CN102201311B - 碳纳米管浆料的制备方法 - Google Patents

碳纳米管浆料的制备方法 Download PDF

Info

Publication number
CN102201311B
CN102201311B CN2011100976481A CN201110097648A CN102201311B CN 102201311 B CN102201311 B CN 102201311B CN 2011100976481 A CN2011100976481 A CN 2011100976481A CN 201110097648 A CN201110097648 A CN 201110097648A CN 102201311 B CN102201311 B CN 102201311B
Authority
CN
China
Prior art keywords
carbon nano
tube
paste
preparation
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011100976481A
Other languages
English (en)
Other versions
CN102201311A (zh
Inventor
蔡琪
柳鹏
周段亮
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2011100976481A priority Critical patent/CN102201311B/zh
Priority to TW100115293A priority patent/TWI408103B/zh
Priority to US13/210,405 priority patent/US9048055B2/en
Publication of CN102201311A publication Critical patent/CN102201311A/zh
Application granted granted Critical
Publication of CN102201311B publication Critical patent/CN102201311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Abstract

本发明涉及一种碳纳米管浆料的制备方法,其包括以下步骤:提供至少一碳纳米管膜,所述碳纳米管膜包括多个碳纳米管沿同一方向择优取向延伸;提供一基板,将所述至少一碳纳米管膜设置于基板表面;沿所述碳纳米管的延伸方向每间隔一段距离,利用激光沿垂直于所述碳纳米管延伸方向的方向切割所述至少一碳纳米管膜,形成碳纳米管长度基本一致的碳纳米管原料;将所述碳纳米管原料与无机粘结剂以及有机载体在有机溶剂中混合形成一混合物;以及去除所述有机溶剂。

