CN102171149B - 生产苏打化学品的组合固体废物、二氧化碳生石灰喷射、盐水和反渗透/离子交换法 - Google Patents

生产苏打化学品的组合固体废物、二氧化碳生石灰喷射、盐水和反渗透/离子交换法 Download PDF

Info

Publication number
CN102171149B
CN102171149B CN200880131258.8A CN200880131258A CN102171149B CN 102171149 B CN102171149 B CN 102171149B CN 200880131258 A CN200880131258 A CN 200880131258A CN 102171149 B CN102171149 B CN 102171149B
Authority
CN
China
Prior art keywords
solution
solid waste
nahco
composite membrane
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880131258.8A
Other languages
English (en)
Other versions
CN102171149A (zh
Inventor
F·恩斯
T·R·费尔哈特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102171149A publication Critical patent/CN102171149A/zh
Application granted granted Critical
Publication of CN102171149B publication Critical patent/CN102171149B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明利用了传统的化学方程式,其中二氧化碳CO2与生石灰Ca(OH)2反应生成小苏打NaHCO3,并利用高级膜和树脂技术将其浓缩至6%。本发明需要三种化学品CO2、Ca(OH)2和氯化钠NaCl以生产NaHCO3。许多工业方法的输出缺乏废物热量,和在许多种情况下缺乏CO2,而本发明将固体废物处理装置与允许固体产物或高%溶液产生的上述方法组合。废物热源的利用可导致高效生产NaHCO3、Na2CO3和NaOH。该方法不是氯碱电化学法或苏尔柱氨处理技术。高级膜利用反渗透和纳滤系统的技术,而树脂技术利用离子交换系统。因此,我们简便地称其为固体废物-生石灰膜SWQM法。

