CN102175624A - Method for testing water vapor transmittance - Google Patents
Method for testing water vapor transmittance Download PDFInfo
- Publication number
- CN102175624A CN102175624A CN 201110062103 CN201110062103A CN102175624A CN 102175624 A CN102175624 A CN 102175624A CN 201110062103 CN201110062103 CN 201110062103 CN 201110062103 A CN201110062103 A CN 201110062103A CN 102175624 A CN102175624 A CN 102175624A
- Authority
- CN
- China
- Prior art keywords
- water vapor
- organic material
- film
- organic
- transmission rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 238000012360 testing method Methods 0.000 title claims abstract description 15
- 238000002834 transmittance Methods 0.000 title claims abstract description 5
- 238000000034 method Methods 0.000 title abstract description 19
- 239000011368 organic material Substances 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000000103 photoluminescence spectrum Methods 0.000 claims abstract description 13
- 239000011521 glass Substances 0.000 claims abstract description 11
- 238000001228 spectrum Methods 0.000 claims abstract description 5
- 238000010998 test method Methods 0.000 claims abstract description 4
- 230000005540 biological transmission Effects 0.000 claims description 18
- 238000005538 encapsulation Methods 0.000 claims description 14
- 229920006280 packaging film Polymers 0.000 claims description 11
- 239000012785 packaging film Substances 0.000 claims description 11
- 230000003595 spectral effect Effects 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 4
- 238000007738 vacuum evaporation Methods 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 5
- 239000002346 layers by function Substances 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000035699 permeability Effects 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract description 2
- 238000012856 packing Methods 0.000 abstract 3
- 238000000151 deposition Methods 0.000 abstract 1
- 239000012044 organic layer Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 238000004806 packaging method and process Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005401 electroluminescence Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000012858 packaging process Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229920006334 epoxy coating Polymers 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical group C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种有机电致发光器件封装薄膜水汽透过率测试方法,可用于封装薄膜的检测,尤其涉及有机电致发光器件的薄膜封装工艺及测试,是一种分子湿度计方法。The invention relates to a method for testing the water vapor transmission rate of an organic electroluminescence device packaging film, which can be used for the detection of the packaging film, in particular to the film packaging process and testing of an organic electroluminescence device, and is a molecular hygrometer method.
背景技术Background technique
有机电致发光器件(Organic Light Emitting Device, OLED)由于具有超轻薄、高亮度、响应快、低功耗、效率高及制作简单等特征,广泛应用于平板显示器,背光模组和照明等领域,其发光原理为在两个电极之间沉积非常薄的有机材料,对该有机发光材料通以直流电使其发光。Organic Light Emitting Device (OLED) is widely used in flat panel displays, backlight modules and lighting due to its characteristics of ultra-thin, high brightness, fast response, low power consumption, high efficiency and simple production. The principle of luminescence is to deposit a very thin organic material between two electrodes, and apply direct current to the organic luminescent material to make it luminous.
研究表明,空气中的水汽和氧气等成分对OLED的寿命影响很大,其原因主要从以下方面进行考虑:OLED器件工作时要从阴极注入电子,这就要求阴极功函数越低越好,但做阴极的这些金属如铝、镁、钙等,一般比较活泼,易与渗透进来的水汽发生反应。另外,水汽还会与空穴传输层以及电子传输层(ETL)发生化学反应, 这些反应都会引起器件失效。因此对OLED进行有效封装,使器件的各功能层与大气中的水汽、氧气等成分隔开,就可以大大延长器件寿命。Studies have shown that components such as water vapor and oxygen in the air have a great impact on the life of OLEDs. The reasons are mainly considered from the following aspects: when OLED devices work, electrons are injected from the cathode, which requires that the cathode work function be as low as possible, but These metals used as cathodes, such as aluminum, magnesium, calcium, etc., are generally more active and easily react with the infiltrated water vapor. In addition, water vapor will also chemically react with the hole transport layer and the electron transport layer (ETL), and these reactions will cause device failure. Therefore, effective encapsulation of OLED to separate the functional layers of the device from water vapor, oxygen and other components in the atmosphere can greatly prolong the life of the device.