Description

碳纳米管浆料的制备方法
技术领域
本发明涉及一种碳纳米管浆料的制备方法,尤其涉及一种场发射碳纳米管浆料的制备方法。
背景技术
场发射体是场发射器件的重要元件,如何将场发射体组装到场发射器件中,一直是场发射显示器件面临的关键性问题。
对于碳纳米管(Carbon nanotube,CNT)场发射显示器,目前主流的装配方法为直接生长CNT或涂覆CNT浆料的方法,其中涂覆的方法包括丝网印刷法、旋涂法或喷墨法等。现有技术中碳纳米管浆料的制备方法包括:生长碳纳米管;对碳纳米管进行处理得到碳纳米管原料;然后将碳纳米管原料在有机溶剂中超声波分散并加入其他填料;以及去除有机溶剂。
然而,由于现有技术中得到的碳纳米管原料中的碳纳米管长度分布不均匀,从而影响了碳纳米管浆料的场发射性能。如何获得长度均匀的碳纳米管是提高碳纳米管浆料构成的场发射体性能的关键问题之一。
发明内容
综上所述,确有必要提供一种碳纳米管长度分布均匀的碳纳米管浆料的制备方法。
一种碳纳米管浆料的制备方法,其包括以下步骤:提供至少一碳纳米管膜,所述碳纳米管膜包括多个碳纳米管沿同一方向择优取向延伸;提供一基板,将所述至少一碳纳米管膜设置于基板表面,所述碳纳米管膜中碳纳米管的延伸方向基本平行于所述基板的表面;沿所述碳纳米管的延伸方向每间隔一段距离,利用激光沿垂直于所述碳纳米管延伸方向的方向切割所述至少一碳纳米管膜,形成碳纳米管长度基本一致的碳纳米管原料;将所述碳纳米管原料与无机粘结剂以及有机载体在有机溶剂中混合形成一混合物;以及去除所述有机溶剂。
一种碳纳米管浆料的制备方法,其包括以下步骤:提供一连续的碳纳米管膜,该碳纳米管膜设置于一基板表面,所述碳纳米管膜包括多个碳纳米管,该多个碳纳米管基本平行于所述基板表面且沿同一方向择优取向延伸;利用激光切割所述碳纳米管膜,将连续的碳纳米管膜切断成多个宽度相同的碳纳米管带,激光切割的方向垂直于所述碳纳米管的延伸方向;将多个碳纳米管带从所述基板表面剥离获得碳纳米管原料;将所述碳纳米管原料与无机粘结剂以及有机载体在有机溶剂中混合形成一混合物;以及去除所述有机溶剂。
相较于现有技术,本发明提供的碳纳米管浆料的制备方法,具有以下优点:首先,由于所述碳纳米管浆料中碳纳米管原料为通过激光切割的方式制备,由于激光稳定性高,可确保所述碳纳米管原料中碳纳米管的长度基本一致,从而用于场发射时可以获得均匀的场发射电流;其次,本发明将一碳纳米管膜铺设于基底上,碳纳米管膜能较好地附着于基底表面,方法简单可控,并且在后续激光切割时,能够较容易精确控制切割形成的碳纳米管具有相同的长度。
附图说明
图1为本发明实施例提供的碳纳米管浆料的制备方法的工艺流程图。
图2为本发明实施例提供的碳纳米管浆料的制备方法中采用的碳纳米管膜的电子扫描电镜照片。
图3为本发明实施例提供的碳纳米管浆料的制备方法中采用的碳纳米管原料的制备流程图。
图4为本发明实施例提供的碳纳米管浆料的制备方法中经激光切割一次后的碳纳米管膜的电子扫描电镜照片。
图5为图4的局部放大的电子扫描电镜照片。
图6为本发明实施例提供的碳纳米管浆料的制备方法采用的碳纳米管原料的电子扫描电镜照片。
图7为图6中局部放大的电子扫描电镜照片。
图8为现有技术中碳纳米管浆料的电子扫描电镜照片。
图9为采用图1所述制备方法制备的碳纳米管浆料的电子扫描电镜照片。
图10为采用图1所述制备方法制备的碳纳米管浆料与现有技术制备的碳纳米管浆料的场发射特性对比图。
主要元件符号说明
基板 100
碳纳米管膜 102
激光装置 110
扫描行 112
碳纳米管带 1021
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图详细说明本发明实施例提供的碳纳米管浆料的制备方法。
请参阅图1至图3,本发明实施例提供一种碳纳米管浆料的制备方法,其具体包括以下步骤:
S10,提供一基板100;
S11,提供至少一碳纳米管膜102,将所述至少一碳纳米管膜102设置于基板100表面;
S12,利用激光切割所述至少一碳纳米管膜102,形成碳纳米管长度一致的碳纳米管原料;
