CN102208173A - 显示装置、差分放大器及用于显示装置的数据线驱动方法 - Google Patents

显示装置、差分放大器及用于显示装置的数据线驱动方法 Download PDF

Info

Publication number
CN102208173A
CN102208173A CN2011100839963A CN201110083996A CN102208173A CN 102208173 A CN102208173 A CN 102208173A CN 2011100839963 A CN2011100839963 A CN 2011100839963A CN 201110083996 A CN201110083996 A CN 201110083996A CN 102208173 A CN102208173 A CN 102208173A
Authority
CN
China
Prior art keywords
transistor
circuit
switch
grid
link node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100839963A
Other languages
English (en)
Inventor
西村浩一
中冈将光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of CN102208173A publication Critical patent/CN102208173A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45224Complementary Pl types having parallel inputs and being supplied in parallel
    • H03F3/45233Folded cascode stages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了显示装置、差分放大器及用于显示装置的数据线驱动方法。显示装置被提供有:多个差分放大器,多个差分放大器与显示面板内的多条数据线相关联。多个差分放大器中的每一个包括:输出级电路,该输出级电路包括具有被连接到正电源的源极的第一晶体管和具有被连接到负电源的源极的第二晶体管、被连接到第一和第二晶体管的漏极的输出端子;以及,偏置控制电路,该偏置控制电路被提供在加法器电路和输出级电路之间,以实现第一和第二晶体管的栅极的偏置控制。在切换时段期间,输出级电路提供第一和第二晶体管中的每一个的栅极和源极之间的短路,并且在切换时段期间偏置控制电路切断第一和第二晶体管的栅极之间的电流路径。