传统的OLED器件是在刚性基板(玻璃、金属)上制作电极和各有机功能层,对这类器件进行的封装一般是给器件加一个盖板,并将基板和盖板用环氧树脂粘接。这样就在基板和盖板之间形成了一个罩子,把器件和空气隔开,空气中的水、氧等成分只能通过基板和盖板之间的环氧树脂向器件内部进行渗透,因此,比较有效地防止了OLED各功能层以及阴极与空气中的水、氧等成分发生反应。The traditional OLED device is to make electrodes and organic functional layers on a rigid substrate (glass, metal). The packaging of this type of device is generally to add a cover plate to the device, and bond the substrate and cover plate with epoxy resin. . In this way, a cover is formed between the substrate and the cover to separate the device from the air. The components such as water and oxygen in the air can only penetrate into the device through the epoxy resin between the substrate and the cover. Therefore, It effectively prevents the functional layers of the OLED and the cathode from reacting with water, oxygen and other components in the air.
对OLED进行的封装所用的盖板,通常用玻璃和金属两种材料。整个封装过程在充惰性气体,如氮气、氢气等的手套箱内完成。手套箱内水汽含量应小于1 ppm。金属盖板既可以阻挡水、氧等成分对器件封装的渗透,又可以使器件坚固,但是其不透光性限制了这种封装方法在有机电致发光器件上的应用。另外,用金属盖板进行封装时要特别注意金属盖板不能接触到器件的电极,以免引起短路。盖板封装时需要密封胶,由于密封胶的多孔性,容易使空气中的水分渗透进入器件内部,因此在这种封装方式中,一般在器件内部加入氧化钙或氧化钡作为干燥剂来吸收在涂环氧树脂时和封装时残留的水分。The cover plate used for the encapsulation of OLED is usually made of glass and metal. The entire packaging process is completed in a glove box filled with inert gas, such as nitrogen, hydrogen, etc. The water vapor content in the glove box should be less than 1 ppm. The metal cover plate can not only prevent the penetration of water, oxygen and other components into the device package, but also make the device strong, but its opacity limits the application of this packaging method on organic electroluminescent devices. In addition, when packaging with a metal cover, special attention should be paid to the fact that the metal cover cannot touch the electrodes of the device, so as not to cause a short circuit. Sealant is required for cover plate packaging. Due to the porosity of the sealant, moisture in the air can easily penetrate into the device. Therefore, in this packaging method, calcium oxide or barium oxide is generally added inside the device as a desiccant to absorb the moisture in the device. Moisture remaining from epoxy coating and encapsulation.
有机电致发光显示与其他形式的显示相比,有一个重要的优势就是可以实现柔性显示。1992年Gustafsson等人发明了基于PET(ploy ethylene terephthalate)基板上的柔性高分子材料的OLED;1997年Forrest等人发明了柔性小分子材料的OLED。这类显示器件柔软可以变形且不易损坏,可以安装在弯曲的表面,甚至可以穿戴,因而日益成为国际显示行业的研究热点。对于柔性OLED来说,传统的封装方法因为盖板是不可卷曲的,因而是无效的。用薄膜直接封装与传统的玻璃盖封装比起来,器件更薄,而且不必担心在柔性显示时聚合物盖子的磨损,为柔性OLED的发展打下基础。Compared with other forms of display, organic electroluminescent display has an important advantage that it can realize flexible display. In 1992, Gustafsson et al. invented OLEDs based on flexible polymer materials on PET (ploy ethylene terephthalate) substrates; in 1997, Forrest et al. invented OLEDs based on flexible small molecule materials. This kind of display device is soft, deformable and not easy to damage. It can be installed on curved surfaces and even wearable. Therefore, it has increasingly become a research hotspot in the international display industry. For flexible OLEDs, traditional encapsulation methods are ineffective because the cover sheet is not rollable. Compared with the traditional glass cover package, the device is thinner and there is no need to worry about the abrasion of the polymer cover during flexible display, which lays the foundation for the development of flexible OLED.