S13,将所述碳纳米管原料、无机粘结剂以及有机载体在有机溶剂中混合形成一混合物;
S14,去除所述有机溶剂。
在步骤S10中,所述基板100的可为石墨、玻璃、陶瓷、石英或二氧化硅等,可以理解,所述基板100的材料不限于以上所举,只要所述基板100的材料具有一定的机械强度,形成一平整的表面即可,优选的,所述基板100为耐高温、且化学性质比较稳定的材料。所述基板100的表面可利用物理抛光化学抛光的方法进行抛光,形成一光滑平整的平面。本实施例中,所述基板100的材料为石英,所述光滑的表面可使碳纳米管膜102平整的设置于所述基板100的表面,并与所述基板100紧密接触,减少气泡的产生。
如图2所示,在步骤S11中,所述碳纳米管膜102是由若干碳纳米管组成的自支撑结构。所述“自支撑”为碳纳米管膜102不需要大面积的载体支撑,而只要相对两边提供支撑力即能整体上悬空而保持自身膜状状态,即将该碳纳米管膜102置于(或固定于)间隔一定距离设置的两个支撑体上时,位于两个支撑体之间的碳纳米管膜102能够悬空保持自身膜状状态。所述自支撑主要通过碳纳米管膜102中存在连续的通过范德华力首尾相连延伸的碳纳米管而实现。所述若干碳纳米管的轴向为沿同一方向择优取向延伸。所述择优取向是指在碳纳米管膜102中大多数碳纳米管的整体延伸方向基本朝同一方向。而且,所述大多数碳纳米管的整体延伸方向基本平行于碳纳米管膜102的表面。进一步地,所述碳纳米管膜102中多数碳纳米管是通过范德华力首尾相连。具体地,所述碳纳米管膜102中基本朝同一方向延伸的大多数碳纳米管中每一碳纳米管与在延伸方向上相邻的碳纳米管通过范德华力首尾相连。当然,所述碳纳米管膜102中存在少数随机排列的碳纳米管,这些碳纳米管不会对碳纳米管膜102中大多数碳纳米管的整体取向延伸构成明显影响。该碳纳米管膜102可为多个碳纳米管组成的纯结构,所述“纯结构”是指该碳纳米管膜102中碳纳米管未经过任何化学修饰或功能化处理。
所述碳纳米管为单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5纳米~50纳米,所述双壁碳纳米管的直径为1.0纳米~50纳米,所述多壁碳纳米管的直径为1.5纳米~50纳米。所述碳纳米管的长度为200微米~300微米。
具体地,所述碳纳米管膜102中基本朝同一方向延伸的多数碳纳米管,并非绝对的直线状,可以适当的弯曲;或者并非完全按照延伸方向上延伸,可以适当的偏离延伸方向。因此,不能排除碳纳米管膜102的基本朝同一方向延伸的多数碳纳米管中并列的碳纳米管之间可能存在部分接触。进一步地,所述碳纳米管膜102包括多个首尾相连且定向延伸的碳纳米管片段,碳纳米管片段两端通过范德华力相互连接。该碳纳米管片段包括多个相互平行排列的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。所述碳纳米管膜102及其制备方法具体请参见申请人于2007年2月9日申请的,于2010年5月26日公告的第CN101239712B号中国公开专利“碳纳米管膜102结构及其制备方法”。为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。
由于所述碳纳米管膜102为自支撑结构,所述碳纳米管膜102可直接铺设在所述基板100表面并与所述基板100接触设置,所述碳纳米管膜102通过范德华力固定附着于基板100表面。所述碳纳米管膜102包括多个碳纳米管,该多个碳纳米管沿着基本平行于基板100表面的方向延伸。
进一步的,可将多层碳纳米管膜102层叠铺设于基板100表面,所述多层碳纳米管膜102彼此平行设置,相邻两碳纳米管膜102之间通过范德华力紧密结合。所述多层碳纳米管膜102彼此平行是指,相邻两碳纳米管膜102中的碳纳米管的延伸方向相同。所述碳纳米管膜102层叠的层数不限,本实施例中,所述碳纳米管膜102的层数为1000层。