Description

显示装置、差分放大器及用于显示装置的数据线驱动方法
技术领域
本发明涉及一种显示装置,并且更加具体地,涉及显示装置的源极驱动器中的差分放大器电路。
背景技术
近年来,诸如液晶电视和蜂窝电话的使用液晶面板的产品的数目已经增加。此外,对于大尺寸的薄型平板面板的需要也增加,并且要求控制液晶面板的显示的半导体集成电路实现活动画面的平滑显示并且驱动大量的数据线。
可能与本发明有关的日本专利申请公开No.2007-052396A(专利文献1)公开一种液晶显示装置。接下来,参考附图描述专利文献1的液晶显示装置。图1是示出专利文献1中公开的液晶显示装置的构造的图。图1中所示的液晶显示装置适于点反转驱动。参考图1,在专利文献1中公开的液晶显示装置被提供有液晶面板22和数据线驱动电路25,该数据线驱动电路25将灰阶电压输出到液晶面板22的数据线。
液晶面板22具有下述构造,其中液晶被填充在TFT(薄膜晶体管)阵列基板和与其相对的对向基板(未示出)之间。被提供在TFT阵列基板上的是在水平方向上延伸的扫描线(通过附图标记16表示其中的一条),和在垂直方向上延伸的数据线14a至14d和15a至15d。TFT 12a至12h分别被提供在扫描线16和数据线14a至14d和15a至15d的交叉处。在下文中,数据线14a至14d可以被称为奇数编号的数据线并且数据线15a至15d可以被称为偶数编号的数据线。
而且,多个像素电极按行和列被布置在扫描线和数据线14a至14d和15a至15d的交叉处。TFT 12a至12h的栅极、源极以及漏极分别被连接到扫描线16、数据线14a至14d和15a至15d以及像素电极。
另一方面,用于R(红)、G(绿)以及B(蓝)色的滤色片和公共电极形成在对向基板上。在实际执行中,公共电极形成为形成在对向基板的整个表面上方的透明电极以与像素电极相对。各扫描线被提供有扫描信号,并且当通过对应的扫描信号选择扫描线16时,连接到扫描线16的TFT 12a至12h被同时导通。数据线14a至14d和15a至15d被提供有灰阶电压,并且取决于灰阶电压将电荷累积在对应的像素电极上。取决于写入有灰阶电压的像素电极和公共电极之间的电势差,公共电极和像素电极之间的液晶的布置改变。这允许控制从背光(未示出)入射的光的透射量。取决于透射的光量,液晶面板22的每个像素提供基于R、G以及B颜色的灰阶的各种灰度的显示。
数据线驱动电路25被提供有:正侧灰阶电压生成器电路23、负侧灰阶电压生成器电路24、正侧DA转换电路(在下文中被称为正侧DAC)1a至1d、负侧DA转换电路(在下文中被称为负侧DAC)2a至2d、切换部件17、缓冲器部件18、输出切换部件19、输出短路部件20以及公共结点21。
灰阶电压生成器电路23和24的输出被连接到DAC 1a至1d和2a至2d,并且DAC 1a至1d和2a至2d的输出被连接到切换部件17。切换部件17的输出被连接到缓冲器部件18,并且缓冲器部件18的输出被连接到输出切换部件19。输出切换部件19的输出被连接到输出短路部件20。
接下来,描述具有如上所述的构造的在专利文献1中公开的液晶显示装置的操作。图2是示出专利文献1中的液晶显示装置的操作的时序图。
在图2中,选通信号被用于控制切换部件19内的输出开关8a至8d和9a至9d以及输出短路部件20内的短路开关11a至11d和公共结点连接开关10a至10d。极性反转信号POL被用于控制切换部件17内的第一开关3a至3d、第二开关4a至4d、第三开关5a至5d、以及第四开关6a至6d。在图2中,奇数编号的输出V2n-1表示被输出到奇数编号的数据线14a至14d中的一个的灰阶电压的示例性波形并且偶数编号的输出V2n表示被输出到偶数编号的数据线15a至15d中的一个的灰阶电压的示例性波形。应注意的是,将假定输出到数据线14a至14d的灰阶电压相同,并且输出到数据线15a至15d的灰阶电压相同来进行图2的描述。
参考图2,重复输出正或者负灰阶电压以实现正常显示操作的灰阶电压输出时段和将数据线中和到接近于公共电极电平Vcom(对向基板上的公共电极的电压电平)的电压电平的切换时段。
当极性反转信号POL上拉到高电平时,第一开关3a至3d和第四开关6a至6d被接通,并且第二开关4a至4d和第三开关5a至5d被断开。结果,正侧DAC 1a至1d被连接到差分放大器7a、7c、7e、以及7g,并且负侧DAC 2a至2d被连接到差分放大器7b、7d、7f、以及7h。这导致奇数编号的数据线14a至14d的连接被从负侧DAC 2a至2d切换到正侧DAC 1a至1d,并且偶数编号的数据线15a至15d的连接被从正侧DAC 1a至1d切换到负侧DAC 2a至2d。
而且,当选通信号STB被与极性反转信号POL的上拉同时地上拉到高电平时,输出开关8a至8d和输出开关9a至9d被断开,并且公共结点连接开关10a至10d和短路开关11a至11d被接通。结果,从各数据线14a至14d和15a至15d断开差分放大器7a至7h。而且,通过短路开关11a至11d分别短路奇数编号的数据线14a至14d和对应的偶数编号的数据线15a至15d的对。此外,通过公共结点连接开关10a至10d将奇数编号的数据线14a至14d和偶数编号的数据线15a至15d短路到公共结点。结果,所有的数据线14a至14d和15a至15d被共同地短路到公共结点21,使得其电压电平在切换时段期间被抵消并且被平均到接近于公共电极电平Vcom的电压电平。
当然后选通信号STB下拉到低电平时,输出开关8a至8d和输出开关9a至9d被接通,并且公共结点连接开关10a至10d和短路开关11a至11d被断开。结果,在第一灰阶电压输出时段期间,预定极性的灰阶电压被从差分放大器7a至7h输出到各数据线14a至14d以及15a至15d。
接下来,当极性反转信号POL下拉到低电平时,第一开关3a至3d和第四开关6a至6d被断开,并且第二开关2a至2b和第三开关5a至5d被接通。结果,正侧DAC 1a至1d被连接到差分放大器7b、7d、7f、以及7h,并且负侧DAC 2a至2d被连接到差分放大器7a、7c、7e、以及7g。这导致奇数编号的数据线14a至14d的连接被从正侧DAC 1a至1d切换到负侧DAC 2a至2d,并且偶数编号的数据线15a至15d的连接被从负侧DAC 2a至2d切换到正侧DAC 1a至1d。
当然后选通信号STB与极性反转信号POL的下拉同时上拉到高电平时,输出开关8a至8d和输出开关9a至9d被断开,并且公共结点连接开关10a至10d和短路开关11a至11d被接通。结果,从各数据线14a至14d和15a至15d断开差分放大器7a至7h。而且,通过短路开关11a至11d分别短路奇数编号的数据线14a至14d和对应的偶数编号的数据线15a至15d的对。此外,奇数编号的数据线14a至14d和偶数编号的数据线15a至15d通过公共结点连接开关10a至10d公共地连接到公共结点。结果,所有数据线14a至14d和15a至15d被连接到公共结点21并且从而被短路,使得其电压电平被抵消并且被平均到接近于公共电极电平Vcom的电压电平(切换时段)。
当然后选通信号STB下拉到低电平时,输出开关8a至8d和输出开关9a至9d被接通,并且公共结点连接开关10a至10d和短路开关11a至11d被断开。结果,在第二灰阶电压输出时段期间,相反极性的灰阶电压被从差分放大器7a至7h输出到各数据线14a至14d和15a至15d。
如上所述,专利文献1的液晶显示装置被构造为,每次当响应于极性反转信号POL相互切换从奇数编号的输出V2n-1和偶数编号的输出V2n输出的灰阶电压的极性时,将数据线14a至14d和15a至15d的电压平均到接近于公共电极电平Vcom的中间电压电平。这有效地减少在将灰阶电压提供到各数据线14a至14d和15a至15d中从差分放大器7a至7h提供到像素电极的电荷,因为这仅要求提供电荷以从中间电平电压变成预定的灰阶电压。换言之,有效地减少用于执行点反转需要的功率消耗,因为在将灰阶电压写入各数据线14a至14d和15a至15d时减少了要通过差分放大器7a至7h写入的灰阶电压的变化。
可能与本发明有关的日本专利No.3,520,106(专利文献2)公开了典型的差分放大器。接下来,参考附图描述在专利文献2公开的差分放大器。图3是示出在专利文献2中公开的差分放大器的构造的图。图3中所示的差分放大器被构造为包括AB类驱动电路和相互耦合的加法器电路的轨对轨放大器。
参考图3,差分放大器的输入级电路被提供有:第一差分输入级电路,包括输入晶体管对QI1和QI2,该输入晶体管对具有通过恒流源100共同地连接到正电源VDD的源极;和第二差分输入级电路,该第二差分输入级电路包括具有被共同地连接的源极的一对输入晶体管QI3和QI4。输入晶体管QI1和QI3的栅极被共同地连接到输入端子110,并且晶体管QI2和QI4的栅极被共同地连接到输入端子120。
加法器电路140被提供有晶体管QS1至QS8,和作为生成电流Is的浮置电流源操作的电流源150。通过加法器电路140将四个晶体管QI1至QI4的各输出电流加在一起。加法器电路140的上半被提供有:两个晶体管QS1和QS5,该两个晶体管QS1和QS5被串联地连接在正电源VDD和恒流源150的端子160之间;和晶体管对QS2和QS6,该晶体管对QS2和QS6被串联地连接在正电源VDD和端子170之间。晶体管QS1和QS2的各自的栅极被直接地共同地连接到端子160。晶体管QS5和QS6的各自的栅极被共同地连接到提供偏置电压VS1的端子。
通过符号“A”表示的晶体管QS1和QS5之间的公共连接点通过互连线(未示出)连接到输入晶体管QI3的漏极。通过表示连接到晶体管QI3的漏极的连接点的另一符号“A”表示此互连线。类似地,晶体管QS2和QS6之间的公共连接点B被连接到输入晶体管QI4的漏极。通过符号“B”表示此连接。加法器电路140的上一半构造成电流镜。
加法器电路140的下一半被提供有被串联地连接在电流源150的端子180和负电源VSS之间的晶体管QS7和QS3,和被串联地连接在加法器电路140的端子190和负电源VSS之间的晶体管QS8和QS4。晶体管QS3和QS4的各自的栅极被共同地连接到端子180。而且,晶体管QS7和QS8的各自的栅极被共同地连接到提供偏置电压VS2的端子。
晶体管QS7和QS3之间的公共连接点C,和晶体管QS8和QS4之间的共同连接点D分别被连接到如通过符号“C”和“D”表示的输入晶体管QI1和QI2的漏极。加法器电路140的下一半也构造成电流镜。
通过附图标记200表示的AB类偏置控制电路和轨对轨输出级被连接到端子170和190。AB类偏置控制电路和轨对轨输出级200被提供有晶体管QD1至QD8、输出晶体管QO1和QO2、以及电流源210。从输出端子220引出输出电流。组成AB偏置控制电路的互补晶体管对QD1和QD2被相互并联地连接,即,以反向对称的形式被连接到端子170和190,以分别确定输出晶体管QO1和QO2的栅极电压。
输出晶体管QO1和QO2被串联地连接在正电源VDD和负电源VSS之间并且其各自的漏极被共同地连接到输出端子220。输出晶体管QO1的栅极被连接到端子170,并且输出晶体管QO2的栅极被连接到端子190。二极管接法的晶体管QD3和QD4和电流源210被串联地连接在正电源VDD和负电源VSS之间。晶体管QD5和QD6和二极管接法的晶体管QD7和QD8被串联地连接在正电源VDD和负电源VSS之间。晶体管QD5的栅极被连接到晶体管QD3的栅极,并且晶体管QD6的栅极被连接到晶体管QD4的栅极。
在包括晶体管QS1至QS8的加法器电路140中将四个输入晶体管QI4至QI4的各自的输出电流加在一起。组成电流镜的晶体管QS1和QS2、以及QS3和QS4提供用于电路点A和C处的电流的镜像以产生将电路点A和C处的电流和电路点B和C处的电流加在一起的驱动电流,并且为轨对轨输出级200提供驱动电流。电流源150保持恒定偏置电流以补偿AB类偏置控制电路的输出阻抗。