目前,封装层通常采用SiNx、SiOx或者Al2O3等无机材料或者有机材料,也有的封装层采取有机无机材料混合制作成单层或多层结构。要使OLED的寿命超过10000h,达到实际的应用要求,那么,这个器件的封装在39℃,相对湿度为95%的条件下水汽渗透率(WVTR)要小于10-6×10 g/m/day,而氧气透过率(OTR)则要小于10-5cm3 /m2/day。如此小的数值的测量对目前较流行的测量手段来说,是一个很大的挑战。要对OLED的封装特性进行测量,对测量系统有以下要求:At present, inorganic materials such as SiNx, SiOx or Al 2 O 3 or organic materials are usually used for the encapsulation layer, and some encapsulation layers are made of a mixture of organic and inorganic materials to form a single-layer or multi-layer structure. To make the lifetime of OLED more than 10000h and meet the actual application requirements, the water vapor transmission rate (WVTR) of this device package should be less than 10 -6 × 10 g/m/day at 39°C and 95% relative humidity , while the oxygen transmission rate (OTR) should be less than 10 -5 cm 3 /m 2 /day. The measurement of such a small value is a great challenge to the current popular measurement methods. To measure the encapsulation characteristics of OLEDs, the measurement system has the following requirements:
A. 系统的测量最小值必须能达到上述要求。A. The measured minimum value of the system must meet the above requirements.
B. 系统可以对传统的OLED和柔性OLED的封装特性进行测量。B. The system can measure the packaging characteristics of traditional OLEDs and flexible OLEDs.
C. 能对器件的水氧渗透率可以做定性和定量两种分析。C. Both qualitative and quantitative analysis can be performed on the water and oxygen permeability of the device.
发明内容Contents of the invention
本发明的目的在于提供一种有效的测量OLED封装水汽透过率的方法,解决目前OLED封装薄膜水汽透过率难以测定的问题。本发明的基本原理是基于一些有机材料易于水汽发生化学反应,而这些有机材料在与水汽发生化学反应后的光致发光光谱会变弱,我们通过定量分析有机材料光致发光光谱在整个光谱范围内的积分强度的变化从而计算出用于阻止有机材料与水汽发生反应的封装薄膜的水汽透过率。The purpose of the present invention is to provide an effective method for measuring the water vapor transmission rate of OLED packaging, and solve the problem that the current OLED packaging film water vapor transmission rate is difficult to measure. The basic principle of the present invention is based on the fact that some organic materials are prone to chemical reactions with water vapor, and the photoluminescence spectra of these organic materials will become weak after chemical reactions with water vapor. We quantitatively analyze the photoluminescence spectra of organic materials in the entire spectral range The change of the integrated intensity in the film is used to calculate the water vapor transmission rate of the packaging film used to prevent the organic material from reacting with water vapor.
根据上述发明构思,本发明采用下述技术步骤,流程图见图3:According to above-mentioned inventive conception, the present invention adopts following technical steps, and flow chart is shown in Fig. 3:
A. 准备好基板,并在基板上利用真空蒸镀(或者等离子体增强化学气相沉积或者磁控溅射等方法)沉积一层易与水汽发生化学反应的厚度为h0有机材料薄膜。A. Prepare the substrate, and use vacuum evaporation (or plasma enhanced chemical vapor deposition or magnetron sputtering, etc.) to deposit a layer of organic material film with a thickness of h0 that is easy to chemically react with water vapor on the substrate.
B. 在有机材料上再制备(真空蒸镀或者等离子体增强化学气相沉积或者磁控溅射等方法)一层用于阻止有机材料与水汽发生反应的封装薄膜,并开始计时。B. Prepare another layer of encapsulation film on the organic material (vacuum evaporation or plasma enhanced chemical vapor deposition or magnetron sputtering, etc.) to prevent the organic material from reacting with water vapor, and start timing.
C. 间隔固定的时间我们对样品进行测量光致光谱测量,并保存获得的光谱曲线数据。C. At fixed intervals, we measure the photoinduced spectrum of the sample and save the obtained spectral curve data.
D. 我们假设玻璃基板的水汽透过率为0,并定义有机材料的光致光谱强度为 ,将进行归一化,那么有机材料在整个光谱范围内的积分强度即为,单位时间单位面积上已与水汽发生化学反应的有机材料的厚度,则单位面积上t小时内封装薄膜的水汽透过率可表示为,其中n为光谱的波长,为水汽透过率系数,大小取决于用于测试的有机材料,为水分子的分子量,为有机材料的分子量。D. We assume that the water vapor transmittance of the glass substrate is 0, and define the photoinduced spectral intensity of the organic material as ,Will Normalized, then the integrated intensity of the organic material in the entire spectral range is , the thickness of the organic material that has chemically reacted with water vapor per unit area per unit time , then the water vapor transmission rate of the packaging film per unit area within t hours can be expressed as , where n is the wavelength of the spectrum, is the water vapor transmission rate coefficient, the size depends on the organic material used for the test, is the molecular weight of the water molecule, is the molecular weight of the organic material.