进一步地,在将所述碳纳米管膜102铺设在所述基板100表面后,可进一步用有机溶剂处理所述碳纳米管膜102,利用有机溶剂挥发过程中产生的表面张力,可使碳纳米管膜102中的碳纳米管与基板100紧密接触,减少铺设过程中产生的气泡,并增加附着稳定性。该有机溶剂可选用乙醇、甲醇、丙酮、二氯乙烷和氯仿中一种或者几种的混合。本实施例中的有机溶剂采用乙醇。该使用有机溶剂处理的步骤可通过试管将有机溶剂滴落在碳纳米管膜102表面浸润整个碳纳米管膜102或将整个碳纳米管膜102浸入盛有有机溶剂的容器中浸润。
请参阅图3,在步骤S12中,所述激光切割可利用一激光装置110发射一脉冲激光,该激光的功率不限,可为1瓦至100瓦。该激光具有较好的定向性,因此在碳纳米管膜102表面可形成一光斑。该激光在碳纳米管膜102表面具有的功率密度可大于0.053×1012瓦特/平方米。本实施例中,该激光装置110为一个二氧化碳激光器,该激光器的额定功率为12瓦特。可以理解,该激光装置110也可以选择为能够发射连续激光的激光器。
所述激光形成的光斑基本为圆形,直径为1微米~5毫米。可以理解,该光斑可为将激光聚焦后形成或由激光直接照射在碳纳米管膜102表面形成。优选的,聚焦形成的光斑具有较小的直径,如5微米。所述较小直径的光斑可以在碳纳米管膜102表面形成较细的切痕,从而减少被烧蚀掉的碳纳米管。
所述激光沿基本垂直于所述基板100的方向扫描切割所述碳纳米管膜102,并且所述激光的切割方向垂直于碳纳米管膜102中所述碳纳米管的择优取向延伸的方向。定义所述碳纳米管膜102中大多数碳纳米管的整体延伸方向为x,则所述激光相对于所述x方向垂直移动照射所述碳纳米管膜102。该激光与碳纳米管膜102相对运动时,可以采用下列方式进行,例如保持该激光束固定不动,通过移动该碳纳米管膜102实现;或者,固定该碳纳米管膜102不动,通过移动该激光实现。该激光装置可整体相对于该碳纳米管膜102平移,或者仅通过改变激光装置出光部的出光角度,实现发射的激光形成的光斑在该碳纳米管膜102产生位置变化。
所述切割次数可为1~10次,所述切割速度可为5毫米/秒~200毫米/秒,优选的,所述切割速度为10毫米/秒~50毫米/秒。所述激光功率、切割速度以及切割次数可根据实际需要进行组合,以使所述切割位置的碳纳米管膜102能够完全的切断。所述切割次数是指所述激光沿同一切割路径对所述碳纳米管膜102进行扫描切割的次数;所述切割速度是指所述激光沿垂直于所述碳纳米管膜102中碳纳米管的择优取向方向上相对于碳纳米管膜102的移动速度。所述激光器的功率越大,切割速度越慢,则将碳纳米管膜102完全切断需要的切割次数越少,反之就越多。本实施例中,所述激光可为二氧化碳激光器,所述激光功率为12W,切割次数为3次,切割速度为50毫米/秒。进一步的,所述激光的参数可根据基板100的材料以及实际需要进行选择,只要保证所述激光能够将所述碳纳米管膜102完全切断,并同时可减少对基板100的烧蚀即可。
请参阅图3至图5,沿所述碳纳米管的延伸方向每间隔一段距离,利用激光沿垂直于所述碳纳米管延伸方向的方向切割所述至少一碳纳米管膜。具体地,在激光切割的过程中,所述激光沿垂直于x的方向扫描所述碳纳米管膜102,每扫描一次,所述扫描位置处的部分碳纳米管被烧蚀掉,然后经过多次烧蚀,将所述碳纳米管膜102在此处切断,形成一扫描行112;然后沿x方向间隔一定距离,再以同样的方式扫描所述碳纳米管膜102,该距离依据所需碳纳米管的长度而定;以此类推,在所述碳纳米管膜102表面形成多个扫描行112,所述多个扫描行112之间的间距基本相同,从而使得相邻两扫描行112之间的碳纳米管具有基本相同的长度,形成碳纳米管原料。所述扫描行112之间的间距可为5微米~30微米,优选的,所述扫描行112之间的间距为10微米~20微米。
