CN102212616A - 氧化石墨烯与有机染料合成的纳米复合材料的制备方法 - Google Patents
氧化石墨烯与有机染料合成的纳米复合材料的制备方法 Download PDFInfo
- Publication number
- CN102212616A CN102212616A CN2011101065419A CN201110106541A CN102212616A CN 102212616 A CN102212616 A CN 102212616A CN 2011101065419 A CN2011101065419 A CN 2011101065419A CN 201110106541 A CN201110106541 A CN 201110106541A CN 102212616 A CN102212616 A CN 102212616A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- organic dye
- graphite
- oxide
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 52
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 230000002194 synthesizing effect Effects 0.000 title abstract description 3
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 28
- 239000010439 graphite Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims abstract description 6
- 238000000502 dialysis Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 26
- 239000000975 dye Substances 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 17
- 239000000047 product Substances 0.000 claims description 15
- 239000006185 dispersion Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical group Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 claims description 6
- 238000005352 clarification Methods 0.000 claims description 5
- 239000012065 filter cake Substances 0.000 claims description 5
- 239000005457 ice water Substances 0.000 claims description 5
- 230000007935 neutral effect Effects 0.000 claims description 5
- 239000000376 reactant Substances 0.000 claims description 5
- 229940001516 sodium nitrate Drugs 0.000 claims description 5
- 235000010344 sodium nitrate Nutrition 0.000 claims description 5
- 239000004317 sodium nitrate Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000000967 suction filtration Methods 0.000 claims description 5
- 238000010792 warming Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- ZXJXZNDDNMQXFV-UHFFFAOYSA-M crystal violet Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1[C+](C=1C=CC(=CC=1)N(C)C)C1=CC=C(N(C)C)C=C1 ZXJXZNDDNMQXFV-UHFFFAOYSA-M 0.000 claims description 4
- 238000010790 dilution Methods 0.000 claims description 4
- 239000012895 dilution Substances 0.000 claims description 4
- 238000000643 oven drying Methods 0.000 claims description 4
- 239000012286 potassium permanganate Substances 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 235000017550 sodium carbonate Nutrition 0.000 claims description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 4