上述技术存在下述问题,即由于引起与显示装置的面板尺寸的增加和扫描速度的增加有关的数据写入数据线的延迟的输出开关19的较大的接通电阻引起的图像质量劣化。薄型平板面板的尺寸的增加引起图1中所示的液晶面板22的数据线14a至14d和15a至15d的负载电容的增加。此外,随着垂直同步频率增加,每个水平同步时段的持续时间减少。在这样的情况下,包括输出开关8a至8d和9a至9d的接通电阻的数据线负载的时间常数的增加引起显著的问题。即使正侧DAC
1a至1d、负侧DAC 2a至2d、或者差分放大器7a至7h是理想脉冲输出,要被提供到数据线14a至14d和15a至15d的灰阶电压的输出特性也被劣化,并且这不想要地阻碍正确地显示图像并且劣化图像质量。
发明内容
在本发明的方面中,显示装置被提供有:多个差分放大器,所述多个差分放大器与显示面板内的多条数据线相关联,多个差分放大器分别接收相对于基准电压电平在正和负极性之间切换的灰阶电压并且将接收到的灰阶电压输出到多条数据线中的关联的数据线;和输出短路部件,该输出短路部件在切换通过多个差分放大器接收到的灰阶电压的极性的切换时段期间在多条数据线之间提供短路。多个差分放大器中的每一个包括:输入电路,该输入电路包括包括第一晶体管对的第一差分输入级电路和包括第二晶体管对的第二差分输入级电路,第一和第二晶体管对是互补的;加法器电路,该加法器电路包括被提供在第一差分输入级电路和正电源之间的第一电流镜电路和被提供在第二差分输入级电路和负电源之间的第二电流镜电路;输出级电路,该输出级电路包括具有被连接到正电源的源极的第一晶体管、具有被连接到负电源的源极的第二晶体管、被连接到第一和第二晶体管的漏极的输出端子、被提供在第一电流镜电路和输出端子之间的第一相位补偿电容器、以及被提供在第二电流镜电路和输出端子之间的第二相位补偿电容器;以及偏置控制电路,该偏置控制电路被提供在加法器电路和输出级电路之间,以实现第一和第二晶体管的栅极的偏置控制。在切换时段期间,输出级电路在第一晶体管的栅极和源极之间提供短路,以及第二晶体管的栅极和源极之间的短路,并且将第一和第二相位补偿电容器充电或者放电到特定的电压电平。在切换时段期间,偏置控制电路切断第一和第二晶体管的栅极之间的电流路径。
在本发明的另一方面中,差分放大器被提供有:输入电路,该输入电路包括包括第一晶体管对的第一差分输入级电路和包括第二晶体管对的第二差分输入级电路,第一和第二晶体管对是互补的;加法器电路,该加法器电路包括被提供在第一差分输入级电路和正电源之间的第一电流镜电路和被提供在第二差分输入级电路和负电源之间的第二电流镜电路;输出级电路,该输出级电路包括具有被连接到正电源的源极的第一晶体管、具有被连接到负电源的源极的第二晶体管、被连接到第一和第二晶体管的漏极的输出端子、被提供在第一电流镜电路和输出端子之间的第一相位补偿电容器、以及被提供在第二电流镜电路和输出端子之间的第二相位补偿电容器;以及偏置控制电路,该偏置控制电路被提供在加法器电路和输出级电路之间,以实现第一和第二晶体管的栅极的偏置控制。在切换时段期间,输出级电路提供第一晶体管的栅极和源极之间的短路,以及第二晶体管的栅极和源极之间的短路,并且将第一和第二相位补偿电容器充电或者放电到特定的电压电平。在切换时段期间,偏置控制电路切断第一和第二晶体管的栅极之间的电流路径。
在本发明的又一方面中,提供了一种用于显示装置的数据线驱动方法,该显示装置包括:多个差分放大器,所述多个差分放大器与显示面板内的多条数据线关联,多个差分放大器分别接收在相对于基准电压电平的正和负极性之间切换的灰阶电压并且将接收到的灰阶电压输出到多条数据线中的相关联的数据线;和输出短路部件,该输出短路部件在切换通过多个差分放大器接收的灰阶电压的极性的切换时段期间在多条数据线之间提供短路。多个差分放大器中的每一个包括:输入电路,该输入电路包括包括第一晶体管对的第一差分输入级电路和包括第二晶体管对的第二差分输入级电路,第一和第二晶体管对是互补的;加法器电路,该加法器电路包括被提供在第一差分输入级电路和正电源之间的第一电流镜电路和被提供在第二差分输入级电路和负电源之间的第二电流镜电路;输出级电路,该输出级电路包括具有被连接到正电源的源极的第一晶体管、具有被连接到负电源的源极的第二晶体管、被连接到第一和第二晶体管的漏极的输出端子、被提供在第一电流镜电路和输出端子之间的第一相位补偿电容器、以及被提供在第二电流镜电路和输出端子之间的第二相位补偿电容器;以及偏置控制电路,该偏置控制电路被提供在加法器电路和输出级电路之间,以实现第一和第二晶体管的栅极的偏置控制。该数据线驱动方法包括:在切换时段期间短路第一和第二晶体管中的每一个的栅极和源极;在切换时段期间将第一和第二相位补偿电容器充电或者放电到特定的电压电平;以及在切换时段期间切断第一和第二晶体管的栅极之间的电流路径。
本发明提供了一种显示装置,即使当面板尺寸和水平同步频率增加,该显示装置也有效地防止了图像质量劣化。
附图说明
结合附图,根据某些优选实施例的以下描述,本发明的以上和其它方面、优点和特征将更加明显,其中:
图1是示出在专利文献1中公开的液晶显示装置的构造的图;
图2是示出在专利文献1中公开的液晶显示装置的操作的时序图;
图3是示出在专利文献2中公开的差分放大器的构造的图;
图4是示出本发明的第一实施例中的显示装置的示例性构造的图;
图5是示出本发明的第一实施例中的差分放大器的示例性构造的图;
图6是示出本发明的第一实施例中的偏置电路的示例性构造的图;
图7是示出本发明的第一本实施例中的显示装置的示例性操作的时序图;
图8是示出本发明的第二实施例中的差分放大器的示例性构造的图;
图9是示出本发明的第三实施例中的差分放大器的示例性构造的图;
图10是示出本发明的第三实施例中的显示装置的示例性操作的时序图;
图11是示出本发明的第四实施例中的差分放大器的示例性构造的图;以及
图12是示出本发明的第五实施例中的差分放大器的示例性构造的图。
具体实施方式
现在在此将参考示例性实施例来描述本发明。本领域的技术人员将会理解能够使用本发明的教导完成许多替代实施例并且本发明不限于为解释性目的而示出的实施例。
第一实施例
[装置构造]
首先,描述第一实施例中的显示装置的示例性构造和适于点反转驱动的有源矩阵型液晶显示装置的示例。图4是示出本实施例的显示装置的构造的图。本实施例的显示装置被提供有液晶面板22和数据线驱动电路32。应注意的是,为了简单,图4仅示出被布置成一行八列像素的像素。而且,省略用于提供扫描信号的扫描线驱动电路、照明液晶面板22的背面的背光、以及其它组件的示出。
首先,描述液晶面板22。液晶面板22具有包括多个像素的显示区域,其中显示图像。在液晶面板22中,液晶被填充在TFT阵列基板和与其相对的对向基板(未示出)之间。
被提供在TFT阵列基板上的是在水平方向上延伸的扫描线(通过附图标记16来表示的其中的一个),和在垂直方向上延伸的数据线14a至14d和15a至15d,并且TFT 12a至12h分别被提供在扫描线16与数据线14a至14d和15a至15d的交叉处。接下来,数据线14a至14d可以被称为奇数编号的数据线并且数据线15a至15d可以被称为是偶数编号的数据线。而且,多个像素电极以矩阵形式被布置在扫描线和数据线14a至14d和15a至15d的交叉处。TFT 12a至12h的栅极、源极以及漏极分别连接到扫描线16、数据线14a至14d和15a至15d、以及像素电极。
被提供在对向基板上的是公共电极和R(红)、G(绿)、以及B(蓝)色的滤色片。在实际执行中,公共电极是被形成为覆盖对向基板的整个表面并且与像素电极相对的透明电极。各扫描线被提供有扫描信号,并且当通过对应的扫描信号选择扫描线16时,同时导通连接到扫描线16的所有的TFT 12a至12h。数据线14a至14d与15a至15d中的每一个被提供有灰阶电压,并且取决于对应的灰阶电压在每个像素电极上积累电荷。
取决于要写入灰阶电压的像素电极和公共电极之间的电势差,像素电极和公共电极之间的液晶的布置改变。这允许控制从背光(未示出)入射的光的透射量。取决于透射的光量,液晶面板22的每个像素提供基于R、G、以及B色的灰阶的各种灰度的显示。
液晶电容器13a至13h由像素电极、公共电极以及被填充在其间的液晶形成。液晶电容器13a至13h中的每一个在其一个端子处连接到对应的TFT的漏电极并且在其另一端子处连接到公共电极。
当执行点反转驱动时,对于在液晶面板22内提供的沿着每条扫描线的相邻的像素和沿着每条数据线的相邻的像素反转被提供到像素电极的显示信号的极性。而且,对于各个图像显示,即,对于每个帧时段切换显示信号的极性。应注意的是,在下文中,显示信号的极性是“正(+)”的状态指显示信号的电压电平高于被用于基准电平的公共电极电平Vcom的状态。另一方面,显示信号的极性是“负(-)”的状态指显示信号的电压电平低于公共电极电平Vcom的状态。
接下来,描述数据线驱动电路32。数据线驱动电路32响应于外部输入的显示信号(未示出)生成一组灰阶电压。为了实现点反转驱动,数据线驱动电路32被馈送有正侧和负侧显示信号。数据线驱动电路32被提供有正侧灰阶电压生成器电路23、负侧灰阶电压生成器电路24、正侧DA转换电路(在下文中被称为正侧DAC)1a至1d、负侧DA转换电路(在下文中被称为负侧DAC)2a至2d、切换部件17、缓冲器部件31、输出短路部件20、公共结点21、偏置电路28、以及偏置总线29。
DAC 1a至1d和DAC 2a至2d分别被连接到正侧灰阶电压生成器电路23和负侧灰阶电压生成器电路24的输出。切换部件17被连接到DAC 1a至1d和2a至2d的输出。缓冲器部件31与切换部件17的输出相连接并且还被连接到偏置电路28的输出。输出短路部件20被连接到缓冲器部件31的输出。
切换部件17被提供有第一开关3a至3d、第二开关4a至4d、第三开关5a至5d、以及第四开关6a至6d。缓冲器部件31被提供有差分放大器30a至30h。输出短路部件20被提供有公共结点连接开关10a至10d和短路开关11a至11d。
正侧灰阶电压生成器电路23生成具有相对于公共电极电平Vcom的“正”极性的不同的电压电平的一组正侧灰阶电压。正侧灰阶电压生成器电路23被连接到正侧DAC 1a至1d。正侧灰阶电压生成器电路23将正侧灰阶电压馈送到正侧DAC 1a至1d。
负侧灰阶电压生成器电路24生成具有相对于公共电极电平Vcom的“负”极性的不同的电压电平的一组负侧灰阶电压。负侧灰阶电压生成器电路24被连接到负侧DAC 2a至2d。负侧灰阶电压生成器电路24将负侧灰阶电压馈送到负侧DAC 2a至2d。
正侧DAC 1a至1d外部接收显示信号(未示出)并且还接收来自于正侧灰阶电压生成器电路23的正侧灰阶电压。正侧DAC 1a至1d分别从接收到的正侧灰阶电压中选择具有与显示信号相对应的电平的正侧灰阶电压。正侧DAC 1a至1d通过第一开关3a至3d分别连接到差分放大器30a、30c、30e以及30g。而且,正侧DAC 1a至1d通过第二开关4a至4d分别连接到差分放大器30b、30d、30f以及30h。正侧DAC 1a至1d通过第一开关3a至3d分别将选择的电平的正侧灰阶电压馈送到差分放大器30a、30c、30e以及30g,或者通过第二开关4a至4d馈送到差分放大器30b、30d、30f以及30h。
负侧DAC 2a至2d外部接收显示信号(未示出)并且还接收来自于负侧灰阶电压生成器电路24的负侧灰阶电压。负侧DAC 2a至2d分别从负侧灰阶电压中选择具有与显示信号相对应的电平的负侧灰阶电压。负侧DAC 2a至2d通过第三开关5a至5d分别连接到差分放大器30a、30c、30e以及30g。而且,负侧DAC 2a至2d通过第四开关6a至6d分别连接到差分放大器30b、30d、30f以及30h。负侧DAC 2a至2d通过第三开关5a至5d分别将具有选择的电平的负侧灰阶电压馈送到差分放大器30a、30c、30e以及30g,或者通过第四开关6a至6d馈送到差分放大器30b、30d、30f以及30h。