进一步的,在所述激光切割的过程中,所述激光器沿x方向间隔移动一定距离后继续切割所述碳纳米管膜102,形成多个扫描行112,从而将连续的碳纳米管膜102切断成多个宽度相同的碳纳米管带1021,且每一碳纳米管带1021的长度与扫描行112之间的间距基本相同。所述每一碳纳米管带1021包括多个长度基本相同的碳纳米管,并且所述多个碳纳米管彼此基本平行排列。所述长度基本相同是指所述碳纳米管带1021中碳纳米管之间长度的差值小于5微米,优选的,所述碳纳米管之间长度的差值小于2微米。所述多个碳纳米管彼此基本平行是指所述碳纳米管带1021中的多个碳纳米管并非绝对的平行,可以适当的偏离,或者存在少量随机排列的碳纳米管,但是这些碳纳米管不会对碳纳米管带1021中大多数碳纳米管的整体平行构成明显影响。
如图6及图7所示,根据扫描行112之间的间距的不同,所述碳纳米管的长度可为5微米~30微米,优选的,所述碳纳米管的长度为10微米~20微米。所述碳纳米管原料中碳纳米管的长度基本一致,所述碳纳米管之间长度的差值小于5微米,优选的,所述碳纳米管之间的长度的差值小于2微米。经过激光切割后的碳纳米管原料中,所述碳纳米管原料呈一定程度的聚集状态。这是因为所述碳纳米管膜102经过多层压制,使得多层碳纳米管膜102中的碳纳米管通过范德华力吸附在一起。本实施例中,所述碳纳米管的长度为12微米,长度的差值小于2微米。
在步骤S13中,可直接将所述碳纳米管原料、无机粘结剂以及有机载体在一含有有机溶剂的容器中混合形成一混合物,进一步的,可在所述混合物中加入一填料。其中,所述碳纳米管的质量百分比为2%~5%,无机粘结剂的质量百分比为2%~5%,所述填料的质量百分比为3%~6%,有机载体的质量百分比为84%~93%。优选地,所述碳纳米管的质量百分比为2.5%~3%,无机粘结剂的质量百分比为2.5%~4%,填料的质量百分比为3%~5%,有机载体的质量百分比为88%~92%。本实施例中,所述碳纳米管原料的质量百分比为2.5%,所述无机粘结剂的质量百分比为3.5%,所述填料的质量百分比为5%,所述有机载体的质量百分比为89%。
进一步的,所述碳纳米管原料、无机粘结剂以及有机载体可通过以下步骤混合:
S131,将所述碳纳米管原料从基板100上剥离;
S132,提供一有机溶剂,将所述碳纳米管原料在有机溶剂中分散形成第一混合液;
S133,提供一无机粘结剂,将所述无机粘结剂与有机溶剂混合形成第二混合液;
S134,提供一有机载体,将所述第一混合液、第二混合液以及有机载体混合形成一混合物。
在步骤S131中,所述剥离方法可利用超声波振荡的方式使得碳纳米管原料从基板100上脱离,也可利用一刀片、玻璃片或聚四氟乙烯等硬性材料将碳纳米管原料从基板100上刮下来。优选的,所述硬性材料为聚四氟乙烯,由于聚四氟乙烯的性质稳定、高润滑性,因此可减少碳纳米管原料附着在聚四氟乙烯表面造成材料损失,并减少其对碳纳米管原料产生污染。本实施例中,所述剥离方法为利用一玻璃片将碳纳米管原料从基板100上刮下来。
在步骤S132中,所述有机溶剂可为无水乙醇,所述碳纳米管原料可利用超声波等搅拌使其在有机溶剂中均匀分散。
在步骤S133中,所述无机粘结剂可为玻璃粉。所述玻璃粉可为常规玻璃粉、低温玻璃粉等。进一步的,可在所述第二混合液中加入一填料,如半导体颗粒、导电颗粒等。所述半导体颗粒可为二氧化硅(SiO2)、二氧化锡(SnO2)等,所述导电颗粒的材料可以为金属单质、金属合金、导电复合材料等,所述金属单质可为银(Ag)颗粒、铜(Cu)、铝(Al)或金(Au)颗粒等,所述金属合金可为铜锡合金等,所述导电复合材料可为ITO玻璃等。可以理解,所述半导体颗粒材料以及导电颗粒的材料不限于以上所举。所述导电颗粒可以提高所述碳纳米管浆料的导电性及导热性,从而在应用于场发射中发射电子时,可以降低其温度、功耗和工作电流。
本实施例中,所述无机粘结剂为无铅低温玻璃粉。所述无铅低温玻璃粉的熔点为350℃~600℃,其直径约为2微米~10微米;所述填料为银颗粒,所述银颗粒的直径可为100纳米~200纳米。所述无铅玻璃粉的作用为将所述碳纳米管原料与电极紧密接触,形成良好的电接触,并且由于无铅玻璃粉不含有Pb,可以降低后续的烧结过程中,碳纳米管被氧化的风险。而所述银颗粒可以提高碳纳米管浆料与电极之间的电接触性能,提高导电率,从而降低发射体温度、功耗和工作电流。