- 238000012377 drug delivery Methods 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000003912 environmental pollution Methods 0.000 abstract description 2
- 238000012984 biological imaging Methods 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了氧化石墨烯与有机染料合成纳米复合材料的制备方法,本方法包括如下步骤:1)由石墨制备氧化石墨;2)由氧化石墨制备氧化石墨烯;3)将氧化石墨烯与一种有机染料反应,得到纳米复合材料,该纳米复合材料可储存荧光并用于DNA的检测。本法合成氧化石墨烯/有机染料纳米复合材料具有操作简单、原料易得、合成安全性高以及环境污染小等优点,为基于氧化石墨烯的纳米复合材料开辟了新的发展前景,可用于溶液中目标目标目标物的检测、药物传递和生物成像等领域。
Description
技术领域:
本发明涉及氧化石墨烯/有机染料纳米复合材料的制备新方法,属于氧化石墨烯纳米复合材料制备的技术领域。
背景技术:
石墨烯(Graphene)是由单层碳原子紧密排列而成的二维晶体,其优异的电子传递性能、较高的机械强度特性使石墨烯成为纳米电子器件、太阳能电池、生物传感器等方面应用的新贵。而且石墨烯具有质量轻;导热性好;比表面积大;价格低廉,原料易得等优点,因而具有广阔的研究前景。
氧化石墨烯(Graphene Oxide,GO)即功能化的石墨烯,是石墨烯的一种重要衍生物,结构与石墨烯类似,是在构成的二维空间无限延伸基面上连有羰基、羟基、羧基等官能团的一层碳原子。氧化石墨烯表面的含氧官能团不仅赋予了氧化石墨烯的亲水性;同时赋予其分散性、兼容性等一些新特性。这些特性为基于氧化石墨烯的纳米复合材料用于目标物的检测、药物传递和生物成像等领域提供了可能。
目前合成纳米复合材料的方法包括共价偶联和静电自组装。共价偶联法虽然结合牢固,但是反应需要加入偶联剂,操作麻烦。而静电自组装就是在平衡条件下,分子间通过非共价相互作用自发组合形成一类结构明确、具有某种特定功能分子聚集体或超分子结构物质的方法。用这一方法可得到具有新奇的光、电、催化等功能的自主装材料。
发明内容:
本发明的目的针对现有技术所存在的问题和不足,本发明旨在提供一种简单易行的氧化石墨烯与有机染料合成的纳米复合材料的制备方法,通过改进Hummers法合成氧化石墨烯。该方法具有操作简单,反应时间短,氧化程度高,安全性较高,对环境的污染较小的优点,且所用仪器设备均为普通设备,如:带热源的搅拌器、三颈瓶、回流冷凝管、透析袋、超声清洗仪、温度计和离心机等。然后通过静电自组装方法合成氧化石墨烯/有机染料纳米复合材料,形成稳定的、分散性良好的纳米复合材料,为基于氧化石墨烯的纳米复合材料开辟了新的发展前景,可用于溶液中目标物的检测、药物传递和生物成像等领域。
氧化石墨烯与有机染色料合成的纳米复合材料的制备方法,其特征在于包括如下步骤:
1)由石墨制备氧化石墨:将0.5-2g石墨、0.2-3g硝酸钠与23mL的质量浓度为60-98%的浓硫酸混合搅拌,加入3-8g KMnO4,冰水浴反应2-5h,将其转移至35℃水浴逐步加入50mLH20反应0.5-4h,升温至98℃继续反应0.2-2h,反应物由棕褐色变成亮黄色;进一步加70-250mL水稀释,并用质量浓度为30%的H2O2中和过量的KMnO4;将上述溶液趁热抽滤,滤饼用质量浓度为5% HCl溶液中洗涤,再将其放入透析袋中,透析至中性,将透析产物放入80℃烘箱中干燥待用;
2)用超声剥离法将氧化石墨制备氧化石墨烯:将20-200mg氧化石墨溶于10-100mL H20中,用功率为50-100W的超声处理1-8小时至澄清,得到氧化石墨烯的分散液;
3)氧化石墨烯与有机染料合成的纳米复合材料的制备:取2-20mL步骤2)得到的氧化石墨烯的分散液,滴加质量浓度为2% Na2CO3至pH=9-12,超声混溶;将溶液置于透析袋中透析,至pH为7,除去过量的Na2CO3;将透析产物与30mL摩尔浓度为1-15毫摩尔/升有机染料超声反应0.5-4h;然后将其放入透析袋中透析两周,除去过量的染料,产品置于80℃烘箱中干燥得到纳米复合材料。
所述步骤3)中,有机染料为罗丹明6G、甲基紫或荧光素。
本发明的纳米复合材料可储存荧光并用于DNA的检测。本法合成氧化石墨烯与有机染料合成的纳米复合材料具有操作简单、原料易得、合成安全性高以及环境污染小等优点,为基于氧化石墨烯的纳米复合材料开辟了新的发展前景,可用于溶液中目标目标目标物的检测、药物传递和生物成像等领域。
附图说明:
图1为氧化石墨烯的原子力显微镜图。
图2为氧化石墨烯的高度轮廓图。
图3为氧化石墨烯的X-射线衍射图。
图4为氧化石墨烯的红外图。
图5为氧化石墨烯/有机染料纳米复合材料的吸收光谱图。
具体实施方式:
下面结合具体实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1:
1)由石墨制备氧化石墨:将1g石墨、0.5g硝酸钠与23mL的质量浓度为98%的浓硫酸混合搅拌,加入3g KMnO4,冰水浴反应2h,将其转移至35℃水浴逐步加入50mLH2O反应0.5h,升温至98℃继续反应0.2h,反应物由棕褐色变成亮黄色;进一步加100mL水稀释,并用质量浓度为30%的H2O2中和过量的KMnO4;将上述溶液趁热抽滤,滤饼用质量浓度为5%HCl溶液中洗涤,再将其放入透析袋中,透析至中性,将透析产物放入80℃烘箱中干燥待用;