Description

生产苏打化学品的组合固体废物、二氧化碳生石灰喷射、盐水和反渗透/离子交换法
摘要
本拟议的发明利用了传统的化学方程式,其中二氧化碳CO2与生石灰Ca(OH)2反应生成小苏打NaHCO3,并利用高级膜和树脂技术将其浓缩至6%。本发明需要三种化学品CO2、Ca(OH)2和氯化钠NaCl以生产NaHCO3。许多工业方法的输出缺乏废物热量,和在许多种情况下缺乏CO2,而本发明将固体废物处理装置与允许固体产物或高%溶液产生的上述方法组合。废物热源的利用可导致高效生产NaHCO3、Na2CO3和NaOH。该方法不是氯碱电化学法或苏尔柱氨处理技术。高级膜利用反渗透和纳滤系统的技术,而树脂技术利用离子交换系统。因此,我们简便地称其为固体废物-生石灰膜(solid waste-quicklimemembrane)SWQM法。
技术领域和背景信息
在固体废物处理和小苏打(soda carb)NaHCO3的生产中利用盐水和高级膜(advanced membrane)和树脂技术。
本发明利用传统的方程式,其中CO2与生石灰Ca(OH)2反应生成碳酸氢钙Ca(HCO3)2清澈溶液,如:
Ca(OH)2+2CO2→Ca(HCO3)2
然后通过阳离子交换系统处理碳酸氢钙(500至1000ppm),生成小苏打(500至1000ppm),如:
Ca(HCO3)2+2R-Na+→2NaHCO3+R-Ca++
盐度8至12%的盐水的存在至关重要,因为其用于使阳离子交换剂再生,如:
R-Ca+++2NaCl→2R-Na++CaCl2
产生的小苏打溶液为低百分率,即0.05至0.1%,并且需要被浓缩至~6%。浓缩过程利用反渗透系统进行,其中小苏打溶液经过多级传递,直到最终浓度输出在6%上下。
工业上6%的浓度对于经济地提取固体来说很低,是膜技术的主要 瓶颈。膜技术到达6%以上的困难在于使膜恶化的高压。即使在周围应 用再压缩蒸发,也需要1MW生产一吨固体产物。在本发明中,最显著 的热源是由固体废物焚化散发的热量。
本发明如何解决技术问题的说明
固体废物、废盐水和废CO2是全世界人类社会面临的主要问题。本拟议的发明试图将这三种废物问题引入一种工业方法,形成绿色的解决方案,同时产生经济利益。绿色的解决方案通过上述多种废物的大量消除而实现。经济利益来自出售苏打日用化学品,作为组合方法的副产物。某种意义上,SWQM法可作为全球用于生产小苏打NaHCO3和苏打灰Na2CO3的传统苏尔(Solvay)法的替代选择。苏尔法利用有毒的氨气和复合柱系统提取所述产物。在苏尔法中,将开采的碳酸钙在烘干炉(kiln)中以1200℃加热,以转化为石灰石CaO和CO2。从石灰石CaO生成生石灰Ca(OH)2,而CO2用于小苏打NaHCO3的生产。SWQM法非常不同,在于其不使用氨气,并且用生石灰RONFIE系统(单独的专利)替代复合柱系统。在苏尔法中,CO2必须经纯化,和从CaCO3烘干炉释放,从而在苏尔柱的精确条件下与氨气和盐水溶液反应。SWQM法需要喷射反应器使含有CO2、来自附近工业或固体废物工厂的废气(flue gas)形成气泡。这并不是说如果焚化炉的热量可用于将CaCO3转化为CaO就不能使用CaCO3烘干炉。从焚化炉释放的热量大小取决于垃圾场存在的碳基材料CBM(即,纸、纸板、木材、塑料、橡胶、...等)的数量。CBM的可用性越大,则可执行越多种化学或物理方法以使SWQM成为自足的方法。
发明详述
固体废物蒸汽生产装置的一般示意图如下所示:
图1固体废物焚化炉的示意图
固体废物焚化的热量可进行以下:
1-热量可将海水煮沸,从而生产6至10%范围内的盐水。相同的盐水可用于苏打6%溶液的生成,而蒸汽用于浓缩或干燥。从这点来说,本发明仅用于所得产物是饮用水和日用苏打化学品的固体废物处理。
2-热量可将用于蒸汽生成的天然水煮沸,并且蒸汽用于浓缩或干燥。注:一吨~150℃的蒸汽煮沸10吨水。
如第(1)点所述,上述大规模固体废物焚化可用于生成用于SWQM法的CO2、盐水和热量。
图2利用固体废物、海水和生石灰的碳酸氢钠生产装置的示意图
该方法本质上取决于高级膜技术系统,生产碳酸氢钠NaHCO3。因此,其非常不同于利用氨气进行转化的传统苏尔法。以下所示的示意图描述了方法中的不同阶段:
反应器设计:使二氧化碳气喷射穿过反应器中的生石灰水Ca(OH)2,形成碳酸氢钙Ca(HCO3)2溶液。然后使后者经过进一步过滤以去除杂质微粒,然后送至复合膜系统。
复合膜系统:低%溶液得到转化,并浓缩至7%碳酸氢钠溶液。复合膜系统如下运行:
1-离子交换(IE)/反渗透(RO)系统:其中离子交换装置将Ca(HCO3)2溶液转换为NaHCO3溶液。多个RO柱被级联,从而将碳酸氢钠溶液从~0.1%浓缩至~7%。提供了给出整个过程详细质量平衡分析的Excel工作表,参见第6和7页。
2-反渗透(RO)装置,其中三个RO柱被级联,从而将碳酸氢钙溶液从~0.25%浓缩至~8%。RO装置后是反应器混合器,其中~8%Ca(HCO3)2与8至10%NaCl混合,开始NaHCO3沉淀,其中部分溶液被煮沸以使该溶液浓缩。提供了给出整个过程详细质量平衡分析的Excel工作表,参见参见第6和7页。
固体废物处理装置提供的废物热量可将水转化为120至150℃的蒸汽,在固体废物焚化炉上具有蒸发器。蒸汽可用于通过蒸发一半体积将7%的碳酸氢钠溶液转化为干碳酸氢钠。如果废物热量高于220℃,那么7%的碳酸氢钠溶液可被干燥,并转化为苏打灰Na2CO3
该方法所用的离子交换剂从处理过的海水或所产生的盐水中得到再生。在上述示意图中,如果盐水浓度C>10%盐度,那么不需要复合膜和热量交换系统。如果盐水浓度6%<C<9%盐度,那么不需要复合膜,并且可利用热量交换系统使其浓度提高至10%,或者如果更加廉价的话,添加NaCl使C升至10%。如果仅海水可用,那么利用复合膜和热量交换系统分离和使浓度从3.5%增加至10%盐NaCl。
关于此方法的一个重要方面是RO渗透物的循环,其节省了纯水的生产和化学品的供应。可用纯水稀释的废产物——如氯化钙和氯化镁——从复合膜和热量交换系统中产生,并且回到海中,而不破坏海洋环境。在此阶段饮用水的净产量难以估计,并且取决于稀释后Ca++、Mg++盐的政府容许水平。
目的应用和工业应用的其他方法的实例
SWQM法对于放出盐水(即,6至16%之间的盐度),并且缺乏废物热量和CO2源的工业来说最为方便。但是,其也可用于放出有限量CO2的工业,其中来自工厂和固体废物工厂的组合量可用于CO2螯合和苏打化学品生产。固体废物法可大规模运行,其中固体废物焚化可用于生成用于SWQM法的CO2、盐水和热量。