在步骤S134中,所述有机载体可以通过加热去除。所述有机载体包括稀释剂,稳定剂和增塑剂。其中,所述稀释剂为碳纳米管浆料提供必要的流淌性,同时要求对稳定剂具有较好的溶解性。所述稀释剂为松油醇。所述稳定剂通常具有极性较强的基团,可以和增塑剂形成为网状或链状结构,用以提高有机载体的粘度和塑性。所述稳定剂为高分子聚合物,例如:乙基纤维素。所述增塑剂一般为分子链上具有强极性基团的溶剂,其作用是和稳定剂形成多维网状结构。所述增塑剂为邻苯二甲酸二丁酯或癸二酸二丁酯等。优选地,所述增塑剂为癸二酸二丁酯。所述癸二酸二丁酯的沸点为344℃,热挥发特性好,且癸二酸二丁酯分子链上具有强极性的酯基,可以与乙基纤维素形成多维网状结构。由于癸二酸二丁酯的分子链上不含苯环,癸二酸二丁酯是一种绿色环保的增塑剂。所述癸二酸二丁酯价格低廉,符合丝网印刷之大规模低成本生产要求。进一步,所述有机载体还可以包括少量的表面活性剂,如司班。
本实施例中,所述有机载体为感光型有机载体,可包括活性稀释剂、低聚物以及光引发剂。所述活性稀释剂、低聚物以及光引发剂可根据实际需要进行选择,优选的,所述活性稀释剂及低聚物具有较低的固化率以及较好的热挥发特性。所述活性稀释剂、低聚物以及光引发剂的比例可根据需要进行选择。本实施例中,所述活性稀释剂为甲基丙烯酸异冰片酯(IBOA),其低固化收缩率为8.2%,有利于提高附着力;所述低聚物为聚氨酯丙烯酸酯(PUA),其低固化收缩率为3%~5%;所述光引发剂为二苯甲酮与1-羟基-环乙基苯甲酮(184)的混合物。其中,所述活性稀释剂的质量百分比为35%,所述低聚物的质量百分比为60%,所述光引发剂的质量百分比为5%。
将所述第一混合液、第二混合液以及所述有机载体混合,形成均匀分散混合液。所述混合可利用超声波振荡或三辊碾压机使所述第一混合液、第二混合液以及所述有机载体均匀混合。
在步骤S14中,所述有机溶剂可以利用一加热装置对所述混合液进行加热去除所述有机溶剂。在有机溶剂的蒸发过程中,所述混合液逐渐沉积并凝结,形成碳纳米管浆料。可以理解,无机粘结剂的含量过高会导致碳纳米管浆料的粘度过大,流动性差,使后续应用过程中形成的图案边缘不整齐。而无机粘结剂的含量过低会导致碳纳米管浆料的可塑性较差,不但碳纳米管浆料不易成型且导致形成的图案中存在大量孔洞,印刷效果差。通过选择碳纳米管浆料中各组分的的比例,可以确保碳纳米管浆料具有适合的粘度和可塑性,以满足后续用于场发射的要求。
如图8所示,图8为现有技术中碳纳米管浆料的SEM照片,现有技术提供的碳纳米管浆料中,碳纳米管的长度较长,从而部分碳纳米管倒伏于碳纳米管浆料中,而涂层表面露头的碳纳米管较少,并且碳纳米管之间存在较强的电场屏蔽效应;如图9及图10所示,本发明提供的碳纳米管浆料的制备方法制备的碳纳米管浆料中,涂层表面露头的碳纳米管相对较多,而碳纳米管之间的电场屏蔽效应相对较弱,从而在相同的宏观电场下,本发明提供的碳纳米管浆料可以获得更高的场发射电流密度。
相较于现有技术,本发明提供的碳纳米管浆料的制备方法,具有以下优点:第一,由于制备所述碳纳米管浆料的碳纳米管原料为通过激光切割的方式形成,由于激光光束光斑小且稳定性高,可确保所述碳纳米管原料中碳纳米管的长度基本一致,用于场发射时可以获得均匀的场发射电流;第二,由于采用先铺设碳纳米管膜于一基底,碳纳米管膜能较好地附着于基底表面,方法简单可控,并且在后续激光切割时能够较容易精确控制切割形成的碳纳米管的长度;第三,用激光切割时,激光仅起到切断碳纳米管膜的作用,激光处理的时间短、效率高,有利于实现大规模量产;第四,由于制备的碳纳米管浆料中碳纳米管的长度较短,因此用于场发射涂层时,从图层中露头的碳纳米管的数量较多,可以获得较高的场发射电流密度;第五,由于所述碳纳米管被截短且具有相同的长度,因此单位面积内碳纳米管的数量较少,相邻的碳纳米管之间的电场屏蔽效应较弱,在相同的宏观电场下,截短后的碳纳米管浆料应用于场发射时可以获得更高的场发射电流密度;第六,同时将多层碳纳米管膜层叠设置而后切割的方式形成碳纳米管原料,制备效率较高。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (17)