2)用超声剥离法将氧化石墨制备氧化石墨烯:将100mg氧化石墨溶于30mLH2O中,用功率为70W的超声处理1小时至澄清,得到氧化石墨烯的分散液;
3)氧化石墨烯与有机染料合成的纳米复合材料的制备:取10mL步骤2)得到的氧化石墨烯的分散液,滴加质量浓度为2% Na2CO3至pH=11,超声混溶;将溶液置于透析袋中透析,至pH为7,除去过量的Na2CO3;将透析产物与30mL摩尔浓度为3毫摩尔/升罗丹明6G染料超声反应1h;然后将其放入透析袋中透析两周,除去过量的罗丹明6G染料,产品置于80℃烘箱中干燥得到纳米复合材料。
实施例2:
1)由石墨制备氧化石墨:将0.5g石墨、0.2g硝酸钠与23mL的质量浓度为60%的浓硫酸混合搅拌,加入5g KMnO4,冰水浴反应3h,将其转移至35℃水浴逐步加入50mLH2O反应2h,升温至98℃继续反应1h,反应物由棕褐色变成亮黄色;进一步加150m的水稀释,并用质量浓度为30%的H2O2中和过量的KMnO4;将上述溶液趁热抽滤,滤饼用质量浓度为5%HCl溶液中洗涤,再将其放入透析袋中,透析至中性,将透析产物放入80℃烘箱中干燥待用;
2)用超声剥离法将氧化石墨制备氧化石墨烯:将20mg氧化石墨溶于30mLH20中,用功率为60W的超声处理3小时至澄清,得到氧化石墨烯的分散液;
3)氧化石墨烯/有机染料纳米复合材料的制备:取2mL步骤2)得到的氧化石墨烯的分散液,滴加质量浓度为2% Na2CO3至pH=9,超声混溶;将溶液置于透析袋中透析,至pH为7,除去过量的Na2CO3;将透析产物与30mL摩尔浓度为7毫摩尔/升甲基紫染料超声反应2h;然后将其放入透析袋中透析两周,除去过量的甲基紫染料,产品置于80℃烘箱中干燥即得到纳米复合材料。
实施例3:
1)由石墨制备氧化石墨:将2g石墨、3g硝酸钠与23mL的质量浓度为80%的浓硫酸混合搅拌,缓慢加入8g KMnO4,冰水浴反应4h,将其转移至35℃水浴逐步加入50mLH2O反应4h,升温至98℃继续反应1.5h,反应物由棕褐色变成亮黄色;进一步力20mL的水稀释,并用质量浓度为30%的H2O2中和过量的KMnO4;将上述溶液趁热抽滤,滤饼用质量浓度为5% HCl溶液中洗涤,再将其放入透析袋中,透析至中性,将透析产物放入80℃烘箱中干燥待用;
2)用超声剥离法将氧化石墨制备氧化石墨烯:将200mg氧化石墨溶于30mLH2O中,用功率为90W的超声处理7小时至澄清,得到氧化石墨烯的分散液;
3)氧化石墨烯/有机染料纳米复合材料的制备:取20mL步骤2)得到的氧化石墨烯的分散液,滴加质量浓度为2% Na2CO3至pH=13,超声混溶;将溶液置于透析袋中透析,至pH为7,除去过量的Na2CO3;将透析产物与30mL摩尔浓度为12毫摩尔/升罗丹明6G染料超声反应4h;然后将其放入透析袋中透析两周,除去过量的罗丹明6G染料,产品置于80℃烘箱中干燥得到纳米复合材料。
Claims (2)
1.氧化石墨烯与有机染色料合成的纳米复合材料的制备方法,其特征在于包括如下步骤:
1)由石墨制备氧化石墨:将0.5-2g石墨、0.2-3g硝酸钠与23mL的质量浓度为60-98%的浓硫酸混合搅拌,加入3-8g KMnO4,冰水浴反应2-5h,将其转移至35℃水浴逐步加入50mLH20反应0.5-4h,升温至98℃继续反应0.2-2h,反应物由棕褐色变成亮黄色;进一步加70-250mL水稀释,并用质量浓度为30%的H2O2中和过量的KMnO4;将上述溶液趁热抽滤,滤饼用质量浓度为5% HCl溶液中洗涤,再将其放入透析袋中,透析至中性,将透析产物放入80℃烘箱中干燥待用;
2)用超声剥离法将氧化石墨制备氧化石墨烯:将20-200mg氧化石墨溶于10-100mL H20中,用功率为50-100W的超声处理1-8小时至澄清,得到氧化石墨烯的分散液;
3)氧化石墨烯与有机染料合成的纳米复合材料的制备:取2-20mL步骤2)得到的氧化石墨烯的分散液,滴加质量浓度为2% Na2CO3至pH=9-12,超声混溶;将溶液置于透析袋中透析,至pH为7,除去过量的Na2CO3;将透析产物与30mL摩尔浓度为1-15毫摩尔/升有机染料超声反应0.5-4h;然后将其放入透析袋中透析两周,除去过量的染料,产品置于80℃烘箱中干燥得到纳米复合材料。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤3)中,有机染料为罗丹明6G、甲基紫或荧光素。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110106541 CN102212616B (zh) | 2011-04-27 | 2011-04-27 | 氧化石墨烯与有机染料合成的纳米复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110106541 CN102212616B (zh) | 2011-04-27 | 2011-04-27 | 氧化石墨烯与有机染料合成的纳米复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102212616A true CN102212616A (zh) | 2011-10-12 |
CN102212616B CN102212616B (zh) | 2013-01-09 |
Family