Claims (5)

1.应用传统化学方程式的方法,其中二氧化碳CO2与Ca(OH)2反应产生小苏打NaHCO3,并利用高级膜和树脂技术将其浓缩至6%;所述方法需要三种化学品CO2、Ca(OH)2和氯化钠NaCl以产生NaHCO3;所述方法将固体废物处理装置与允许固体产物或高百分比含量溶液产生的上述方法组合;废物热源的利用可导致高效产生NaHCO3、Na2CO3和NaOH;该方法不是氯碱电化学法或苏尔柱氨处理技术;所述高级膜利用反渗透和纳滤系统的技术,而所述树脂技术利用离子交换系统。
2.权利要求1所述的方法,其不使用氨气,并用生石灰RONFIE系统替代复合柱系统,需要喷射反应器以使废气生成气泡,所述废气含有CO2,来自附近的工业或固体废物工厂。
3.盐水和高级膜和树脂技术在根据权利要求1或2所述的方法中在固体废物处理中以及在小苏打NaHCO3的产生中的应用。
4.权利要求1或2所述的方法,其中将固体废物、废盐水和废CO2问题引入一种工业方法,形成通过上述多种废物的大量消除而实现的绿色解决方案,同时从出售苏打日用化学品作为组合方法的副产物产生经济利益。
5.权利要求1或2所述的方法,其取决于高级膜技术系统,从而产生碳酸氢钠NaHCO3,并且包括以下阶段:
反应器设计:使二氧化碳气喷射穿过反应器中的Ca(OH)2,形成碳酸氢钙Ca(HCO3)2溶液;然后使后者经过进一步过滤以去除杂质微粒,然后送至复合膜系统;
复合膜系统:低百分比含量溶液得到转化,并浓缩至7%碳酸氢钠溶液;所述复合膜系统如下运行:
1-离子交换(IE)/反渗透(RO)系统:其中离子交换装置将Ca(HCO3)2溶液转换为NaHCO3溶液;多个RO柱被级联,从而将碳酸氢钠溶液从0.1%浓缩至7%;
2-反渗透(RO)装置,其中三个RO柱被级联,从而将碳酸氢钙溶液从0.25%浓缩至8%;RO装置后是反应器混合器,其中8%Ca(HCO3)2与8至10%NaCl混合,开始NaHCO3沉淀,其中部分溶液被煮沸以浓缩所述溶液;
固体废物处理装置提供的废物热量可将水转化为120至150℃的蒸汽,在固体废物焚化炉上具有蒸发器;蒸汽可用于通过蒸发一半体积将7%的碳酸氢钠溶液转化为干碳酸氢钠;如果废物热量高于220℃,那么7%的碳酸氢钠溶液可被干燥,并转化为苏打灰Na2CO3
所述方法所用的离子交换剂从处理过的海水或所产生的盐水中得到再生,如果盐水浓度C>10%盐度,那么不需要复合膜和热量交换系统;如果盐水浓度6%<C<9%盐度,那么不需要复合膜,并且可利用热量交换系统使其浓度提高至10%,或者如果更加廉价的话,添加NaCl使C达10%;如果仅海水可用,那么利用复合膜和热量交换系统分离和使浓度从3.5%增加至10%盐NaCl;
关于所述方法的一个重要方面是循环RO渗透物,其节省了纯水的生产和化学品的供应;可用所述纯水稀释的废产物——氯化钙和氯化镁——从所述复合膜和热量交换系统中产生,并且回到海中,而不破坏海洋环境;在此阶段饮用水的净产量难以估计,并且取决于稀释后Ca2+、Mg2+盐的政府容许水平。
CN200880131258.8A 2008-07-23 2008-07-23 生产苏打化学品的组合固体废物、二氧化碳生石灰喷射、盐水和反渗透/离子交换法 Expired - Fee Related CN102171149B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2008/002020 WO2010010417A1 (en) 2008-07-23 2008-07-23 A combined solid waste, carbon dioxide quicklime sparging, brine water, and reverse osmosis/ion exchange processes for the production of soda chemicals