1.一种碳纳米管浆料的制备方法,其包括以下步骤:
提供至少一碳纳米管膜,所述至少一碳纳米管膜包括多个碳纳米管沿同一方向择优取向延伸;
提供一基板,将所述至少一碳纳米管膜设置于基板表面,所述至少一碳纳米管膜中碳纳米管的延伸方向基本平行于所述基板的表面;
沿所述碳纳米管的延伸方向每间隔一段距离,利用激光沿垂直于所述碳纳米管延伸方向的方向切割所述至少一碳纳米管膜,形成碳纳米管长度基本一致的碳纳米管原料;
将所述碳纳米管原料与无机粘结剂以及有机载体在有机溶剂中混合形成一混合物;以及
去除所述有机溶剂。
2.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述碳纳米管原料中碳纳米管的长度为5微米~30微米。
3.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述碳纳米管原料中碳纳米管的长度为10微米~20微米。
4.如权利要求3所述的碳纳米管浆料的制备方法,其特征在于,所述碳纳米管原料中碳纳米管之间长度的差值小于5微米。
5.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述基板的材料为石墨、陶瓷或二氧化硅。
6.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,将所述至少一碳纳米管膜设置于基板表面具体包括以下步骤:提供多个碳纳米管膜;将所述多个碳纳米管膜层叠设置于基板的表面,多个碳纳米管膜中碳纳米管均朝同一方向择优取向延伸。
7.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述激光的入射方向垂直于所述基板表面。
8.如权利要求7所述的碳纳米管浆料的制备方法,其特征在于,所述激光的功率为1瓦至100瓦。
9.如权利要求7所述的碳纳米管浆料的制备方法,其特征在于,所述激光的切割速度为5毫米/秒~200毫米/秒。
10.如权利要求7所述的碳纳米管浆料的制备方法,其特征在于,所述激光的切割次数为1次~10次。
11.如权利要求7所述的碳纳米管浆料的制备方法,其特征在于,所述基板的材料为石英,所述至少一碳纳米管膜的层数为1000层,所述激光的功率为12W,切割速度为50毫米/秒,切割次数为3次。
12.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述激光切割过程在纯氧气氛中进行。
13.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述无机粘结剂为无铅低温玻璃粉,其直径为2微米~10微米。
14.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述混合物中进一步添加有填料,该填料为半导体颗粒或导电颗粒。
15.如权利要求1所述的碳纳米管浆料的制备方法,其特征在于,所述碳纳米管浆料中碳纳米管的质量百分比为2%~5%,无机粘结剂的质量百分比为2%~5%,所述填料的质量百分比为3%~6%,有机载体的质量百分比为84%~93%。
16.一种碳纳米管浆料的制备方法,其包括以下步骤:
提供一连续的碳纳米管膜,该碳纳米管膜设置于一基板表面,所述碳纳米管膜包括多个碳纳米管,该多个碳纳米管基本平行于所述基板表面且沿同一方向择优取向延伸;
利用激光切割所述碳纳米管膜,将连续的碳纳米管膜切断成多个宽度相同的碳纳米管带,激光切割的方向垂直于所述碳纳米管的延伸方向;
将多个碳纳米管带从所述基板表面剥离获得碳纳米管原料;
将所述碳纳米管原料与无机粘结剂以及有机载体在有机溶剂中混合形成一混合物;以及
去除所述有机溶剂。
17.如权利要求16所述的碳纳米管浆料的制备方法,其特征在于,每个碳纳米管带包括多个长度基本相同且基本平行排列的碳纳米管。
CN2011100976481A 2011-04-19 2011-04-19 碳纳米管浆料的制备方法 Active CN102201311B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011100976481A CN102201311B (zh) 2011-04-19 2011-04-19 碳纳米管浆料的制备方法
TW100115293A TWI408103B (zh) 2011-04-19 2011-04-29 奈米碳管漿料的製備方法
US13/210,405 US9048055B2 (en) 2011-04-19 2011-08-16 Method for making carbon nanotube slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100976481A CN102201311B (zh) 2011-04-19 2011-04-19 碳纳米管浆料的制备方法