ID=44744147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110106541 Expired - Fee Related CN102212616B (zh) | 2011-04-27 | 2011-04-27 | 氧化石墨烯与有机染料合成的纳米复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102212616B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102701199A (zh) * | 2012-07-15 | 2012-10-03 | 桂林理工大学 | 分散乳化辅助Hummers法制备氧化石墨烯的方法 |
CN102995394A (zh) * | 2012-12-17 | 2013-03-27 | 常州大学 | 一种基于氧化石墨烯的染色、抗菌整理剂及其制备方法和应用 |
CN103145777A (zh) * | 2013-03-04 | 2013-06-12 | 华东理工大学 | 罗丹明糖类化合物及其用途 |
WO2013175260A1 (en) * | 2012-05-25 | 2013-11-28 | Indian Institute Of Technology Madras | Luminescent graphene patterns |
CN105585003A (zh) * | 2014-10-22 | 2016-05-18 | 北京化工大学 | 一种氧化石墨烯和石墨烯纳米片的大规模连续化制备方法及其设备 |
CN105731441A (zh) * | 2016-02-03 | 2016-07-06 | 浙江理工大学 | 一种红色荧光标记氧化石墨烯的方法 |
CN105738333A (zh) * | 2016-02-03 | 2016-07-06 | 浙江理工大学 | 一种红色荧光标记石墨烯-二氧化钛纳米复合材料的方法 |
CN106082191A (zh) * | 2016-06-13 | 2016-11-09 | 南京工业大学 | 一种基于光学显微镜的单层氧化石墨烯染色可见方法 |
CN107579247A (zh) * | 2017-09-17 | 2018-01-12 | 长沙仲善新能源科技有限公司 | 一种石墨烯复合的钴酸锂正极材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009018092A1 (en) * | 2007-07-27 | 2009-02-05 | The Board Of Trustees Of The Leland Stanford Junior University | Supramolecular functionalization of graphitic nanoparticles for drug delivery |
CN101591014A (zh) * | 2009-06-30 | 2009-12-02 | 湖北大学 | 一种大规模制备单层氧化石墨烯的方法 |
CN101670108A (zh) * | 2009-08-13 | 2010-03-17 | 苏州纳米技术与纳米仿生研究所 | 基于纳米氧化石墨烯的载药体系 |
US20110076467A1 (en) * | 2009-09-29 | 2011-03-31 | Northwestern University | High-Throughput Imaging of Graphene Based Sheets by Fluorescence Quenching Microscopy and Applications of Same |
-
2011
- 2011-04-27 CN CN 201110106541 patent/CN102212616B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009018092A1 (en) * | 2007-07-27 | 2009-02-05 | The Board Of Trustees Of The Leland Stanford Junior University | Supramolecular functionalization of graphitic nanoparticles for drug delivery |
CN101591014A (zh) * | 2009-06-30 | 2009-12-02 | 湖北大学 | 一种大规模制备单层氧化石墨烯的方法 |
CN101670108A (zh) * | 2009-08-13 | 2010-03-17 | 苏州纳米技术与纳米仿生研究所 | 基于纳米氧化石墨烯的载药体系 |
US20110076467A1 (en) * | 2009-09-29 | 2011-03-31 | Northwestern University | High-Throughput Imaging of Graphene Based Sheets by Fluorescence Quenching Microscopy and Applications of Same |
Non-Patent Citations (7)
Title |
---|
《Angew. Chem. Int. Ed.》 20100903 Janardhan Balapanuru等 A Graphene Oxide-Organic Dye Ionic Complex with DNA-Sensing and Optical-Limiting Properties 6549-6553 第49卷, 第37期 * |
CHENG PENG等: "Intracellular Imaging with a Graphene-Based Fluorescent Probe", 《SMALL》, vol. 6, no. 15, 2 August 2010 (2010-08-02), pages 1686 - 1692 * |
JANARDHAN BALAPANURU等: "A Graphene Oxide–Organic Dye Ionic Complex with DNA-Sensing and Optical-Limiting Properties", 《ANGEW. CHEM. INT. ED.》, vol. 49, no. 37, 3 September 2010 (2010-09-03), pages 6549 - 6553 * |
KINGA HAUBNER等: "The Route to Functional Graphene Oxide", 《CHEMPHYSCHEM》, vol. 11, no. 10, 12 July 2010 (2010-07-12), pages 2131 - 2139, XP002698638, DOI: doi:10.1002/CPHC.201000132 * |
沈贺等: "石墨烯在生物医学领域的应用", 《东南大学学报》, vol. 30, no. 1, 28 February 2011 (2011-02-28), pages 218 - 223 * |
洪敏等: "纳米材料应用于DNA检测领域的研究进展", 《分析化学》, vol. 39, no. 1, 31 January 2011 (2011-01-31), pages 146 - 154 * |
胡耀娟等: "石墨烯的制备、功能化及在化学中的应用", 《物理化学学报》, vol. 26, no. 8, 31 August 2010 (2010-08-31), pages 2073 - 2086 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10196564B2 (en) | 2012-05-25 | 2019-02-05 | Indian Institute Of Technology Madras | Luminescent graphene patterns |
WO2013175260A1 (en) * | 2012-05-25 | 2013-11-28 | Indian Institute Of Technology Madras | Luminescent graphene patterns |
US9424505B2 (en) | 2012-05-25 | 2016-08-23 | Indian Institute Of Technology Madras | Luminescent graphene patterns |
CN102701199A (zh) * | 2012-07-15 | 2012-10-03 | 桂林理工大学 | 分散乳化辅助Hummers法制备氧化石墨烯的方法 |
CN102995394A (zh) * | 2012-12-17 | 2013-03-27 | 常州大学 | 一种基于氧化石墨烯的染色、抗菌整理剂及其制备方法和应用 |
CN102995394B (zh) * | 2012-12-17 | 2014-06-25 | 常州大学 | 一种基于氧化石墨烯的染色、抗菌整理剂及其制备方法和应用 |
CN103145777A (zh) * | 2013-03-04 | 2013-06-12 | 华东理工大学 | 罗丹明糖类化合物及其用途 |
CN103145777B (zh) * | 2013-03-04 | 2015-07-15 | 华东理工大学 | 罗丹明糖类化合物及其用途 |
CN105585003A (zh) * | 2014-10-22 | 2016-05-18 | 北京化工大学 | 一种氧化石墨烯和石墨烯纳米片的大规模连续化制备方法及其设备 |
CN105585003B (zh) * | 2014-10-22 | 2019-05-31 | 肖彦社 | 一种氧化石墨烯和石墨烯纳米片的大规模连续化制备方法及其设备 |
CN105738333A (zh) * | 2016-02-03 | 2016-07-06 | 浙江理工大学 | 一种红色荧光标记石墨烯-二氧化钛纳米复合材料的方法 |
CN105731441B (zh) * | 2016-02-03 | 2017-11-17 | 浙江理工大学 | 一种红色荧光标记氧化石墨烯的方法 |
CN105738333B (zh) * | 2016-02-03 | 2018-04-17 | 浙江理工大学 | 一种红色荧光标记石墨烯‑二氧化钛纳米复合材料的方法 |
CN105731441A (zh) * | 2016-02-03 | 2016-07-06 | 浙江理工大学 | 一种红色荧光标记氧化石墨烯的方法 |
CN106082191A (zh) * | 2016-06-13 | 2016-11-09 | 南京工业大学 | 一种基于光学显微镜的单层氧化石墨烯染色可见方法 |
CN107579247A (zh) * | 2017-09-17 | 2018-01-12 | 长沙仲善新能源科技有限公司 | 一种石墨烯复合的钴酸锂正极材料及其制备方法 |
CN107579247B (zh) * | 2017-09-17 | 2021-09-28 | 泰州飞荣达新材料科技有限公司 | 一种石墨烯复合的钴酸锂正极材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102212616B (zh) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102212616B (zh) | 氧化石墨烯与有机染料合成的纳米复合材料的制备方法 | |
Zhu et al. | Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions | |
Ge et al. | S‐scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2‐production photocatalyst | |
Bhati et al. | Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots | |
Das et al. | Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli | |
Xu et al. | Coffee-ground-derived quantum dots for aqueous processable nanoporous graphene membranes | |
Wang et al. | Synthesis and applications of red‐emissive carbon dots | |
Zhang et al. | Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications | |
Nie et al. | Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing | |
Jin et al. | Facile access to solid-state carbon dots with high luminescence efficiency and excellent formability via cellulose derivative coatings | |
Zhang et al. | Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging | |
Zhao et al. | Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications | |
Xue et al. | A Green and lower-temperature synthesis of two-color fluorescent nitrogen doped graphene quantum dots | |
Zhuang et al. | Solid‐phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in live‐cell imaging | |
CN104479675A (zh) | 荧光石墨烯量子点材料的大规模工业化制备方法 | |
Liu et al. | Solid-state luminescence in self-assembled chlorosalicylaldehyde-modified carbon dots | |
Zhao et al. | Tailoring the photoluminescence excitation dependence of the carbon dots via an alkali treatment | |
Amiri et al. | Microwave-assisted direct coupling of graphene nanoplatelets with poly ethylene glycol and 4-phenylazophenol molecules for preparing stable-colloidal system | |
Lovingood et al. | Controlled microwave-assisted growth of silica nanoparticles under acid catalysis | |
Pandey et al. | Green luminescence and irradiance properties of carbon dots cross-linked with polydimethylsiloxane | |
Zheng et al. | A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red: synthesis and applications | |
Huang et al. | Bi20TiO32 nanoparticles doped with Yb3+ and Er3+ as UV, visible, and near-infrared responsive photocatalysts | |
CN107098429A (zh) | 一种BiVO4/BiPO4复合材料及其制备方法和应用 | |
Ströbele et al. | Facile way of synthesis for molybdenum iodides | |
Yu et al. | High-yield, stable, and ultrasensitive carbon dots for pH sensing and Fe2+ detection are synthesized at room temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130109 |
|
CF01 | Termination of patent right due to non-payment of annual fee |