该方法是根据某些有机材料与水汽发生化学反应前后光致发光光谱的变化来度量封装薄膜的水汽透过率。其既可用于玻璃基板上各种封装薄膜的水汽透过率测量,也可用于柔性基板的水汽透过率测量。其所涉及的易与水汽发生化学反应的有机材料包括有机电致发光所用红、绿、蓝三色材料、小分子材料和高分子材料。所述的有机电致发光器件的封装薄膜水汽测试方法,可以制备相应的分子湿度计。This method is to measure the water vapor transmission rate of the packaging film according to the change of the photoluminescence spectrum before and after the chemical reaction between some organic materials and water vapor. It can be used not only for the water vapor transmission rate measurement of various packaging films on glass substrates, but also for the water vapor transmission rate measurement of flexible substrates. The organic materials involved in chemical reaction with water vapor include red, green and blue materials used in organic electroluminescence, small molecule materials and polymer materials. According to the water vapor testing method of the packaging film of the organic electroluminescent device, a corresponding molecular hygrometer can be prepared.
本发明具有如下的显而易见的突出实质性特点和显著优点:(1)不需要专门的测试仪器,可以利用现有的荧光分光光度计进行测量;(2)测量准确,此方法测量的水汽是透入到有机材料层的水汽,不包括薄膜本身吸收水分(3)此方法测试范围广泛,应用于各种有机电致发光器件;(4)此方法简单可靠,能够很大程度的降低设备投资;(5)此方法能够实现实时在线测量,在生产有机电致发光的工艺流程中实时监控。The present invention has the following obvious outstanding substantive features and significant advantages: (1) no special testing instrument is needed, and the existing fluorescence spectrophotometer can be used for measurement; (2) the measurement is accurate, and the water vapor measured by this method is transparent The water vapor entering the organic material layer does not include the moisture absorbed by the film itself (3) This method has a wide range of tests and is applicable to various organic electroluminescent devices; (4) This method is simple and reliable, and can greatly reduce equipment investment; (5) This method can realize real-time online measurement and real-time monitoring in the process of producing organic electroluminescence.
附图说明Description of drawings
图1为样品的结构示意图。包括玻璃基板1、有机电致发光材料层2、封装层3组成。所述有机电致发光材料层2制作在玻璃基板1之上,封装层3制作在机电致发光材料层2之上。Figure 1 is a schematic diagram of the structure of the sample. It consists of a glass substrate 1 , an organic electroluminescent material layer 2 and an encapsulation layer 3 . The organic electroluminescent material layer 2 is fabricated on the glass substrate 1 , and the packaging layer 3 is fabricated on the electromechanical luminescent material layer 2 .
图2为样品的光致光谱在不同时间点测量的曲线图。T1,T2,T3,T4分别表示测量时间。Fig. 2 is a graph showing photoinduced spectra of samples measured at different time points. T1, T2, T3, T4 represent the measurement time respectively.
图3为本发明所述测试方法的测试流程图。Fig. 3 is a test flow chart of the test method of the present invention.
具体实施方式Detailed ways
下面结合实施例对本发明进行详细说明:Below in conjunction with embodiment the present invention is described in detail:
实施例一:具体步骤如下:Embodiment one: the specific steps are as follows:
A. 将玻璃基板洗净并烘干,先在基板上真空蒸镀厚度为100 nm的有机薄膜,然后在薄膜上再制备一层厚度为200 nm的LiF封装薄膜,结构示意图见图1。A. Wash and dry the glass substrate, and vacuum-deposit a 100 nm thick film on the substrate first. organic film, and then A layer of LiF encapsulation film with a thickness of 200 nm was prepared on the film. The schematic diagram of the structure is shown in Figure 1.
B. 将制备好的样品取出放在固定湿度和氧含量的测试环境中,测量一次样品的光致发光光谱,记为并保存下来,开始计时。B. Take the prepared sample out and place it in a test environment with fixed humidity and oxygen content, measure the photoluminescence spectrum of the sample once, and record it as And save it, start timing.
C. 间隔12个小时测量一次样品的光致发光光谱,并将获得的光谱曲线数据保存起来,样品在12、24、36小时时的测量结果见图2。C. Measure the photoluminescence spectrum of the sample every 12 hours, and save the obtained spectral curve data. The measurement results of the sample at 12, 24, and 36 hours are shown in Figure 2.
D. 我们假设玻璃基板的水汽透过率为0,并定义36小时时样品的光致光谱强度为,将进行归一化,那么有机材料在整个光谱范围内的积分强度即为,单位时间单位面积上已与水汽发生化学反应的有机材料的厚度,则单位面积上t小时内封装薄膜的水汽透过率可表示为,其中为0.15,为18,为459.43,经计算为0.2,为100 nm,t为36小时,最后计算得出WVTR约为0.078 g/m/day。D. We assume that the water vapor transmission rate of the glass substrate is 0, and define the photoinduced spectral intensity of the sample at 36 hours as ,Will Normalized, then the integrated intensity of the organic material in the entire spectral range is , the thickness of the organic material that has chemically reacted with water vapor per unit area per unit time , then the water vapor transmission rate of the packaging film per unit area within t hours can be expressed as ,in is 0.15, is 18, is 459.43, is calculated to be 0.2, is 100 nm, and t is 36 hours, the final calculated WVTR is about 0.078 g/m/day.
在制作完成样片后,间隔一定的时间测量样片的光致发光光谱,得到一系列的光致发光光谱数据,通过计算有机材料光致发光光谱在整个光谱范围内的积分强度可以看出随着时间的推移,有机材料光致发光光谱明显减弱,通过进一步的计算我们可以得出封装薄膜的水汽透过率。After the sample is made, the photoluminescence spectrum of the sample is measured at a certain interval to obtain a series of photoluminescence spectrum data. By calculating the integrated intensity of the photoluminescence spectrum of the organic material in the entire spectral range, it can be seen that the With the passage of time, the photoluminescence spectrum of the organic material is obviously weakened, and we can obtain the water vapor transmission rate of the packaging film through further calculation.
实施例二:本实施例与实施例一基本相同,所不同的是:在基板上真空蒸镀的易与水汽发生化学反应的有机薄膜材料为厚度100 nm 的Rubrene。Embodiment 2: This embodiment is basically the same as Embodiment 1, except that the organic thin film material that is vacuum-evaporated on the substrate and easily reacts with water vapor is Rubrene with a thickness of 100 nm.
实施例三:本实施例与实施例一基本相同,所不同的是:在有机薄膜上沉积的封装层材料为200 nm的ZnS。Embodiment 3: This embodiment is basically the same as Embodiment 1, except that the encapsulation layer material deposited on the organic film is 200 nm ZnS.
实施例四:本实施例与实施例一基本相同,所不同的是:在有机薄膜上沉积的封装层材料为200 nm的SiNx。Embodiment 4: This embodiment is basically the same as Embodiment 1, except that the encapsulation layer material deposited on the organic film is 200 nm SiNx.