Publications (2)

Publication Number Publication Date
CN102201311A CN102201311A (zh) 2011-09-28
CN102201311B true CN102201311B (zh) 2013-04-10

Family

ID=44661905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100976481A Active CN102201311B (zh) 2011-04-19 2011-04-19 碳纳米管浆料的制备方法

Country Status (3)

Country Link
US (1) US9048055B2 (zh)
CN (1) CN102201311B (zh)
TW (1) TWI408103B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183328B (zh) * 2011-12-28 2015-08-26 清华大学 碳纳米管复合膜的制备方法
CN105097939B (zh) * 2014-04-24 2018-08-17 清华大学 薄膜晶体管
CN105097428B (zh) 2014-04-24 2017-12-01 清华大学 碳纳米管复合膜
CN105097429B (zh) * 2014-04-24 2018-03-02 清华大学 碳纳米管复合膜的制备方法
CN105271165B (zh) 2014-07-25 2017-10-24 清华大学 碳纤维膜
CN105280931B (zh) 2014-07-25 2017-10-24 清华大学 燃料电池膜电极
CN105406025B (zh) 2014-07-25 2017-11-17 清华大学 锂离子电池负极
CN105439114B (zh) * 2014-07-25 2018-02-27 清华大学 碳纤维膜及其制备方法
KR101982289B1 (ko) * 2017-09-21 2019-05-24 고려대학교 산학협력단 탄소나노튜브 전자방출원, 그 제조 방법 및 이를 이용하는 엑스선 소스
CN116355457B (zh) * 2023-02-14 2024-03-22 之江实验室 基于3d打印的图案化互连柔性应变传感器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080220686A1 (en) * 2006-12-22 2008-09-11 Tsinghua University Laser-based method for making field emission cathode
CN101290857A (zh) * 2007-04-20 2008-10-22 清华大学 场发射阴极及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290764C (zh) * 2004-05-13 2006-12-20 清华大学 一种大量制造均一长度碳纳米管的方法
CN101086939B (zh) 2006-06-09 2010-05-12 清华大学 场发射元件及其制备方法
EP2218682B1 (en) * 2007-11-30 2012-10-03 Toray Industries, Inc. Carbon nanotube assembly and process for producing the same
US8574393B2 (en) * 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8237677B2 (en) * 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
TWI393669B (zh) * 2009-04-10 2013-04-21 Hon Hai Prec Ind Co Ltd 奈米碳管複合材料及其製備方法
CN102208317B (zh) * 2010-03-31 2013-07-31 清华大学 碳纳米管浆料及采用该碳纳米管浆料制备的场发射体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080220686A1 (en) * 2006-12-22 2008-09-11 Tsinghua University Laser-based method for making field emission cathode
CN101290857A (zh) * 2007-04-20 2008-10-22 清华大学 场发射阴极及其制备方法

Also Published As

Publication number Publication date
TWI408103B (zh) 2013-09-11
TW201242892A (en) 2012-11-01
US20120267581A1 (en) 2012-10-25
US9048055B2 (en) 2015-06-02
CN102201311A (zh) 2011-09-28

Similar Documents

Publication Publication Date Title
CN102201311B (zh) 碳纳米管浆料的制备方法
CN101471211B (zh) 热发射电子器件
CN101471213B (zh) 热发射电子器件及其制备方法
Hong et al. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink
KR101570398B1 (ko) 투명 도전성 잉크 및 투명 도전 패턴형성방법
CN101471212B (zh) 热发射电子器件
TWI420540B (zh) 藉由光能或熱能成形之導電材料、導電材料之製備方法以及導電組合物
KR100911370B1 (ko) 고 신뢰성 cnt 페이스트의 제조 방법 및 cnt 에미터제조 방법
JP5006756B2 (ja) Cntエミッタの製造方法
US8436522B2 (en) Carbon nanotube slurry and field emission device
CN101093765B (zh) 场发射元件及其制备方法
US9023251B2 (en) Method for making a carbon nanotube slurry
CN103167645B (zh) 加热垫的制备方法
KR20180121638A (ko) 투명 도전 패턴의 형성 방법
CN101388310B (zh) 场发射体及其制备方法
CN112614627A (zh) 一种具有高导电覆盖率的柔性透明电极及其制备方法
Kang et al. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate
KR101627422B1 (ko) 복합광원을 이용한 금속 나노와이어와 그래핀 옥사이드 기반의 투명전극 및 이의 제조방법
CN109074917B (zh) 透明导电图案的形成方法
CN113744929B (zh) 一种银纳米线柔性导电透明薄膜的制备方法
KR20190036211A (ko) 광소결 전도성 전극 및 이의 제조방법
KR20160095447A (ko) 도전체 및 그 제조 방법
TWI330858B (en) Thermionic emission device
JP2007149616A (ja) 電界放出素子とその製造方法
TWI352369B (en) Thermionic emission device and method for making t

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant