis and electron emission from porous hollow spherical BiVO4 nanostructures synthesized by a novel route
Wang et al. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties
Mosleh et al. Sonochemical synthesis and characterization of cerium vanadate nanoparticles and investigation of its photocatalyst application
Bouddouch et al. Photocatalytic and photoluminescent properties of a system based on SmPO4 nanostructure phase
CN102990083B (zh) 银纳米颗粒薄膜的制备方法
Huang et al. Controllable assembly of aligned ZnO nanowires/belts arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201201

Address after: 215400 Taicang Economic Development Zone, Jiangsu, Beijing West Road, No. 6, No.

Patentee after: Longyuxin fiber technology (Suzhou) Co.,Ltd.

Address before: 710021 Shaanxi province Xi'an Weiyang University Park

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130410