实施例五:本实施例与实施例一基本相同,所不同的是:在有机薄膜上沉积的封装层材料为200 nm的SiOx。Embodiment 5: This embodiment is basically the same as Embodiment 1, except that the encapsulation layer material deposited on the organic film is 200 nm SiOx.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110062103 CN102175624A (en) | 2011-03-16 | 2011-03-16 | Method for testing water vapor transmittance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110062103 CN102175624A (en) | 2011-03-16 | 2011-03-16 | Method for testing water vapor transmittance |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102175624A true CN102175624A (en) | 2011-09-07 |
Family
ID=44518831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110062103 Pending CN102175624A (en) | 2011-03-16 | 2011-03-16 | Method for testing water vapor transmittance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102175624A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636441A (en) * | 2012-05-02 | 2012-08-15 | 厦门华联电子有限公司 | Test evaluation method of LED (light emitting diode) packaging adhesive |
DE102013022032A1 (en) | 2013-12-19 | 2015-06-25 | Technische Universität Ilmenau | Method for detecting foreign substances or degradation products in encapsulated systems and its use |
CN104777085A (en) * | 2015-03-23 | 2015-07-15 | 中山大学 | Gas transmission rate multi-method measurement and correction system for packaging material |
CN104777084A (en) * | 2015-03-23 | 2015-07-15 | 中山大学 | Lock-in amplifier based gas transmission rate optical measurement method and system |
CN105973548A (en) * | 2016-05-07 | 2016-09-28 | 上海大学 | Water vapor transmittance testing clamp based on active metal electrical method |
CN106338462A (en) * | 2016-08-25 | 2017-01-18 | 泰通(泰州)工业有限公司 | Semi-quantitative testing apparatus and semi-quantitative testing method for water vapor permeation capability of double-glass module edge |
CN107449704A (en) * | 2017-05-22 | 2017-12-08 | 茆胜 | The method of testing of film water vapor transmittance |
CN109238940A (en) * | 2018-09-29 | 2019-01-18 | 汉能新材料科技有限公司 | A kind of packaging film method for testing vapor transmission |
CN109696390A (en) * | 2019-01-28 | 2019-04-30 | 中山大学 | The device of electric-resistivity method testing film gas permeation rate and its production, test method |
CN109890287A (en) * | 2016-10-04 | 2019-06-14 | 特里邦美公司 | The method of Non-invasive measurement blood hemoglobin concentration and oxygen concentration |
CN111781120A (en) * | 2020-06-24 | 2020-10-16 | 吉林大学 | Testing method for thin film package |
CN111987235A (en) * | 2020-07-10 | 2020-11-24 | 绍兴秀朗光电科技有限公司 | Non-contact type film water oxygen transmission performance testing device and production process thereof |
CN111982885A (en) * | 2020-07-10 | 2020-11-24 | 绍兴秀朗光电科技有限公司 | Non-contact type film water oxygen transmission performance testing method |
US11508932B2 (en) | 2017-07-19 | 2022-11-22 | Beijing Boe Technology Development Co., Ltd. | Package structure, display panel, display device, and method for detecting package structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1976088A (en) * | 2006-12-29 | 2007-06-06 | 清华大学 | Organic electro luminescent device |
US20090110896A1 (en) * | 2007-10-30 | 2009-04-30 | Fujifilm Corporation | Silicon -nitrogen compound film, and gas-barrier film and thin-film device using the silicon-nitrogen compound film |
-
2011
- 2011-03-16 CN CN 201110062103 patent/CN102175624A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1976088A (en) * | 2006-12-29 | 2007-06-06 | 清华大学 | Organic electro luminescent device |
US20090110896A1 (en) * | 2007-10-30 | 2009-04-30 | Fujifilm Corporation | Silicon -nitrogen compound film, and gas-barrier film and thin-film device using the silicon-nitrogen compound film |
Non-Patent Citations (2)
Title |
---|
《环境遥感》 19960531 宋正方等 大气水汽的红外遥感 , * |
《量子电子学》 19950930 宋正方等 3.2mum水汽吸收谱带参数的计算和测量 , * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636441A (en) * | 2012-05-02 | 2012-08-15 | 厦门华联电子有限公司 | Test evaluation method of LED (light emitting diode) packaging adhesive |
DE102013022032A1 (en) | 2013-12-19 | 2015-06-25 | Technische Universität Ilmenau | Method for detecting foreign substances or degradation products in encapsulated systems and its use |
CN104777085B (en) * | 2015-03-23 | 2017-07-18 | 中山大学 | A kind of gas permeation rate multi-method measurement correction system of encapsulating material |
CN104777085A (en) * | 2015-03-23 | 2015-07-15 | 中山大学 | Gas transmission rate multi-method measurement and correction system for packaging material |
CN104777084A (en) * | 2015-03-23 | 2015-07-15 | 中山大学 | Lock-in amplifier based gas transmission rate optical measurement method and system |