第一开关3a至3d分别提供正侧DAC 1a至1d和差分放大器30a、30c、30e以及30g之间的连接。第二开关4a至4d分别提供正侧DAC 1a至1d与差分放大器30b、30d、30f以及30h之间的连接。第三开关5a至5d分别提供负侧DAC 2a至2d和差分放大器30a、30c、30e以及30g之间的连接。第四开关6a至6d分别提供负侧DAC 2a至2d与差分放大器30b、30d、30f以及30h之间的连接。而且,第一开关3a至3d和第四开关6a至6d被馈送有反转信号POL,并且通过极性反转信号POL进行控制。第二开关4a至4d和第三开关5a至5d被馈送有在下文中称为反转的极性反转信号POLB的、通过反转极性反转信号POL获得的信号,并且通过反转的极性反转信号POLB进行控制。
偏置电路28生成在差分放大器30a至30h中使用的基准电压。偏置电路28通过偏置总线29连接到差分放大器30a至30h。偏置电路28通过偏置总线29将基准电压输出到差分放大器30a至30h。
差分放大器30a、30c、30e以及30g接收来自于正侧DAC 1a至1d或者负侧DAC 2a至2d的灰阶电压以驱动奇数编号的数据线14a至14d。差分放大器30b、30d、30f以及30h接收来自于正侧DAC 1a至1d或者负侧DAC 2a至2d的灰阶电压以驱动偶数编号的数据线15a至15d。而且,差分放大器30a至30h在稍候描述的基准电压端子V1至V4上接收来自偏置电路28的基准电压。
短路开关11a至11d分别提供奇数编号的数据线14a至14d和与奇数编号的数据线14a至14d相对应的偶数编号的数据线15a至15d之间的连接。而且,公共结点连接开关10a至10d分别提供奇数编号和偶数编号的数据线14a、14b、15c、以及15d与公共结点21之间的连接。短路开关11a至11d实现奇数编号的数据线14a至14d与偶数编号的数据线15a至15d之间的短路,并且公共结点连接开关10a至10d实现数据线14a、14b、15c、以及15d到公共结点21的短路。当公共结点连接开关10a至10d和短路开关11a至11d被同时接通时,奇数编号的数据线14a至14d和偶数编号的数据线15a至15d都被短路。公共结点连接开关10a至10d和短路开关11a至11d被馈送有选通信号STB,并且通过选通信号STB进行控制。
接下来参考图5描述本实施例中的差分放大器30a至30h的示例性构造,差分放大器30a至30h中的每一个被构造为图4中的电压跟随器。应注意的是,差分放大器30a至30h具有相同的构造。接下来,通过差分放大器30统一地表示差分放大器30a至30h。图5是示出本实施例中每个差分放大器30的示例性构造的图。
每个差分放大器30的输入级电路被提供有第一和第二差分输入级电路。第一差分输入级电路包括具有通过提供恒流的恒流源I2共同地连接到正电源VDD的一对P型晶体管MP1和MP2。第二差分输入级电路包括具有通过提供恒流的恒流源I1共同地连接到负电源VSS的一对N型晶体管MN1和MN2。
P型晶体管MP1和N型晶体管MN1的栅极被连接到输入端子In-。输入端子In-连接到差分放大器30的输出端子Vout。P型晶体管MP2和N型晶体管MN2的栅极连接到输入端子In+。输入端子In+连接到切换部件17中的对应的开关。
第一差分输入级电路的P型晶体管MP1的漏极连接到具有被连接到负电源VSS的源极的N型晶体管MN5的漏极,并且P型晶体管MP2的漏极被连接到具有被连接到负电源VSS的源极的N型晶体管MN6的漏极。
N型晶体管MN5的漏极被进一步连接到N型晶体管MN3的源极,并且N型晶体管MN6的漏极被进一步连接到N型晶体管MN4的源极。
N型晶体管MN3和MN4的栅极共同地连接到基准电压端子V2,并且被馈送有来自于基准电压端子V2的基准电压。N型晶体管MN5和MN6的栅极共同地连接到被连接到N型晶体管MN3的漏极的端子41。N型晶体管MN5和MN6组成电流镜。
第二差分输入级电路的N型晶体管MN1的漏极被连接到具有被连接到正电源VDD的源极的P型晶体管MP5的漏极。而且,N型晶体管MN2的漏极被连接到具有被连接到正电源VDD的源极的P型晶体管MP6的漏极。
P型晶体管MP5的漏极被进一步连接到P型晶体管MP3的源极,并且P型晶体管MP6的漏极被进一步连接到P型晶体管MP4的源极。
P型晶体管MP3和MP4的栅极被共同地连接到基准电压端子V1,并且被馈送有来自于基准电压端子V1的基准电压。P型晶体管MP5和MP6的栅极被共同地连接到被连接到P型晶体管MP3的漏极的端子40。P型晶体管MP5和MP6组成电流镜。而且,电流源I3被提供为端子40和41之间的浮置电流源。
P型晶体管MP4的漏极被连接到端子42并且N型晶体管MN4的漏极被连接到端子43。在端子42和43之间连接的是AB类偏置控制电路,包括:具有被连接到端子42的源极的P型晶体管MP7被串联地连接到P型晶体管MP7的漏极的电流切断开关SW6;具有被连接到端子43的源极的N型晶体管MN7;以及被串联地连接到N型晶体管MN7的漏极的电流切断开关SW5。通过反转选通信号STB生成的信号STBB控制电流切断开关SW5和SW6。
差分放大器30的输出级包括具有被连接到正电源VDD的源极的P型晶体管MP8和具有被连接到负电源VSS的源极的N型晶体管MN8,以及被连接到P型和N型晶体管MP8和MN8的漏极的输出端子Vout。P型晶体管MP8和N型晶体管MN8被串联地连接在正和负电源VDD和VSS之间。P型晶体管MP8的栅极被连接到端子42并且N型晶体管MN8的栅极被连接到端子43。短路开关SW1被提供在端子42和正电源VDD之间以提供P型晶体管MP8的栅极和源极的短路。另外,短路开关SW2被提供在端子43和负电源VSS之间以提供N型晶体管MN8的栅极和源极之间的短路。通过选通信号STB控制短路开关SW1和SW2。
P型晶体管MP6的漏极被连接到端子44。相位补偿电容器C1被提供在端子44和输出端子Vout之间。N型晶体管MN6的漏极被连接到端子45。相位补偿电容器C2被提供在端子45和输出端子Vout之间。短路开关SW3被提供在端子44和正电源VDD之间。另外,短路开关SW4被提供在端子45和负电源VSS之间。通过选通信号STB控制短路开关SW3和SW4。
接下来,参考图6,描述本实施例中的偏置电路28的示例性构造。图6是示出本实施例的偏置电路28的构造的图。
二极管接法的P型晶体管MP11被串联地连接到正电源VDD和负电源VSS之间的电流源I11。P型晶体管MP11的源极被连接到正电源VDD,并且P型晶体管MP11的漏极被连接到P型晶体管MP11的栅极、恒流源I11以及基准电压端子V1’。P型晶体管MP11将具有与其漏极电势相同的电压电平的基准电压输出到基准电压端子V1’。
二极管接法的N型晶体管MN11被串联地连接到电流源I12,并且被提供在正电源VDD和负电源VSS之间。N型晶体管MN11的源极被连接到负电源VSS,并且N型晶体管MN11的漏极被连接到N型晶体管MN11的栅极、电流源I12以及基准电压端子V2’。N型晶体管MN11将具有与其漏极电势相同的电压电平的基准电压输出到基准电压端子V2’。
二极管接法的P型晶体管MP12和MP13被串联地连接到正电源VDD和负电源VSS之间的电流源I13。P型晶体管MP12的源极被连接到正电源VDD,并且P型晶体管MP12的漏极被连接到P型晶体管MP12的栅极和P型晶体管MP13的源极。P型晶体管MP13的漏极被连接到P型晶体管MP13的栅极、电流源I13以及基准电压端子V3’。P型晶体管MP13将具有与其漏极电势相同的电压电平的基准电压输出到基准电压端子V3’。
二极管接法的N型晶体管MN12和MN13被串联地连接到正电源VDD和负电源VSS之间的电流源I14。N型晶体管MN12的源极被连接到负电源VSS。N型晶体管MN12的漏极被连接到N型晶体管MN12的栅极和N型晶体管MN13的源极。N型晶体管MN13的漏极被连接到N型晶体管MN13的栅极、电流源I14以及基准电压端子V4’。N型晶体管MN13将具有与其漏极电势相同的电压电平的基准电压输出到基准电压端子V4’。
应注意的是,在图6中示出的基准电压端子V1’、V2’、V3’以及V4’分别对应于图5中所示的差分放大器30的基准电压端子V1、V2、V3以及V4。基准电压端子V1’、V2’、V3’以及V4’通过图4中所示的偏置总线29被连接到差分放大器30a至30h中的每一个内的基准电压端子V1、V2、V3以及V4以操作其中的电流镜。
[装置操作]
接下来,参考图7,描述在本实施例中这样构造的显示装置的示例性操作。图7是示出本实施例中的显示装置的操作的时序图。接下来,描述用于数据线驱动电路32执行点反转驱动的情况的操作。
在图7的时序图中,“STB”表示控制公共结点连接开关10a至10d和短路开关11a至11d的选通信号并且“STBB”表示选通信号的反转信号。“POL”表示控制第一开关3a至3d和第四开关6a至6d的极性反转信号并且“POLB”表示极性反转信号的反转信号,其控制第二开关4a至4d和第三开关5a至5d。奇数编号的输出V2n-1表示输出到奇数编号的数据线14a至14d的灰阶电压(在下文中,可以被称为奇数编号的输出)。偶数编号的输出V2n表示被输出到偶数编号的数据线15a至15d的灰阶电压(在下文中,可以被称为偶数编号的输出)。应注意的是,假定输出到数据线14a至14d的灰阶电压具有相同的电压电平并且输出到数据线15a至15d的灰阶电压具有相同的电压电平来进行下述描述。
如图7中所示,重复输出灰阶电压以显示图像的灰阶电压输出时段,和数据线被中和到接近于公共电极电平Vcom的电压电平的切换时段。
灰阶电压输出时段包括第一灰阶电压输出时段TW1和第二灰阶电压输出时段TW2。在灰阶电压输出时段TW1期间,正灰阶电压被提供到奇数编号的数据线14a至14d,并且负灰阶电压被提供到偶数编号的数据线15a至15d。在灰阶电压输出时段TW2期间,负灰阶电压被提供到奇数编号的数据线14a至14d,并且正灰阶电压被提供到偶数编号的数据线15a至15d。第一灰阶电压输出时段TW1和第二灰阶电压输出时段TW2被交替地提供。在连续的两个灰阶电压输出时段之间,提供切换时段TWA、TWB以及TWC。每次切换极性反转信号POL以切换输出的灰阶电压的极性时提供切换时段TWA、TWB以及TWC。灰阶电压输出时段在当选通信号STB被设置为低电平时的时段期间持续,而切换时段在当选通信号STB被设置为高电平时的时段期间持续。接下来,描述在各时段中的操作。
<切换时段TWA>
当在切换时段TWA中极性反转信号POL上拉到高电平时,第一开关3a至3d以及第四开关6a至6d被接通,并且第二开关4a至4d和第三开关5a至5d被断开。结果,正侧DAC 1a至1d被连接到差分放大器30a、30c、30e以及30g,并且负侧DAC 2a至2d被连接到差分放大器30b、30d、30f以及30h。
选通信号STB与极性反转信号POL的上拉同时地上拉到高电平。如上所述,选通信号STB被设置为高电平的时段对应于切换时段TWA。当选通信号STB被上拉到高电平时,差分放大器30a至30h的输出被设置为高阻抗状态,并且同时,短路开关11a至11d和公共结点连接开关10a至10d被接通。由于将差分放大器30a至30h的输出设置为高阻抗状态使得差分放大器30a至30h停止驱动数据线14a至14d和15a至15d。而且,通过接通短路开关11a至11d短路奇数编号的数据线14a至14d和对应的偶数编号的数据线15a至15d。