Publications (2)

Publication Number Publication Date
CN102171149A CN102171149A (zh) 2011-08-31
CN102171149B true CN102171149B (zh) 2014-07-23

Family

ID=40786614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880131258.8A Expired - Fee Related CN102171149B (zh) 2008-07-23 2008-07-23 生产苏打化学品的组合固体废物、二氧化碳生石灰喷射、盐水和反渗透/离子交换法

Country Status (5)

Country Link
US (1) US8623316B2 (zh)
EP (1) EP2373583A1 (zh)
CN (1) CN102171149B (zh)
WO (1) WO2010010417A1 (zh)
ZA (1) ZA201102274B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070384A1 (en) * 2009-12-09 2011-06-16 Olfi Mohammed Using the solid waste-quicklime membrane swqm process for the production of sodium hydroxide
ES2584602T3 (es) 2012-02-03 2016-09-28 Omya International Ag Procedimiento para la preparación de una disolución acuosa que comprende al menos un hidrogenocarbonato de metal alcalinotérreo y su uso
EP2805924B1 (en) * 2013-05-24 2018-02-21 Omya International AG Multiple batch system for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of desalinated water and of naturally soft water
EP2805923B1 (en) * 2013-05-24 2018-10-31 Omya International AG Installation for the preparation of a solution of calcium hydrogen carbonate suitable for the remineralization of water
WO2017215723A1 (en) 2016-06-17 2017-12-21 Drug Delivery Solutions Aps Formulation for use in the treatment of uremic pruritus
IT202000001111A1 (it) * 2020-01-23 2021-07-23 Co2Apps S R L Impianto e metodo per la produzione di idrogeno con uso e stoccaggio di co2 usando combustibili
IT202000001102A1 (it) * 2020-01-23 2021-07-23 Co2Apps S R L Impianto e metodo per l’uso o lo stoccaggio permanente della co2 usando carbonati e cloruri
CN112551552A (zh) * 2020-09-24 2021-03-26 宣城市楷昂化工有限公司 一种用二氧化碳制备氢氧化钠的方法
CN112897553A (zh) * 2021-01-18 2021-06-04 大连东道尔膜技术有限公司 一种高浓盐水为原料制酸碱的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1419000A (en) * 1972-03-03 1975-12-24 Lion Fat Oil Co L D Method of manufacturing calcite type calcium carbonate
EP0726229A1 (en) * 1995-02-10 1996-08-14 Penrice Pty Ltd Production of alkali metal bicarbonates and carbonates
EP1832810A1 (en) * 2006-03-09 2007-09-12 ABB Technology AG Controlling a waste combustion process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078697A1 (en) * 2008-01-08 2009-07-15 SOLVAY (Société Anonyme) Process for producing sodium carbonate and/or sodium bicarbonate from an ore mineral comprising sodium bicarbonate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1419000A (en) * 1972-03-03 1975-12-24 Lion Fat Oil Co L D Method of manufacturing calcite type calcium carbonate
EP0726229A1 (en) * 1995-02-10 1996-08-14 Penrice Pty Ltd Production of alkali metal bicarbonates and carbonates
EP1832810A1 (en) * 2006-03-09 2007-09-12 ABB Technology AG Controlling a waste combustion process

Also Published As

Publication number Publication date
EP2373583A1 (en) 2011-10-12
US20110217227A1 (en) 2011-09-08
ZA201102274B (en) 2011-11-30
US8623316B2 (en) 2014-01-07
CN102171149A (zh) 2011-08-31
WO2010010417A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
CN102171149B (zh) 生产苏打化学品的组合固体废物、二氧化碳生石灰喷射、盐水和反渗透/离子交换法
US4083781A (en) Desalination process system and by-product recovery
US11235281B2 (en) Multi-pollutant exhaust treatment using seawater for marine applications
US20210039044A1 (en) Carbon Dioxide Sequestration
US20230191322A1 (en) Systems and methods for direct air carbon dioxide capture
Chen et al. Competitive ion migration and process optimization of carbon sequestration and seawater decalcification in a bipolar electrodialysis process
EP3895785A1 (en) Unit for desalination and greenhouse gas sequestration
WO2006072122A2 (en) Process for conversion of high pressure sea water reverse osmosis concentrate discharge (hpswro) from seawater desalination plants into magnesium chloride (for recovery of magnesium metal by electrolysis) and sodium chloride and hydrogen with cogeneration of electricity and heat by pem (proton exchange membrane) fuel cell
WO2012076915A1 (en) Using alkaline fly ash and similar byproducts in an ion-exchange/reverse osmosis process for the production of sodium carbonate
US10052584B2 (en) Water recycling in a CO2 removal process and system
WO2013016708A1 (en) Electrochemical desalination cell
Tu et al. Reclaimed seawater discharge–Desalination brine treatment and resource recovery system
Davies Solar thermal decomposition of desalination reject brine for carbon dioxide removal and neutralisation of ocean acidity
KR20180111229A (ko) 저 에너지 비용의 염분차발전-담수화 하이브리드 시스템
RU2538843C2 (ru) Применение мембранного процесса обработки твердых отходов-извести для получения гидроксида натрия
US20240166543A1 (en) Methods of seawater softening for desalination and mineral extraction
KR101489642B1 (ko) 연료전지장치를 이용한 복합담수시스템
US10858269B2 (en) Process for the treatment of water
US20240123400A1 (en) Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery
TWI842483B (zh) 自給自足的二氧化碳捕捉和封存系統及其方法
Yablonsky et al. Water recycling in a CO 2 removal process and system
JP2024047988A (ja) 二酸化炭素固定物含有液の処理装置及び二酸化炭素固定物含有液の処理方法
WO2023023163A1 (en) Produced water treatment with co2 absorption
KR20230041532A (ko) 이산화탄소의 가압 혼합 반응을 이용한 농축 해수 처리 방법
JPH08246811A (ja) 廃棄物エネルギーによる造水、造塩法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140723

Termination date: 20160723