CN104777084B (en) * | 2015-03-23 | 2018-02-16 | 中山大学 | A kind of gas permeation rate measuring method and system based on lock-in amplifier |
CN105973548A (en) * | 2016-05-07 | 2016-09-28 | 上海大学 | Water vapor transmittance testing clamp based on active metal electrical method |
CN106338462A (en) * | 2016-08-25 | 2017-01-18 | 泰通(泰州)工业有限公司 | Semi-quantitative testing apparatus and semi-quantitative testing method for water vapor permeation capability of double-glass module edge |
CN109890287A (en) * | 2016-10-04 | 2019-06-14 | 特里邦美公司 | The method of Non-invasive measurement blood hemoglobin concentration and oxygen concentration |
CN109890287B (en) * | 2016-10-04 | 2021-11-02 | 特里邦美公司 | Method for non-invasive determination of hemoglobin concentration and oxygen concentration in blood |
CN107449704A (en) * | 2017-05-22 | 2017-12-08 | 茆胜 | The method of testing of film water vapor transmittance |
US11508932B2 (en) | 2017-07-19 | 2022-11-22 | Beijing Boe Technology Development Co., Ltd. | Package structure, display panel, display device, and method for detecting package structure |
CN109238940A (en) * | 2018-09-29 | 2019-01-18 | 汉能新材料科技有限公司 | A kind of packaging film method for testing vapor transmission |
CN109696390A (en) * | 2019-01-28 | 2019-04-30 | 中山大学 | The device of electric-resistivity method testing film gas permeation rate and its production, test method |
CN111781120A (en) * | 2020-06-24 | 2020-10-16 | 吉林大学 | Testing method for thin film package |
CN111781120B (en) * | 2020-06-24 | 2021-06-18 | 吉林大学 | Test Methods for Thin Film Encapsulation |
CN111987235A (en) * | 2020-07-10 | 2020-11-24 | 绍兴秀朗光电科技有限公司 | Non-contact type film water oxygen transmission performance testing device and production process thereof |
CN111982885A (en) * | 2020-07-10 | 2020-11-24 | 绍兴秀朗光电科技有限公司 | Non-contact type film water oxygen transmission performance testing method |
CN111987235B (en) * | 2020-07-10 | 2023-12-01 | 绍兴秀朗光电科技有限公司 | Non-contact type thin film water-oxygen permeability testing device and production process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102175624A (en) | Method for testing water vapor transmittance | |
CN102445438A (en) | Method for testing vapor transmission of packaging material | |
Wang et al. | Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer | |
Han et al. | A flexible moisture barrier comprised of a SiO2-embedded organic–inorganic hybrid nanocomposite and Al2O3 for thin-film encapsulation of OLEDs | |
CN103730071B (en) | OLED panel, manufacturing method thereof and encapsulation effect detection method | |
US6638645B2 (en) | Film for organic EL device and an organic EL device using the film | |
CN102437288A (en) | Packaging structure of OLED | |
WO2009060780A1 (en) | Organic electroluminescence element, display device, and lighting system | |
WO2020207100A1 (en) | Structure having effects of improving packaging efficiency and detecting packaging effect in organic electronic device packaging | |
CN101582489A (en) | Compound encapsulation structure and method of organic electroluminescence device | |
Duan et al. | High-performance barrier using a dual-layer inorganic/organic hybrid thin-film encapsulation for organic light-emitting diodes | |
Isoshima et al. | Negative giant surface potential of vacuum-evaporated tris (7-propyl-8-hydroxyquinolinolato) aluminum (III)[Al (7-Prq) 3] film | |
WO2014180038A1 (en) | Method for detecting oled panel packaging effect | |
WO2016201722A1 (en) | Packaging structure of oled component and packaging method therefor | |
CN104777085B (en) | A kind of gas permeation rate multi-method measurement correction system of encapsulating material | |
WO2015180232A1 (en) | Oled substrate packaging method and oled structure | |
KR20230155395A (en) | Organic Electronic Device Encapsulation Technologies of Adhesive Film and Manufacturing Method Thereof | |
CN106290106A (en) | The steam of encapsulation coating and structure/measuring gas permebility System and method for | |
Subbarao et al. | Laboratory thin-film encapsulation of air-sensitive organic semiconductor devices | |
CN101222025B (en) | Encapsulation device and encapsulation method of organic electroluminescence device | |
CN103688347A (en) | Thin Film Encapsulation of Organic Light Emitting Diodes | |
US9472783B2 (en) | Barrier coating with reduced process time | |
Nehm et al. | Influence of aging climate and cathode adhesion on organic solar cell stability | |
CN103427038A (en) | Organic electroluminescence device and method for manufacturing same | |
Matsushima et al. | Molecular orientation induced by high-speed substrate transfer during vacuum vapor deposition of organic films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110907 |