此外,通过接通公共结点连接开关10a至10d将数据线14a至14d和数据线15a至15d通过公共结点连接开关10a至10d连接到公共结点21。例如,通过短路开关11a短路数据线14a和15a的对,并且其通过公共结点连接开关10a还连接到公共结点21。通过以这样的方式通过公共结点21短路数据线14a至14d和数据线15a至15d,中和积累在数据线14a至14d和15a至15d上的电荷,并且将各数据线14a至14d和15a至15d的电压电平变为接近于公共电极电平Vcom的电压电平。
<第一灰阶电压输出时段TW1>
然后选通信号STB下拉到低电平。在第一灰阶电压输出时段TW1期间,极性反转信号POL被设置为高电平并且选通信号STB被设置为低电平。当选通信号STB被设置为低电平时,公共结点开关10a至10d和短路开关11a至11d被断开,并且想要的极性的灰阶电压被从差分放大器30a至30h输出到数据线14a至14d和15a至15d。例如,数据线14a被提供有响应于正侧信号从差分放大器30a输出的灰阶电压,并且数据线15a被提供有响应于负侧信号从差分放大器30b输出的灰阶电压。
<切换时段TWB>
当然后极性反转信号下拉到低电平时,第一开关3a至3d和第四开关6a至6d被断开,并且第二开关4a至4d和第三开关5a至5d被接通。结果,正侧DAC 1a至1d被连接到差分放大器30b、30d、30f以及30h,并且负侧DAC 2a至2d被连接到差分放大器30a、30c、30e以及30g。
选通信号STB与极性反转信号POL的下拉同时地上拉到高电平。在切换时段TWB期间,选通信号STB被设置为高电平。当选通信号STB被设置为高电平时,差分放大器30a至30h的输出被设置为高阻抗状态,并且同时,短路开关11a至11d和共同结点连接开关10a至10d被接通。差分放大器30a至30h通过将差分放大器30a至30h的输出设置为高阻抗状态来停止驱动数据线14a至14d和15a至15d。而且,通过接通短路开关11a至11d,奇数编号的数据线14a至14d和对应的偶数编号的数据线15a至15d分别被短路。
此外,通过接通公共结点连接开关10a至10d将数据线14a至14d和数据线15a至15d通过公共结点连接开关10a至10d连接到公共结点21。通过以这样的方式通过公共结点21短路数据线14a至14d和数据线15a至15d,中和积累在数据线14a至14d和15a至15d的电荷,并且将数据线14a至14d和15a至15d的电压电平设置为接近于公共电极电平Vcom的电压电平。
<第二灰阶电压输出时段TW2>
然后在第二灰阶电压输出时段TW2的开始时,选通信号STB下拉到低电平。在第二灰阶电压输出时段TW2期间,极性反转信号POL被设置为低电平并且选通信号STB也被设置为低电平。当选通信号STB下拉到低电平时,公共结点开关10a至10d和短路开关11a至11d断开,并且将相反极性的灰阶电压从差分放大器30a至30h输出到数据线14a至14d和15a至15d。例如,数据线14a被提供有响应于负侧信号从差分放大器30b输出的灰阶电压,并且数据线15a被提供有响应于正侧信号从差分放大器30a输出的灰阶电压。
<切换时段TWC>
然后在切换时段TWC的开始时,选通信号STB和极性反转信号POL同时上拉到高电平。切换时段TWC期间的操作与切换时段TWA期间的操作相同,并且因此没有进行描述。如上所述,显示装置重复上述切换时段TWA、第一灰阶电压输出时段TW1、切换时段TWB以及第二灰阶电压输出时段TW2以将灰阶电压提供到数据线14a至14d和15a至15d。
然后参考图5和图7描述本实施例中的差分放大器30a至30h的示例性操作。应注意的是,差分放大器30a至30h执行与使用图5的描述类似的操作。在下面的描述中,通过差分放大器30统一地表示差分放大器30a至30h。而且,假定偏置电路28通过偏置总线29将恒定偏置提供到各差分放大器30的基准电压端子V1、V2、V3以及V4。
当在切换时段TWA的开始时将选通信号STB设置为高电平时,短路开关SW1和SW2被接通。结果,P型晶体管MP8的栅极和源极被短路并且N型晶体管MN8的栅极和源极被短路。这导致P型和N型晶体管MP8和MN8都被截止,并且输出端子Vout被设置为高阻抗状态。另外,响应于选通信号被设置为高电平而接通短路开关SW3和SW4。结果,相位补偿电容器C1的端子44被短路到正电源VDD,并且相位补偿电容器C2的端子45被短路到负电源VSS。在选通信号STB被设置为高电平的切换时段TWA期间,如上所述,输出端子Vout的电压电平被设置为接近于公共电极电平Vcom,并且因此相位补偿电容器C1和C2也被充电/放电液晶面板22的电荷以接近于公共电极电平Vcom。这允许减少在切换输出灰阶电压的极性之后充电/放电相位补偿电容器C1和C2的所要求的功率和持续时间。
而且,在选通信号STB被设置为高电平的切换时段TWA期间响应于选通信号STB的反转信号STBB断开电流切断开关SW5和SW6。这有效地允许避免通过短路开关SW1、P型晶体管MP7、N型晶体管MN7以及短路开关SW2从正电源VDD流到负电源VSS的异常电流,并且避免通过短路开关SW3、P型晶体管MP4、P型晶体管MP7、N型晶体管MN7、N型晶体管MN4以及短路开关SW4从正电源VDD流到负电源VSS的异常电流。
当然后在第一灰阶电压输出时段TW1的开始时将选通信号STB下拉到低电平时,短路开关SW1、SW2、SW3以及SW4被断开,并且电流切断开关SW5和SW6被接通。结果,差分放大器30被恢复到正常操作。这时,相位补偿电容器C1和C2已经在切换时段TWA期间被充电/放电到接近于公共电极电平Vcom的电压电平,并且被连接到输出端子Vout的数据线也如上所述变为接近于公共电极电平Vcom的电压电平,使得输出端子Vout的电压电平被从公共电极电平Vcom驱动到与输入端子In+的电平相同的电平。
应注意的是,尽管仅描述切换时段TWA期间的操作,但是本领域的技术人员应理解的是,在包括切换时段TWB和TWC的其它切换时段期间差分放大器30a至30h也以相同的方式操作。
应强调的是,在本实施例的显示装置中,差分放大器30a至30h均被提供有短路开关SW1、SW2、SW3以及SW4和电流切断开关SW5和SW6。短路开关SW1短路输出级P型晶体管MP8的栅极和源极并且短路开关SW2短路N型晶体管MN8的源极和栅极。短路开关SW3被串联地连接在相位补偿电容器C1的端子44与正电源VDD之间,并且短路开关SW4被串联地连接在相位补偿电容器C2的端子45和负电源VSS之间。电流切断开关SW5被串联地连接在N型晶体管MN7的漏极和端子42之间。电流切断开关SW6被串联地连接在P型晶体管MP7的漏极和端子43之间。
此构造允许在选通信号STB被设置为高电平的切换时段TWA、TWB以及TWC期间通过短路开关SW1和SW2来短路P型晶体管MP8的栅极和源极和N型晶体管MN8的栅极和源极。结果,P型晶体管MP8和N型晶体管MN8被截止从而使输出端子Vout进入高阻抗状态。这有效地消除提供传统上提供来从数据线14a至14d和15a至15d断开差分放大器30a至30h的输出开关(图1中所示的输出开关8a至8d和9a至9d)的需要,减少灰阶输出时段TW1或者TW2期间差分放大器30a至30h的输出端子Vout和数据线14a至14d和15a至15d之间的输出阻抗,使得改进电流输出特性。结果,能够增强从差分放大器30a至30h写入数据线14a至14d和15a至15d的数据写入的速度以避免数据写入的延迟,这防止了即使在每个水平同步时段持续时间减少的情况下的显示装置的图像质量的劣化。
而且,其中差分放大器30a至30h中的每一个的输出级能够被设置为高阻抗状态的构造有效地消除提供传统上提供输出开关的需要,并且因此减少了由于通过输出开关的电流的功率消耗导致的发热量,减少了用作显示装置的源极驱动器的LSI的总发热量。此外,通过增加用作用于使小电流在差分放大器30a至30g内流动的开关的小型晶体管的数目能够整体上减少用作源极驱动器的LSI的芯片面积和成本。
第二实施例
接下来,描述本发明的第二实施例中的显示装置。本实施例的显示装置与第一实施例的不同之处在于差分放大器30a至30h的构造。在下面的描述中着重不同之处,并且没有描述与第一实施例相同的要点。在下面的描述中,具有相同构造的差分放大器30a至30h被统一地称为差分放大器33。图8是示出本实施例中的差分放大器33的示例性构造的图。
本实施例的差分放大器33与第一实施例的不同之处在于电流切断开关SW5和SW6被提供在不同的位置并且额外地提供了电流切断开关SW7和SW8。在本实施例的差分放大器33中,P型晶体管MP7和N型晶体管MN7相互并联地连接以构造端子42和43之间的AB类偏置控制电路。
参考图8,在本实施例中,电流切断开关SW5被提供在端子42和P型晶体管MP8的栅极之间。而且,在本实施例中,电流切断开关SW6被提供在端子43和N型晶体管MN8的栅极之间。此外,本实施例的差分放大器33进一步包括电流切断开关SW7和SW8。电流切断开关SW7被提供在端子44和46之间并且电流切断开关SW8被提供在端子45和47之间。
通过选通信号STB的反转信号STBB来控制电流切断开关SW5至SW8。在当选通信号STB被设置为高电平时的时段期间,以与第一实施例相同的方式接通短路开关SW1至SW4,并且电流切断开关SW5至SW8被断开。这有效地避免通过短路开关SW1、P型晶体管MP7、N型晶体管MN7以及短路开关SW2从正电源VDD流到负电源VSS的异常电流,和通过短路开关SW3、P型晶体管MP4、P型晶体管MP7、N型晶体管MN7、N型晶体管MN4以及短路开关SW4从正电源VDD流到负电源VSS的异常电流。
应注意的是,除了上述之外的第二实施例的显示装置的构造与第一实施例的相同。如上所述,本实施例的差分放大器30a至30h分别被提供有上述位置处的电流切断开关SW5、SW6、SW7以及SW8。另外,没有电流切断开关被串联地连接到P型和N型晶体管MP7和MN7的各自的漏极。此构造允许在切换时段期间使具有与通过电流源I3的电流的水平相同的电流水平的电流恒定地流过P型和N型晶体管MP7和MN7。结果,通过P型晶体管MP6、MP4以及MP7和N型晶体管MN7、MN4以及MN6从正电源VDD到负电源VSS的电流路径变为导电状态。这消除了在当选通信号STB被设置为低电平以将差分放大器30a至30h恢复到正常操作时充电被连接到端子42、43、44、以及45的各晶体管的漏极和源极电容的需要,允许以较高的速度操作差分放大器30a至30h。
第三实施例
接下来,描述本发明的第三实施例的显示装置。
[装置构造]
首先,描述本实施例的显示装置的示例性构造。本实施例中的显示装置与第二实施例的显示装置的不同之处在于差分放大器的构造。具体地,本实施例的差分放大器34与第二实施例的不同之处在于没有提供短路开关SW3和SW4以及电流切断开关SW7和SW8并且替代地提供了短路开关SW9和SW10。在下面的描述中着重不同之处,并且没有描述与第二实施例相同的要点。在下面的描述中,具有相同构造的差分放大器30a至30h被统一地称为差分放大器34。图9是示出本实施例中的差分放大器34的构造的图。
差分放大器34的输入级电路被提供有第一差分输入级电路和第二差分输入级电路。第一差分输入级电路包括具有被共同地连接到分别提供恒流的电流源I2和I5的第一端子的源极的P型晶体管MP1和MP2。电流源I2的第二端子被连接到正电源VDD。电流源I5的第二端子通过短路开关SW10被连接到正电源VDD。而且,第二差分输入级电路包括具有被共同地连接到分别提供恒流的电流源I1和I4的第一端子的源极的N型晶体管MN1和MN2。电流源I1的第二端子被连接到负电源VSS。电流源I4的第二端子通过短路开关SW9被连接到负电源VDD。另外,通过选通信号STB控制短路开关SW9和SW10。电流源I4和I5和短路开关SW9和SW10提供流过输入级电路的偏置电流的控制以控制差分放大器34的输出端子Vout处的摆率。
应注意的是,除了上述之外的构造与第二实施例中的相同。
[装置操作]
接下来,描述本实施例中的显示装置的示例性操作。在本实施例中的显示装置与第二实施例的不同之处在于差分放大器的操作。图10是本实施例中的显示装置的时序图。接下来,描述数据线驱动电路32执行点反转驱动的情况。
在图10的时序图中,“STB”表示控制公共结点连接开关10a至10d和短路开关11a至11d的选通信号并且“STBB”表示选通信号的反转信号。“POL”表示控制第一开关3a至3d和第四开关6a至6d的极性反转信号。奇数编号的输出V2n-1表示被输出到奇数编号的数据线14a至14d的灰阶电压(在下文中,可以被称为奇数编号的输出)。偶数编号的输出V2n表示被输出到偶数编号的数据线15a至15d的灰阶电压(在下文中可以被称为偶数编号的输出)。应注意的是,假定被输出到数据线14a至14d的灰阶电压具有相同的电压电平并且被输出到数据线15a至15d的灰阶电压具有相同的电压电平来进行下面的描述。
当在切换时段TWA开始时将选通信号STB上拉到高电平时,短路开关SW1和SW2被接通使得P型晶体管MP8的源极和栅极被短路并且N型晶体管MN8的源极和栅极被短路。结果,P型晶体管MP8和N型晶体管MN8被截止,并且因此输出端子Vout被设置为高阻抗状态。当选通信号STB被设置为高电平时也同时接通短路开关SW9和SW10。结果,电流流过电流源I4和I5,并且因此通过电流源I4和I5的电流水平增加通过输入级电路的偏置电流。即,如图10中所示,这时流过各输入级电路的偏置电流对于第一差分输入级电路来说是(I2+I5)并且对于第二差分输入级电路来说是(I1+I4)。
假定通过I和C分别表示输入级电路内的偏置电流和相位补偿电容器的电容,差分放大器34的输出端子Vout处的摆率SR被确定为SR=I/C。因此,通过输入级电路的偏置电流的增加来增加摆率。这意味着通过适当地设计流过电流源I4和I5的偏置电流I4和I5能够将想要的电荷瞬时地充电到相位补偿电容器C1和C2/能够从相位补偿电容器C1和C2瞬时地放电想要的电荷。即,因为在选通信号被设置为高电平的时段期间输出端子Vout的电压电平中和到接近于公共电极电平Vcom的电压电平,因此相位补偿电容器C1和C2也被充电/放电液晶面板22的电荷到接近于公共电极电平Vcom的电压。
选通信号STB上拉到高电平也导致同时断开电流切断开关SW5和SW6。这有效地避免通过短路开关SW1、P型晶体管MP7、N型晶体管MN7以及短路开关SW2从正电源VDD流到负电源VSS的异常电流。
当然后在第一灰阶电压输出时段TW1开始时将选通信号STB设置为低电平时,短路开关SW1、SW2、SW9以及SW10被断开,并且电流切断开关SW5和SW6被接通。结果,差分放大器34恢复到正常操作。即,在第一和第二差分输入级电路中,流过输入级电路的偏置电流分别减少到偏置电流I2和I1。这时,在切换时段TWA期间,相位补偿电容器C1和C2已经被充电/放电到接近于公共电极电平Vcom的电压电平,并且因此输出端子Vout的电压电平被从公共电极电平Vcom驱动到与输入端子In+相同的电压电平。应注意的是,尽管在上面仅描述了切换时段TWA和第一灰阶电压输出时段,但是本领域的技术人员应理解的是,在切换时段TWB和TWC和其它的切换时段期间,差分放大器34也以相同的方式进行操作。
应注意的是,除了上述之外的构造与第二实施例中的相同。如这样描述的,本发明的显示装置允许构造具有更少量的开关的差分放大器,同时保持与第二实施例相同的效果。
第四实施例
接下来,描述本发明的第四实施例的显示装置。
[装置构造]
首先,描述本实施例中的显示装置的构造。本实施例的显示装置与第一实施例的不同之处在于差分放大器的构造。在下面的描述中着重不同之处,并且没有描述与第一实施例相同的要点。在下面的描述中,具有相同构造的差分放大器30a至30h被统一地称为差分放大器35。图11是示出本实施例中的差分放大器35的示例性构造的图。
本实施例中的差分放大器35的输入级电路被提供有第一差分输入级电路和第二差分输入级电路。第一差分输入级电路包括具有通过提供恒流的电流源I2共同地连接到正电源VDD的源极的一对P型晶体管MP1和MP2。第二差分输入级电路包括具有通过提供恒流的电流源I1共同地连接到负电源VSS的源极的一对N型晶体管MN1和MN2。
P型和N型晶体管MP1和MN1的栅极被连接到输入端子In-,并且P型和N型晶体管MP2和MN2的栅极被连接到输入端子In+。
N型晶体管MN5的源极被连接到负电源VSS。N型晶体管MN6的源极被连接到负电源VSS。N型晶体管MN5的漏极被连接到P型晶体管MP2的漏极。N型晶体管MN6的漏极被连接到P型晶体管MP1的漏极。N型晶体管MN5的栅极被连接到N型晶体管MN6的栅极,并且进一步被连接到N型晶体管MN5的漏极以形成二极管接法。N型晶体管MN5和MN6组成电流镜作为第一差分输入级电路的有源负载。
P型晶体管MP5的源极被连接到正电源VDD。P型晶体管MP6的源极被连接到正电源VDD。P型晶体管MP5的漏极被连接到N型晶体管MN2的漏极。P型晶体管MP6的漏极被连接到N型晶体管MN1的漏极。P型晶体管MP5的栅极被连接到P型晶体管MP6的栅极,并且进一步被连接到P型晶体管MP5的漏极以形成二极管接法。P型晶体管MP5和MP6组成电流镜作为第二差分输入级电路的有源负载。
被提供在P型晶体管MP6的漏极端子42和N型晶体管MN6的漏极端子43之间的是AB类偏置控制电路,其包括:具有被连接到端子42的源极的P型晶体管MP7、被串联地连接到P型晶体管MP7的漏极的电流切断开关SW6、具有被连接到端子43的源极的N型晶体管MN7以及被串联地连接到N型晶体管MN7的漏极的电流切断开关SW5。通过选通信号STB的反转信号STBB来控制电流切断开关SW5和SW6。
通常包括电流镜的电流源I4被提供在端子42和正电源VDD之间,并且通常包括电流镜的电流源I5被提供在端子43和负电源VSS之间。
差分放大器35的输出级被构造为具有被连接到正电源VDD的源极的P型晶体管MP8和具有被连接到负电源VSS的源极的N型晶体管MN8被串联地连接在正和负电源VDD和VSS之间,并且输出端子Vout被连接到P型和N型晶体管MP8和MN8的漏极。P型晶体管MP8的栅极被连接到端子42,并且N型晶体管MN8的栅极被连接到端子43。短路开关SW1被提供在端子42和正电源VDD之间,并且短路开关SW2被提供在端子43和负电源VSS之间。通过选通信号STB来控制短路开关SW1和SW2。
在端子42和输出端子Vout之间,串联地提供零点抵消补偿电阻器R1和相位补偿电容器C1;零点抵消补偿电阻器R1被用于抵消差分放大器35的相位延迟的零点。而且,零点抵消补偿电阻器R2和相位补偿电容器C2被串联地提供在端子43和输出端子Vout之间;零点抵消补偿电阻器R2被用于抵消差分放大器35的相位延迟的零点。
[装置操作]
接下来,参考图7,描述本实施例中的显示装置的示例性操作。
当在切换时段TWA的开始时选通信号STB上拉到高电平时,短路开关SW1和SW2被接通。结果,P型晶体管MP8的栅极和源极被短路并且N型晶体管MN8的栅极和源极被短路。这导致P型晶体管MP8和N型晶体管MN8被截止以将输出端子Vout设置为高阻抗状态。
短路开关SW1的接通导致相位补偿电容器C1的端子42短路到正电源VDD。此外,短路开关SW2的接通导致相位补偿电容器C2的端子43短路到负电源VSS。在选通信号STB被设置为高电平的时段期间,输出端子Vout的电压电平被中和到接近于公共电极电平Vcom的电压电平,并且因此相位补偿电容器C1和C2也被充电/放电液晶面板22的电荷到接近于公共电极电平Vcom的电压电平。
而且,当选通信号STB被设置为高电平时电流切断开关SW5和SW6被断开。这有效地避免通过短路开关SW1、P型晶体管MP7、N型晶体管MN7以及短路开关SW2从正电源VDD流到负电源VSS的异常电流。
当然后在第一灰阶电压输出时段TW1的开始时选通信号被设置为低电平时,短路开关SW1和SW2被断开,并且电流切断开关SW5和SW6被接通。结果,差分放大器35恢复到正常操作。这时,在切换时段TWA期间,相位补偿电容器C1和C2已经被充电/放电到接近于公共电极电平Vcom的电压电平,并且因此输出端子Vout的电压电平被从公共电极电平Vcom驱动到与输入端子In+相同的电压电平。应注意的是,尽管在上面的描述中仅描述切换时段TWA和第一灰阶电压输出时段,但是在切换时段TWB和TWC以及其它的切换时段和其它的灰阶电压输出时段期间,差分放大器35以相同的方式进行操作。
如这样所述,根据本发明的显示装置,差分放大器能够被构造有更少量的晶体管,同时保持与第一实施例中相同的效果。
第五实施例
接下来,描述本发明的第五实施例的显示装置。
[构造的描述]
首先,描述本实施例中的显示装置的示例性构造。本实施例中的显示装置与第四实施例的不同之处在于差分放大器的构造。具体地,将要由附图标记36表示的本实施例的差分放大器与第四实施例中的差分放大器的不同之处在于提供电流切断开关SW5和SW6的位置。接下来,着重于不同之处,并且没有给出与第四实施例中相同的方面的详细描述。
图12是示出本实施例的差分放大器36的示例性构造的图。应注意的是,在图12中,通过“A1”和“A2”分别表示第四实施例中的第一差分输入级电路和第二差分输入级电路。
在本实施例的差分放大器36中,电流切断开关SW5被提供在N型晶体管MN7的漏极和P型晶体管MP8的栅极之间。而且,电流切断开关SW6被提供在N型晶体管MN7的源极和N型晶体管MN8的栅极之间。通过选通信号STB的反转信号STBB控制电流切断开关SW5和SW6。除了上述之外的构造与第四实施例中的相同。
[操作的描述]
接下来,参考图7描述本实施例中的显示装置的示例性操作。
当如图7中所示在切换时段TWA的开始时选通信号STB上拉到高电平时,短路开关SW1和SW2被接通。结果,P型晶体管MP8的栅极和源极被短路并且N型晶体管MN8的栅极和源极被短路。这导致P型晶体管MP8和N型晶体管MN8被截止以将输出端子Vout设置为高阻抗状态。这时,电流切断开关SW5和SW6被断开,并且这有效地避免通过短路开关SW1、P型晶体管MP、N型晶体管MN7以及短路开关SW2从正电源VDD流到负电源VSS的异常电流。
当然后在第一灰阶电压输出时段TW1的开始时选通信号STB被设置为低电平时,短路开关SW1和SW2被断开,并且电流切断开关SW5和SW6被接通。结果,差分放大器36恢复到正常操作。这时,在切换时段TWA期间,相位补偿电容器C1和C2已经被充电/放电到接近于公共电极电平Vcom的电压电平,并且因此输出端子Vout的电压电平被从公共电极电平Vcom驱动到与输入端子In+相同的电压电平。应注意的是,尽管在上面仅描述切换时段TWA和第一灰阶电压输出时段,但是在切换时段TWB和TWC、其它的切换时段以及其它时段期间,差分放大器36以相同的方式进行操作。
除了上述之外的操作与第一实施例中的相同。在第四实施例中,电流切断开关SW6和SW5被提供在各晶体管的漏极连接路径上以阻断由于偏置电压V3导致流过P型和N型晶体管MP7和MN7的异常电流,而在本实施例中电流切断开关SW5和SW6被提供在包括提供到正和负电源VDD和VSS的短路的短路开关SW1和SW2的短路路径上,以阻挡相同的异常电流。结果,通过本实施例中的不同构造也能够获得与第四实施例中相同的效果。
显然的是,本发明不限于上述实施例,而是可以在不脱离本发明的范围的情况下进行修改和变化。

Claims (21)

1.一种显示装置,包括:
多个差分放大器,所述多个差分放大器与显示面板内的多条数据线相关联,所述多个差分放大器分别接收相对于基准电压电平在正和负极性之间切换的灰阶电压并且将接收到的灰阶电压输出到所述多条数据线中的相关联的数据线;和
输出短路部件,所述输出短路部件在切换通过所述多个差分放大器接收的所述灰阶电压的极性的切换时段期间在所述多条数据线之间提供短路,
其中所述多个差分放大器中的每一个包括:
输入电路,所述输入电路包括第一差分输入级电路和第二差分输入级电路,所述第一差分输入级电路包括第一晶体管对并且所述第二差分输入级电路包括第二晶体管对,所述第一和第二晶体管对是互补的;
加法器电路,所述加法器电路包括被提供在所述第一差分输入级电路和正电源之间的第一电流镜电路和被提供在所述第二差分输入级电路和负电源之间的第二电流镜电路;
输出级电路,所述输出级电路包括具有被连接到所述正电源的源极的第一晶体管、具有被连接到所述负电源的源极的第二晶体管、被连接到所述第一和第二晶体管的漏极的输出端子、被提供在所述第一电流镜电路和所述输出端子之间的第一相位补偿电容器、以及被提供在所述第二电流镜电路和所述输出端子之间的第二相位补偿电容器;以及
偏置控制电路,所述偏置控制电路被提供在所述加法器电路和所述输出级电路之间,以实现所述第一和第二晶体管的栅极的偏置控制,
其中,在所述切换时段期间,所述输出级电路在所述第一和第二晶体管中的每一个的栅极和源极之间提供短路,并且将所述第一和第二相位补偿电容器充电或者放电到特定的电压电平,并且
其中,在所述切换时段期间,所述偏置控制电路切断所述第一和第二晶体管的栅极之间的电流路径。
2.根据权利要求1所述的显示装置,其中所述输出级电路进一步包括:
第一开关,所述第一开关被连接在所述第一晶体管的栅极和源极之间,以在所述切换时段期间在所述第一晶体管的栅极和源极之间提供短路;
第二开关,所述第二开关被连接在所述第二晶体管的栅极和源极之间,以在所述切换时段期间在所述第二晶体管的栅极和源极之间提供短路;
第三开关,所述第三开关被提供在所述正电源和所述第一相位补偿电容器与所述第一电流镜电路的第一连接结点之间,以在所述正电源和所述第一连接结点之间提供短路;以及
第四开关,所述第四开关被连接在所述负电源和所述第二相位补偿电容器与所述第二电流镜电路的第二连接结点之间,以在所述负电源和所述第二连接结点之间提供短路。
3.根据权利要求1或者2所述的显示装置,其中所述偏置控制电路包括:
第三和第四晶体管,所述第三和第四晶体管被并联地连接在第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路和所述第一晶体管的栅极,并且所述第四连接结点被连接到所述第二电流镜电路和所述第二晶体管的栅极;
第五开关,所述第五开关被串联地连接到所述第三和第四连接结点之间的所述第三晶体管,在所述切换时段期间,所述第五开关被断开从而切断通过所述第三晶体管的、所述第三和第四连接结点之间的电流路径;以及
第六开关,所述第六开关被串联地连接到所述第三和第四连接结点之间的所述第四晶体管,在所述切换时段期间,所述第六开关被断开从而切断通过所述第四晶体管的所述第三和第四连接结点之间的电流路径。
4.根据权利要求1或者2所述的显示装置,其中所述偏置控制电路包括:
第三和第四晶体管,所述第三和第四晶体管被并联地连接在第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路,并且所述第四连接结点被连接到所述第二电流镜电路;
第五开关,所述第五开关被连接在所述第三连接结点和所述第一晶体管的栅极之间,在所述切换时段期间,所述第五开关被断开以切断所述第三连接结点和所述第一晶体管的栅极之间的电流路径;
第六开关,所述第六开关被连接在所述第四连接结点和所述第二晶体管的栅极之间,在所述切换时段期间,所述第六开关被断开以切断所述第四连接结点和所述第二晶体管的栅极之间的电流路径;
第七开关,所述第七开关被连接在所述第一相位补偿电容器和所述第一电流镜电路之间,在所述切换时段期间,所述第七开关被断开以切断所述第一电流镜电路和所述输出端子之间的电流路径;以及
第八开关,所述第八开关被连接在所述第二相位补偿电容器和所述第二电流镜电路之间,在所述切换时段期间,所述第八开关被断开以切断所述第二电流镜电路和所述输出端子之间的电流路径。
5.根据权利要求1所述的显示装置,其中所述输出级电路进一步包括:
第一开关,所述第一开关被连接在所述第一晶体管的栅极和源极之间,以在所述切换时段期间在所述第一晶体管的栅极和源极之间提供短路;和
第二开关,所述第二开关被连接在所述第二晶体管的栅极和源极之间,以在所述切换时段期间在所述第二晶体管的栅极和源极之间提供短路,并且
其中所述输入电路进一步包括:
第三开关,所述第三开关控制被馈送到所述第一差分输入级电路的偏置电流;以及
第四开关,所述第四开关控制被馈送到所述第二差分输入级电路的偏置电流。
6.根据权利要求5所述的显示装置,其中所述第三开关被连接在所述第一差分输入级电路和所述负电源之间,并且
其中所述第四开关被连接在所述第二差分输入级电路和所述正电源之间。
7.根据权利要求5或者6所述的显示装置,其中所述偏置控制电路包括:
第三和第四晶体管,所述第三和第四晶体管被并联地连接在第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路,并且所述第四连接结点被连接到所述第二电流镜电路;
第五开关,所述第五开关被连接在所述第三连接结点和所述第一晶体管的栅极之间,在所述切换时段期间,所述第五开关被断开以切断所述第三连接结点和所述第一晶体管的栅极之间的电流路径;
第六开关,所述第六开关被连接在所述第四连接结点和所述第二晶体管的栅极之间,在所述切换时段期间,所述第六开关被断开以切断所述第四连接结点和所述第二晶体管的栅极之间的电流路径。
8.根据权利要求1所述的显示装置,其中所述第一晶体管的栅极被连接到所述第一相位补偿电容器和所述第一电流镜电路之间的连接结点,
其中所述第二晶体管的栅极被连接到所述第二相位补偿电容器和所述第二电流镜电路之间的连接结点,
其中所述输出级电路进一步包括:
第一相位补偿电阻器,所述第一相位补偿电阻器被串联地连接到所述第一晶体管的栅极和所述输出端子之间的所述第一相位补偿电容器;
第二相位补偿电阻器,所述第二相位补偿电阻器被串联地连接到所述第二晶体管的栅极和所述输出端子之间的所述第二相位补偿电容器;
第一开关,所述第一开关被连接在所述第一晶体管的栅极和源极之间,以在所述切换时段期间在所述第一晶体管的栅极和源极之间提供短路;以及
第二开关,所述第二开关被连接在所述第二晶体管的栅极和源极之间,以在所述切换时段期间在所述第二晶体管的栅极和源极之间提供短路。
9.根据权利要求8所述的显示装置,其中所述偏置控制电路包括:
第三和第四晶体管,所述第三和第四晶体管被并联地连接在第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路和所述第一晶体管的栅极,并且所述第四连接结点被连接到所述第二电流镜电路和所述第二晶体管的栅极;
第三开关,所述第三开关被串联地连接到所述第三和第四连接结点之间的所述第三晶体管,在所述切换时段期间,所述第三开关被断开从而切断通过所述第三晶体管的、所述第三和第四连接结点之间的电流路径;以及
第四开关,所述第四开关被串联地连接到所述第三和第四连接结点之间的第四晶体管,在所述切换时段期间,所述第四开关被断开从而切断通过所述第四晶体管的、所述第三和第四连接结点之间的电流路径。
10.根据权利要求8所述的显示装置,其中所述偏置控制电路包括:
第三和第四晶体管,所述第三和第四晶体管被并联地连接在第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路,并且所述第四连接结点被连接到所述第二电流镜电路;
第三开关,所述第三开关被连接在所述第三连接结点和所述第一晶体管的栅极之间,在所述切换时段期间,所述第三开关被断开以切断所述第三连接结点和所述第一晶体管的栅极之间的电流路径;以及
第四开关,所述第四开关被连接在所述第四连接结点和所述第二晶体管的栅极之间,在所述切换时段期间,所述第四开关被断开以切断所述第四连接结点和所述第二晶体管的栅极之间的电流路径。
11.一种差分放大器,包括:
输入电路,所述输入电路包括第一差分输入级电路和第二差分输入级电路,所述第一差分输入级电路包括第一晶体管对并且所述第二差分输入级电路包括第二晶体管对,所述第一和第二晶体管对是互补的;
加法器电路,所述加法器电路包括被提供在所述第一差分输入级电路和正电源之间的第一电流镜电路和被提供在所述第二差分输入级电路和负电源之间的第二电流镜电路;
输出级电路,所述输出级电路包括具有被连接到所述正电源的源极的第一晶体管、具有被连接到所述负电源的源极的第二晶体管、被连接到所述第一和第二晶体管的漏极的输出端子、被提供在所述第一电流镜电路和所述输出端子之间的第一相位补偿电容器、以及被提供在所述第二电流镜电路和所述输出端子之间的第二相位补偿电容器;以及
偏置控制电路,所述偏置控制电路被提供在所述加法器电路和所述输出级电路之间,以实现所述第一和第二晶体管的栅极的偏置控制,
其中,在切换时段期间,所述输出级电路在所述第一晶体管的栅极和源极之间提供短路并且在所述第二晶体管的栅极和源极之间提供短路,并且将所述第一和第二相位补偿电容器充电或者放电到特定的电压电平,并且
其中,在所述切换时段期间,所述偏置控制电路切断所述第一和第二晶体管的栅极之间的电流路径。
12.一种用于显示装置的数据线驱动方法,
所述显示装置包括:
多个差分放大器,所述多个差分放大器与显示面板内的多条数据线相关联,所述多个差分放大器分别接收相对于基准电压电平在正和负极性之间切换的灰阶电压并且将接收到的灰阶电压输出到所述多条数据线中的相关联的数据线;和
输出短路部件,所述输出短路部件在切换通过所述多个差分放大器接收的所述灰阶电压的极性的切换时段期间在所述多条数据线之间提供短路,
所述多个差分放大器中的每一个包括:
输入电路,所述输入电路包括第一差分输入级电路和第二差分输入级电路,所述第一差分输入级电路包括第一晶体管对并且所述第二差分输入级电路包括第二晶体管对,所述第一和第二晶体管对是互补的;
加法器电路,所述加法器电路包括被提供在所述第一差分输入级电路和正电源之间的第一电流镜电路和被提供在所述第二差分输入级电路和负电源之间的第二电流镜电路;
输出级电路,所述输出级电路包括具有被连接到所述正电源的源极的第一晶体管、具有被连接到所述负电源的源极的第二晶体管、被连接到所述第一和第二晶体管的漏极的输出端子、被提供在所述第一电流镜电路和所述输出端子之间的第一相位补偿电容器、以及被提供在所述第二电流镜电路和所述输出端子之间的第二相位补偿电容器;以及
偏置控制电路,所述偏置控制电路被提供在所述加法器电路和所述输出级电路之间,以实现所述第一和第二晶体管的栅极的偏置控制,
所述方法包括:
在所述切换时段期间,短路所述第一和第二晶体管中的每一个的栅极和源极;
在所述切换时段期间,将所述第一和第二相位补偿电容器充电或者放电到特定的电压电平;以及
在所述切换时段期间,切断所述第一和第二晶体管的栅极之间的电流路径。
13.根据权利要求12所述的数据线驱动方法,其中所述短路包括:
通过被连接在所述第一晶体管的栅极和源极之间的第一开关,在所述切换时段期间,短路所述第一晶体管的栅极和源极;和
通过被连接在所述第二晶体管的栅极和源极之间的第二开关,在所述切换时段期间,短路所述第二晶体管的栅极和源极,
其中所述充电或者放电包括:
通过被连接在所述正电源和所述第一相位补偿电容器与所述第一电流镜电路的第一连接结点之间的第三开关,在所述切换时段期间,短路所述正电源和所述第一连接结点;
通过被连接在所述负电源和所述第二相位补偿电容器与所述第二电流镜电路的第二连接结点之间的第四开关,在所述切换时段期间,短路所述负电源和所述第二连接结点。
14.根据权利要求12或者13所述的数据线驱动方法,其中所述偏置控制电路包括:第三和第四晶体管,所述第三和第四晶体管被并联地连接在所述第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路和所述第一晶体管的栅极,并且所述第四连接结点被连接到所述第二电流镜电路和所述第二晶体管的栅极;
其中所述切断包括:
通过断开被串联地连接到所述第三和第四连接结点之间的所述第三晶体管的第五开关,在所述切换时段期间,切断通过所述第三晶体管的、所述第三和第四连接结点之间的电流路径;和
通过断开被串联地连接到所述第三和第四连接结点之间的所述第四晶体管的第六开关,在所述切换时段期间,切断通过所述第四晶体管的、所述第三和第四连接结点之间的电流路径。
15.根据权利要求12或者13所述的数据线驱动方法,其中所述偏置控制电路包括:第三和第四晶体管,所述第三和第四晶体管被并联地连接在所述第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路,并且所述第四连接结点被连接到所述第二电流镜电路;
其中所述切断包括:
通过断开被连接在所述第三连接结点和所述第一晶体管的栅极之间的第五开关,在所述切换时段期间,切断所述第三连接结点和所述第一晶体管的栅极之间的电流路径;
通过断开被连接在所述第四连接结点和所述第二晶体管的栅极之间的第六开关,在所述切换时段期间,切断所述第四连接结点和所述第二晶体管的栅极之间的电流路径;
通过断开所述第一相位补偿电容器和所述第一电流镜电路之间的第七开关,在所述切换时段期间,切断所述第一电流镜电路和所述输出端子之间的电流路径;以及
通过断开所述第二相位补偿电容器和所述第二电流镜电路之间的第八开关,在所述切换时段期间,切断所述第二电流镜电路和所述输出端子之间的电流路径。
16.根据权利要求12所述的数据线驱动方法,进一步包括:
控制被馈送到所述第一差分输入级电路的偏置电流;和
控制被馈送到所述第二差分输入级电路的偏置电流,
其中所述短路包括:
通过被连接在所述第一晶体管的栅极和源极之间的第一开关,在所述切换时段期间,短路所述第一晶体管的栅极和源极;和
通过被连接在所述第二晶体管的栅极和源极之间的第二开关,在所述切换时段期间,短路所述第二晶体管的栅极和源极。
17.根据权利要求16所述的数据线驱动方法,其中所述控制被馈送到所述第一差分输入级电路的偏置电流包括:通过被连接在所述第一差分输入级电路和所述负电源之间的第三开关,控制被馈送到所述第一差分输入级电路的偏置电流,和
其中所述控制被馈送到所述第二差分输入级电路的偏置电流包括:通过被连接在所述第二差分输入级电路和所述正电源之间的第四开关,控制被馈送到所述第二差分输入级电路的偏置电流。
18.根据权利要求16或者17所述的数据线驱动方法,其中所述偏置控制电路包括:第三和第四晶体管,所述第三和第四晶体管被并联地连接在所述第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路,并且所述第四连接结点被连接到所述第二电流镜电路;
其中所述切断包括:
通过断开被连接在所述第三连接结点和所述第一晶体管的栅极之间的第五开关,在所述切换时段期间,切断所述第三连接结点和所述第一晶体管的栅极之间的电流路径;和
通过断开被连接在所述第四连接结点和所述第二晶体管的栅极之间的第六开关,在所述切换时段期间,切断所述第四连接结点和所述第二晶体管的栅极之间的电流路径。
19.根据权利要求12所述的数据线驱动方法,其中所述第一晶体管的栅极被连接到所述第一相位补偿电容器和所述第一电流镜电路之间的连接结点,
其中所述第二晶体管的栅极被连接到所述第二相位补偿电容器和所述第二电流镜电路之间的连接结点,
其中所述输出级电路进一步包括:
第一相位补偿电阻器,所述第一相位补偿电阻器被串联地连接到所述第一晶体管的栅极和所述输出端子之间的所述第一相位补偿电容器;和
第二相位补偿电阻器,所述第二相位补偿电阻器被串联地连接到所述第二晶体管的栅极和所述输出端子之间的所述第二相位补偿电容器;
其中所述短路包括:
通过被连接在所述第一晶体管的栅极和源极之间的第一开关,在所述切换时段期间,短路所述第一晶体管的栅极和源极;以及
通过被连接在所述第二晶体管的栅极和源极之间的第二开关,在所述切换时段期间,短路所述第二晶体管的栅极和源极。
20.根据权利要求19所述的数据线驱动方法,其中所述偏置控制电路包括:第三和第四晶体管,所述第三和第四晶体管被并联地连接在第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路和所述第一晶体管的栅极,并且所述第四连接结点被连接到所述第二电流镜电路和所述第二晶体管的栅极;
其中所述切断包括:
通过断开被串联地连接到所述第三和第四连接结点之间的所述第三晶体管的第三开关,在所述切换时段期间,切断通过所述第三晶体管的、所述第三和第四连接结点之间的电流路径;和
通过断开被串联地连接到所述第三和第四连接结点之间的所述第四晶体管的第四开关,在所述切换时段期间,切断通过所述第四晶体管的、所述第三和第四连接结点之间的电流路径。
21.根据权利要求19所述的数据线驱动方法,其中所述偏置控制电路包括:第三和第四晶体管,所述第三和第四晶体管被并联地连接在第三和第四连接结点之间,所述第三连接结点被连接到所述第一电流镜电路,并且所述第四连接结点被连接到所述第二电流镜电路;
其中所述切断包括:
通过断开被连接在所述第三连接结点和所述第一晶体管的栅极之间的第三开关,在所述切换时段期间,切断所述第三连接结点和所述第一晶体管的栅极之间的电流路径;和
通过断开被连接在所述第四连接结点和所述第二晶体管的栅极之间的第四开关,在所述切换时段期间,切断所述第四连接结点和所述第二晶体管的栅极之间的电流路径。
CN2011100839963A 2010-03-30 2011-03-30 显示装置、差分放大器及用于显示装置的数据线驱动方法 Pending CN102208173A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-076838 2010-03-30
JP2010076838A JP2011209489A (ja) 2010-03-30 2010-03-30 表示装置、差動増幅回路、表示装置のデータ線駆動方法

Publications (1)

Publication Number Publication Date
CN102208173A true CN102208173A (zh) 2011-10-05

Family

ID=44696976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100839963A Pending CN102208173A (zh) 2010-03-30 2011-03-30 显示装置、差分放大器及用于显示装置的数据线驱动方法

Country Status (3)

Country Link
US (1) US20110242145A1 (zh)
JP (1) JP2011209489A (zh)
CN (1) CN102208173A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079115A1 (zh) * 2012-11-23 2014-05-30 深圳市华星光电技术有限公司 液晶面板的驱动方法及驱动电路
CN107659306A (zh) * 2011-12-15 2018-02-02 瑞萨电子株式会社 Pll电路
CN108053799A (zh) * 2018-01-23 2018-05-18 深圳市华星光电技术有限公司 放大电路、源极驱动器及液晶显示器
CN108615491A (zh) * 2018-05-16 2018-10-02 京东方科技集团股份有限公司 老化检测电路、老化补偿模块和显示面板
CN108962156A (zh) * 2017-05-17 2018-12-07 拉碧斯半导体株式会社 半导体装置及数据驱动器
CN109215589A (zh) * 2017-07-06 2019-01-15 拉碧斯半导体株式会社 输出放大器以及显示驱动器

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730500B1 (ko) * 2010-11-25 2017-04-27 삼성디스플레이 주식회사 액정 표시 장치 및 그 구동 방법
JP2013041029A (ja) * 2011-08-12 2013-02-28 Semiconductor Components Industries Llc 液晶駆動回路
US8917453B2 (en) 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
US8638498B2 (en) 2012-01-04 2014-01-28 David D. Bohn Eyebox adjustment for interpupillary distance
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9779643B2 (en) * 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US9558590B2 (en) 2012-03-28 2017-01-31 Microsoft Technology Licensing, Llc Augmented reality light guide display
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
JP2016206283A (ja) 2015-04-17 2016-12-08 シナプティクス・ジャパン合同会社 駆動装置、表示ドライバ、及び電子機器
JP6542049B2 (ja) * 2015-07-08 2019-07-10 アルプスアルパイン株式会社 出力回路
US10467975B2 (en) * 2016-03-17 2019-11-05 Samsung Electronics Co., Ltd. Display driving device and display device
US10861508B1 (en) * 2019-11-11 2020-12-08 Sandisk Technologies Llc Transmitting DBI over strobe in nonvolatile memory
CN113257200A (zh) * 2020-02-13 2021-08-13 晶门科技(中国)有限公司 一种源极驱动装置、方法以及一种面板驱动系统
US11847942B2 (en) * 2020-02-21 2023-12-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11514975B2 (en) * 2021-03-18 2022-11-29 Elite Semiconductor Microelectronics Technology Inc. Amplifier and LPDDR3 input buffer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614704B2 (ja) * 2003-07-23 2011-01-19 ルネサスエレクトロニクス株式会社 差動増幅器及びデータドライバと表示装置
KR100674913B1 (ko) * 2004-09-24 2007-01-26 삼성전자주식회사 캐스코드 형태의 클래스 ab 제어단을 구비하는 차동증폭 회로
JP4789136B2 (ja) * 2005-04-07 2011-10-12 ルネサスエレクトロニクス株式会社 演算増幅器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659306A (zh) * 2011-12-15 2018-02-02 瑞萨电子株式会社 Pll电路
CN107659306B (zh) * 2011-12-15 2022-02-18 瑞萨电子株式会社 Pll电路
WO2014079115A1 (zh) * 2012-11-23 2014-05-30 深圳市华星光电技术有限公司 液晶面板的驱动方法及驱动电路
CN108962156A (zh) * 2017-05-17 2018-12-07 拉碧斯半导体株式会社 半导体装置及数据驱动器
CN108962156B (zh) * 2017-05-17 2022-04-26 拉碧斯半导体株式会社 半导体装置及数据驱动器
CN109215589A (zh) * 2017-07-06 2019-01-15 拉碧斯半导体株式会社 输出放大器以及显示驱动器
CN108053799A (zh) * 2018-01-23 2018-05-18 深圳市华星光电技术有限公司 放大电路、源极驱动器及液晶显示器
CN108615491A (zh) * 2018-05-16 2018-10-02 京东方科技集团股份有限公司 老化检测电路、老化补偿模块和显示面板

Also Published As

Publication number Publication date
US20110242145A1 (en) 2011-10-06
JP2011209489A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
CN102208173A (zh) 显示装置、差分放大器及用于显示装置的数据线驱动方法
KR100231358B1 (ko) 액정표시장치의 구동방법
US6995741B2 (en) Driving circuit and driving method
CN101174397B (zh) 数据驱动器及显示装置
US8159437B2 (en) Liquid crystal display device with influences of offset voltages reduced
US6731170B2 (en) Source drive amplifier of a liquid crystal display
CN101089937B (zh) 用于平板显示器的源驱动放大器
US20020180720A1 (en) Operational amplifier circuit, driving circuit and driving method
US7573333B2 (en) Amplifier and driving circuit using the same
CN101364794A (zh) 放大电路和显示单元
CN104282253A (zh) 显示驱动电路及显示装置
US20080238843A1 (en) Liquid crystal device, driving circuit for liquid crystal device, method of driving liquid crystal device, and electronic apparatus
CN104078013A (zh) 放大电路、源极驱动器、光电装置及电子设备
JP2009303121A (ja) 演算増幅器回路、その演算増幅器回路を用いた液晶表示装置の駆動方法
JP2012088513A (ja) 液晶表示装置駆動回路、駆動方法
CN105190738A (zh) 显示驱动电路以及显示装置
US8605070B2 (en) Operational amplifier and display panel driving device
JP5236434B2 (ja) 表示パネルの駆動電圧出力回路
JP3307308B2 (ja) 出力回路
KR100543227B1 (ko) 오프셋 보상회로
JP3295953B2 (ja) 液晶表示体駆動装置
JP3943687B2 (ja) 表示装置
JP3981526B2 (ja) 液晶駆動用電源回路並びにそれを用いた液晶装置及び電子機器
CN102568419A (zh) 驱动电路
US20100033466A1 (en) Display driving device, semiconductor device and liquid crystal display apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111005