CN102165254A - 具有最低限度烟道气再循环的氧/燃料燃烧系统 - Google Patents

具有最低限度烟道气再循环的氧/燃料燃烧系统 Download PDF

Info

Publication number
CN102165254A
CN102165254A CN2009801377746A CN200980137774A CN102165254A CN 102165254 A CN102165254 A CN 102165254A CN 2009801377746 A CN2009801377746 A CN 2009801377746A CN 200980137774 A CN200980137774 A CN 200980137774A CN 102165254 A CN102165254 A CN 102165254A
Authority
CN
China
Prior art keywords
oxygen
fuel
arranging
combustible fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801377746A
Other languages
English (en)
Other versions
CN102165254B (zh
Inventor
M·D·达戈斯蒂尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of CN102165254A publication Critical patent/CN102165254A/zh
Application granted granted Critical
Publication of CN102165254B publication Critical patent/CN102165254B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/20Premixing fluegas with fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/28Controlling height of burner oxygen as pure oxydant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

本公开包括控制燃料燃烧的系统和方法,包括提供系统,测量性质,和响应该性质提供氧气和燃料。该系统包括经安排和布置以接收燃料和氧气并燃烧该燃料和氧气以形成燃烧流体的炉、经安排和布置以接收来自该燃烧流体的热的多个热交换器段、和经安排和布置以向该燃烧流体可控提供氧气以调节该燃烧流体的组成和该燃烧流体的温度的多个注氧器。所测量的性质选自该燃烧流体的温度、该燃烧流体的组成、热交换器段的温度及其组合并紧邻注氧器进行。

Description

具有最低限度烟道气再循环的氧/燃料燃烧系统
对相关申请的交叉引用
本申请与下列申请相关:申请No. 12/238,612,名称为“OXY/FUEL COMBUSTION SYSTEM WITH LITTLE OR NO EXCESS OXYGEN”,代理人卷号No. 07228 USA,在2008年9月26日与本申请同时提交,转让给本公开的受让人并全文经此引用并入本文;申请No. 12/238,632,名称为“COMBUSTION SYSTEM WITH STEAM OR WATER INJECTION”,代理人卷号No. 07238 USA,在2008年9月26日与本申请同时提交,转让给本公开的受让人并全文经此引用并入本文;申请No. 12/238,644,名称为“COMBUSTION SYSTEM WITH PRECOMBUSTOR”,代理人卷号No. 07255 USA,在2008年9月26日与本申请同时提交,转让给本公开的受让人并全文经此引用并入本文;申请No. 12/238,671,名称为“CONVECTIVE SECTION COMBUSTION”,代理人卷号No. 07254 USA,在2008年9月26日与本申请同时提交,转让给本公开的受让人并全文经此引用并入本文;申请No. 12/238,695,名称为“OXY/FUEL COMBUSTION SYSTEM HAVNIG COMBINED CONVECTIVE SECTION AND RADIANT SECTION”,代理人卷号No. 07247 USA,在2008年9月26日与本申请同时提交,转让给本公开的受让人并全文经此引用并入本文;申请No. 12/238,731,名称为“PROCESS TEMPERATURE CONTROL IN OXY/FUEL COMBUSTION SYSTEM”,代理人卷号No. 07239 USA,在2008年9月26日与本申请同时提交,转让给本公开的受让人并全文经此引用并入本文,和申请No. 61/100,372,名称为“COMBUSTION SYSTEM WITH PRECOMBUSTOR”,代理人卷号No. 07262Z USA,在2008年9月26日与本申请同时提交,转让给本公开的受让人并全文经此引用并入本文。
发明领域
本公开涉及氧/燃料燃烧系统。特别地,本公开涉及降低或消除了烟道气再循环的氧/燃料燃烧系统。
背景技术
已知的氧/燃料燃烧系统包括烟道气再循环设备、烟道气再循环控制和/或二次燃料注入。已知系统依赖这些构件提供热交换表面的所需温度。这些构件增加系统的尺寸和复杂性、该系统的资本和运行成本、发生劣化并可能提高系统维护需要。由于为提供所需热分布而要循环的相对较大的气体体积,包含烟道气再循环的系统特别相对较大。
在锅炉中用氧气燃烧煤,所谓的氧/煤燃烧,具有两个基本挑战;一个是维持将水加热成蒸汽时辐射和对流传热之间的适当平衡,而另一个是保护锅炉中的金属部件免受由极高温的氧/燃料火焰造成的机械破坏。在转化成氧/燃料运行的空气/燃料锅炉中,最常见的方法是使烟道气以充足体积流速再循环以使再循环到炉中的基本包含O2和CO2的混合物接近空气(例如,O2/N2)。这可能要求烟道气再循环质量流速为燃料流速的大约10-12倍。
因此,仍然需要提供不依赖烟道气再循环设备、烟道气再循环控制或二次燃料注入提供热交换表面的所需温度的氧/燃料系统和燃烧方法,其中该系统具有更小尺寸、更低成本和/或更灵活(resilient),由此产生更大效率。
发明内容
本公开提供不依赖烟道气再循环设备、烟道气再循环控制或二次燃料注入以提供热交换表面的所需温度的氧/燃料系统和燃烧方法,其中该系统具有更小尺寸、更低成本和/或更灵活(resilient),由此产生更大效率。
根据一个实施方案,氧/燃料燃烧系统包括经安排和布置以接收燃料和氧气并燃烧该燃料和氧气以形成燃烧流体的炉、经安排和布置以接收来自该燃烧流体的热的多个热交换器段、和经安排和布置以向该燃烧流体提供氧气以可控调节该燃烧流体的组成和该燃烧流体的温度的多个注氧器。
根据另一实施方案,控制燃料燃烧的方法包括提供系统,测量性质,和响应该性质提供氧气、燃料或氧气和燃料的组合。在该实施方案中,该系统包括经安排和布置以接收燃料和氧气并燃烧该燃料和氧气以形成燃烧流体的炉、经安排和布置以接收来自该燃烧流体的热的多个热交换器段、和经安排和布置以向该燃烧流体提供氧气以可控调节该燃烧流体的组成和该燃烧流体的温度的多个注氧器。所测量的性质选自该燃烧流体的温度、该燃烧流体的组成、热交换器段的温度、在热交换器段中加热的流体的温度、接收来自该燃烧流体的热的介质的温度及其组合并紧邻注氧器进行。
本公开的一个优点是能够提供具有减小的尺寸的大容量燃烧系统。
本公开的又一优点是通过减少氧/燃料燃烧系统的尺寸和部件来降低制造和维护成本。
本公开的另一优点在于该燃烧系统的减小的尺寸和减少的部件提供提高的适应力(resilience)。
本公开的再一优点在于该燃烧系统需要较少的循环用气体体积,而不降低效率或总功率输出。
另一优点是维持将水加热成蒸汽时辐射和对流传热之间的适当平衡,并保护锅炉中的金属部件免受由极高温的氧/燃料火焰造成的机械破坏。
本文中公开了该方法和系统的其它方面。本领域技术人员根据下列详述和附图将会认识和理解如上论述的特征以及本公开的其它特征和优点。
附图简述
图1示意性显示根据本公开的氧/燃料系统的一个示例性实施方案。
图2示意性显示根据本公开的氧/燃料系统的一个示例性实施方案。
图3示意性显示根据本公开的氧/燃料系统的一个示例性实施方案。
图4示意性显示根据本公开的燃料传输装置。
图5示意性显示根据本公开的氧/燃料系统的一个示例性实施方案。
图6显示分配和混合方式的示意性正视图。
图7显示分配和混合方式的示意性正视图。
图8显示分配和混合方式的示意性正视图。
图9显示分配和混合方式的示意性正视图。
图10示意性显示根据本公开的氧/燃料系统的一个示例性实施方案。
图11图解气体温度与根据一个实施方案传递的热之间的关系。
图12图解气体温度与根据另一实施方案传递的热之间的关系。
图13图解气体温度与根据再一实施方案传递的热之间的关系。
图14图解气体CO浓度与根据一个实施方案传递的热之间的关系。
图15图解气体CO浓度与根据另一实施方案传递的热之间的关系。
图16图解气体CO浓度与根据再一实施方案传递的热之间的关系。
图17图解气体CO浓度与根据又一实施方案传递的热之间的关系。
只要可能,在所有附图中使用相同标号代表相同部件。
发明详述
下面参照附图更充分描述本公开,其中显示了本公开的优选实施方案。但是,本公开可以具体体现为许多不同的形式且不应被解释为仅限于本文中阐明的实施方案;相反,提供这些实施方案以使本公开详尽完整并向本领域技术人员充分传达本公开的范围。
本文所用的术语“固体燃料”及其语法变体是指适合燃烧用途的任何固体燃料。例如,本公开可用于许多类型的含碳固体燃料,包括但不限于:无烟煤、烟煤、次烟煤和褐煤;焦油;沥青;石油焦;造纸厂污泥固体物和下水道污泥固体物;木材;泥炭;草;和所有这些燃料的组合和混合物。本文所用的术语“氧气”及其语法变体是指O2浓度大于大气或环境条件的氧化剂。本文所用的术语“氧/煤燃烧” 及其语法变体是指在氧气中的煤燃烧,术语“空气/煤燃烧”及其语法变体是指在空气中的煤燃烧,术语“氧/燃料燃烧”及其语法变体是指在氧气中的燃料燃烧,和术语“空气/燃料燃烧”及其语法变体是指在空气中的燃料燃烧。本文所用的术语“燃烧流体”及其语法变体是指由燃烧产物形成和/或与燃烧产物混合的流体,其可用于对流传热。该术语不限于燃烧产物并可包括与至少一部分燃烧系统混合或以其它方式行经至少一部分燃烧系统的流体。尽管不限于此,但一个这样的实例是烟道气。本文所用的术语“再循环烟道气”及其语法变体是指再循环到该系统任何部分的离开该系统的燃烧流体。本文所用的术语“烟道气再循环”及其语法变体是指允许燃烧流体再循环的构造。尽管各种实施方案显示在特定位置的火焰,但要认识到,在发生燃烧的任何位置,火焰可能存在,但不一定必须存在。
图1显示本公开的氧/燃料燃烧系统102的一个示例性实施方案。如图1中所示,氧/燃料燃烧系统102减少与烟道气再循环(FGR)相关的构件(features)以控制和平衡燃烧系统102的炉104和对流段106之间的传热速率。燃烧系统102通过遍布燃烧系统102加入多个流径(fluid path)151、153、155、157来减少与FGR相关的构件,这些流径经安排和布置以控制来自燃料107的化学热释放以实现燃烧系统102中所需的燃烧流体温度和燃烧流体与水或蒸汽之间的热交换速率。术语流径是指用于燃烧流体或部分燃烧的燃烧流体的路径。流径151、153、155和157可位于热交换器段之间和/或可以使燃烧流体与氧气混合。
在图1中所示的燃烧系统102的实施方案中,多个热交换器段120是束状的,并包括具有液态水加热负荷的上游端121和具有蒸汽加热负荷的下游端123。
参照图1,燃烧系统102使用再循环烟道气105运载燃料107而非控制炉104和/或对流段106中的传热。FGR用于运载的这种用途需要的量为控制炉104和对流段106传热所需的量的小百分比。例如,载气的质量流速通常小于燃料的质量流速的三倍,并通常小于或等于燃料的质量流速的大致两倍。与此相比,在从空气-燃料转化成氧-燃料运行的锅炉中用于传热控制的预期量为燃料质量流速的10-12倍。此外,用于运载燃料的再循环烟道气具有高度恒定性和稳定性,使得它通常对于缓和和控制蒸汽温度是不理想的。
在燃烧系统102的炉104中,加入燃料107和氧气,氧气以亚化学计算量添加。流径153、155、157位于炉104下游并被例如用于气体到液体或气体到蒸汽的传热的热交换器段120与炉104隔开。最好如图3中的实施方案所示,流径151布置在燃烧区下游但在炉104的至少一部分的上游。燃烧系统102合意地经由流径151、153、155和/或157提供来自燃料107的化学热释放的控制和分布。例如,燃烧系统102提供充足停留时间以供完成燃料混合和燃烧过程。此外,防止热交换器的过热蒸汽管由于引入燃烧系统102的更惯常保持在较低温度的区域的高温而过度加热。
热交换器段120可紧邻各流径151、153、155或157的下游安置并用于气体到液体传热。用在气体到液体热交换器下游的气体到蒸汽热交换器布置热交换器段120。在又一实施方案中,布置燃烧系统102以在燃烧系统102中的多个位置测量蒸汽温度、热交换器表面温度、燃烧流体温度和/或燃烧流体组成和用于控制注氧速率和燃料注射速率。在又一实施方案中,紧邻流径151、153、155、157进行这些测量。在再一实施方案中,炉104是位于与燃烧系统102的其余部分分开的容器中的除渣部分氧化反应器(slagging partial oxidation reactor)。在此实施方案中,安排和布置炉104以去除渣和将气态产物排放到燃烧系统102。
与热交换器段120的分段构造结合的通过控制炉104下游的流径151、153、155、157来控制燃烧系统102中的能量释放实现进一步控制。该分段构造紧邻位于炉104下游的至少一部分流径151、153、155、157的下游安置水(或液体)加热段。通过选择性安置的工艺气体性质(例如气体和燃烧流体温度或组成)测量装置促进注氧速率的管理和控制。FGR的使用仅限于提供运载气体105以将燃料107,如煤从燃料加工设备(未显示)运往燃烧器(其排料到炉104中)的需要。
在第一流径151(显示在图3中)中,燃料107和燃烧流体与氧气一起引入炉104,在此发生燃料107的部分氧化。在一个实施方案中,将氧气以小于或等于燃料完全燃烧的化学计量需要量的80%的速率注入炉104。在炉104内在第一水加热的传热段140(WH-140)中发生液体加热。水加热阶段中的能量损失充分降低该燃烧流体的温度以便随后在第一蒸汽加热的热交换段141(SH-141)中发生蒸气加热。在第二流径153中,注氧器108紧随SH-141。在第二流径153引入的氧气量低于燃料107的完全燃烧所需的量。在第二流径153引入的氧气量可能高于推荐蒸汽加热管受到的最高气体温度。因此,在图1所示的实施方案中,第二水加热的热交换器142(WH-142)紧随第二流径153。在气体和水管之间交换的热将气体温度降至如下程度:其中在第二蒸汽加热的热交换器143(SH-143)中发生向蒸汽的传热。在第三流径155中,安排和布置注氧器108以提供亚化学计算量的氧气,接着是从第三水加热的热交换器144(WH-144)和第三蒸汽加热的热交换器145(SH-145)传热的第三组合。更往下游,安排和布置第四流径157注氧器108以在燃料107的完全燃烧所需的量以上提供氧气,接着是从第四水加热的热交换器146(WH-146)和第四蒸汽加热的热交换器147(SH-147)传热的第四组合。
响应在传感器110或其它测量装置处获得的测量结果提供在流径151、153、155、157进入注氧器108的氧气的速率的控制。用于工艺测量的传感器能够控制流径151、153、155、157。测量包括,但不限于,蒸汽温度、热交换器表面温度、工艺燃烧流体温度和组成,特别是一氧化碳(CO)和氧气(O2)浓度。例如,考虑离开第一流径151的在SH-141后的条件,如果出口蒸汽温度太低,则在炉104内由燃料107释放更多能量。这可以通过提高注氧速率和/或燃料流速来实现。是否提高燃料107和/或氧气的量或流速的决定取决于离开SH-141的烟道气的温度和组成。如果这种温度和CO组成的测量结果都在预定范围内,则可调节任一者。在一个实施方案中,优选调节氧气,因为其在燃烧系统的平衡中较不容易产生干扰。在一个实例中,如果温度接近预定范围的下限且CO组成在范围内,则提高注氧速率。如下列实施例所示,通过计算或通过在现有燃烧系统102上进行的试验确定该范围。类似地,如果该温度在预定范围内但CO接近预定范围的上限,则提高注氧速率以从燃料107中释放必需的能量。但是,如果温度和CO都接近预定范围的下限,则以固定注氧速率提高燃料107的注射速率。本领域技术人员会认识到,可基于该系统的可用测量与特定的设计和运行要求开发额外的控制响应。
以类似方式,可以在燃烧系统102各处测量温度和CO组成以控制其它流径151、153、155、157。在热交换段147后的区域中,传感器110可测量CO和O2 浓度。可察觉量的CO的存在例如意味着需要提高到最终流径157的氧气流量。
除有助于控制燃料107注射速率和注氧速率外,燃烧流体温度测量提供安全功能。在一个实施方案中,流径151、153、155或157的局部燃烧流体温度处于或高于燃料107的自燃温度。自燃温度的值取决于燃料107,但许多燃烧器管理系统需要至少1400℉(760℃)的温度以确保燃料107的自燃。因此,局部燃烧流体温度用于验证是否符合该要求。如果局部气体温度低于自燃点,则需要使用单独的点火源,如引燃喷嘴或连续火花等离子体运行燃烧系统102和用新注入的氧气流151、153、155或157维持部分氧化的燃烧流体的安全稳定燃烧。
图2显示本公开的氧/燃料燃烧系统102的一个示例性实施方案。图2中所示的系统类似于参照图1显示和描述的系统。在图2中,燃烧系统102先在单独的室202(其中从部分燃烧的燃烧流体206中除去炉渣204(或熔融形式的其它固体残渣))中加工燃料107后将燃料107注入炉104。在图2中所示的实施方案中,第一流径151、燃料107和部分燃烧的燃烧流体204与氧气一起引入室202,在此发生燃料107的部分氧化。在室202内在WH-140中发生液体加热。在水-加热阶段过程中损失的能量充分降低该燃烧流体的温度,以便随后在炉104中的SH-141中发生蒸气加热,而不过度加热蒸汽管。在此实施方案中,在室202和燃烧系统102的其余部分之间进行燃烧流体温度和组成测量以利于控制工艺条件。
图2中所示的实施方案从燃料107中除去炉渣204,由此降低微粒转移到炉104中。因此,降低下游微粒去除设备的尺寸,也降低燃烧系统102内的结垢和侵蚀倾向。结垢降低的效果在于,可以将各种热交换器中的管之间的间距减至最低,由此提高管束中的燃烧流体速度和降低促进气体与水或蒸汽之间的能量转移所需的燃烧系统102总尺寸。
图3显示与图2中所示的实施方案类似的实施方案,但在炉104中包括WH-140。也在图3中,包含氧气的第一流径151在用于第一氧化阶段的室202中。
图4显示不需要使用FGR运载燃料107的本公开的一个实施方案。在此实施方案中,将FGR换成例如使用含水流、通过固体燃料重力进料到燃烧器、通过机械装置、通过用氧气或其它气体(不包括RFG)作为吸入剂吸入、通过本领域已知的其它系统和/或通过它们的组合输送燃料107。图4显示经安排和布置以将燃料107送入燃料导管404的装置401。装置401被描绘为带有回转阀406的料斗,但可以是任何其它燃料输送装置。如图4中所示,推杆408或活塞将燃料107送往燃料导管404的喷嘴端410。气态流体流402在环形套筒412中沿燃料导管404的外部流动并在喷嘴端410会合燃料107。气态流体流402的高速度产生吸力(suction),其将燃料107吸出燃料导管404并将其分散到从喷嘴端410排出的流动的气体/固体混合物中。如果燃烧器的取向为垂直而非水平,可以使用无推杆408的相同系统。图4的料斗的使用允许从燃烧系统102中完全除去FGR。
图5显示本公开的另一实施方案。燃烧系统102的这一实施方案包括来自上述实施方案的所有特征和限制。特别地,此实施方案可包括FGR,尽管未描绘在图5中。在此实施方案中,燃烧系统102包括供氧系统502。如图5中所示,供氧系统502可以是例如,空分装置(ASU)。使用已知设备和方法将来自ASU的空气分离成气态氧504和气态氮506。如所示,气态氮506流向第一外部热交换器512,同时从离开SH-147的燃烧流体中接收热能。气态氮506随后流经第二外部热交换器510,在此将其大部分热释放到气态氧504流中。随后如上所述分布气态氧504。气态氮506的温流(warm stream)离开第二外部热交换器510和流向燃料干燥器508,在此利用其固有的低湿含量和略微升高的温度,其加热和干燥进入燃烧系统102的燃料107。气态氮506废气由此在等于或接近环境温度下与残留燃料水分一起离开燃烧系统102,同时以由于这些热交换和燃料干燥过程而提高的热效率在炉104中燃烧该加热的干燥的燃料加上加热的氧气。
在炉104下游的注氧器108快速混合和释放来自燃烧流体的化学能,尽管化学活性组分的浓度较低。安排和布置注氧器108以与燃烧流体快速混合。图6至9显示经安排和布置以促进氧气与燃烧流体的快速混合的注氧器108。
如图6至9中所示,流径153(可能是流径151、155和/或157)可包括专门经构造以提高混合速率的混合装置,在此注氧器108和燃烧流体在区域600中会合。尽管所示流径153被描绘在区域600中,但可以在要求混合两种流体,例如氧气和燃烧流体的任何位置使用该混合装置。快速混合可能对提高的效率和控制精度而言是合意的。如图6中所示,在一个实施方案中,可以将喷枪404插入流径153以在整个燃烧流体各处分配氧气。
图7显示在流径153(可能是流径151、155和/或157)分配氧气的另一方式。在图7中,紧邻注氧器108安装多个喷嘴502。要认识到,圆形或非圆形横截面的喷嘴502可如图7中所示与输入的气流呈90度角取向,或以不同角度取向。图8显示在流径153(可能是流径151、155和/或157)流向中呈非90度角的喷嘴502。图9显示在流径153(可能是流径151、155和/或157)的相反流向中呈非90度角的喷嘴502。可以使用其它注氧布置108。
实施例
主要基于管结垢考虑,合意的炉排出气体温度通常为大约2200至2550° F(1200至1400℃)。因此,根据局部传热系数,在气体到蒸汽热交换器,特别是使用现有技术状况的锅炉管材料的那些,略高的气体温度是可接受的。对本实施例中的举例说明而言,分析进入气体到蒸汽热交换器的达到大约2700℉(1482℃)的气体温度。
通过下列实施例说明本公开的上述实施方案的可能的操作参数。在根据本公开的图1所示的实施方案的系统中用100%纯氧燃烧的具有表1中所列性质的高挥发性烟煤燃烧,以产生用于单再热涡轮发电机的蒸汽,产生600 MW(净)电力。气体与水/蒸汽之间的总热交换速率为4700 MMBtu/hr(百万英热单位/小时)。传热分配为从气体到(液态)水3000 MMBtu/hr和从气体到蒸汽1700 MMBtu/hr。
表1
Figure 811794DEST_PATH_IMAGE002
使用与独立系统部件周围的热和质量平衡结合的平衡化学反应模型,以测定产生下列三个不同实施例的可接受的运行条件的操作策略。
实施例1. 无FGR
实施例2. 用作运载气体的1 lb FGR/lb燃料
实施例3. 用作运载气体的2 lb FGR/lb燃料
为简化分析,当使用时,假设再循环烟道气为CO2,并使用单分布的注氧器流速,总注氧速率等于比完全燃烧的化学计量需求高2.4%。此外,离开最终热交换段的气体温度保持在796℉(424℃)。在位于相邻注氧器点之间的热交换器中发生的传热也是固定的。该模型计算中所用的注氧器和传热的分配分别概括在表2和3中。
表2
注射器 O2注入(化学计量需求的%)
701 66.4
702 13.9
703 6.9
704 15.2
总量 102.4
表3
传热段 传热负荷(MMBtu/hr)
WH-140& SH-141 2150
WH-142& SH-143 850
WH-144& SH-145 850
WH-146& SH-147 850
总量 4700
代表上文公开的实施方案的图10示意性例证本公开。在图10中,规定四个附加点以确定在各流径下游但在随后的热交换段上游的计算出的气体温度和/或CO组成。这三个点是602、603和604,其后分别跟着注氧器702、703和704,但分别位于图10中的水加热段WH-143、WH-145和WH-147的上游。第四点601位于SH-141上游。对602、603和604计算出的气体温度是绝热火焰温度。由于在运行中,甚至在热交换器上游,发生一定传热,,这些温度代表进入随后的热交换器的实际气体温度的上限。点901与来自在第一热交换器段之后的传感器110的测量结果相关。由在点901的温度通过经过SH-141的能量平衡反算对第四点601计算出的气体温度。点902与来自在第二热交换器段之后的传感器110的测量结果相关。点903与来自在第三热交换器段之后的传感器110的测量结果相关。点904与来自在第四热交换器段之后的传感器110的测量结果相关。
通过在气体温度 vs. 累积热交换图上叠加恒定气体温度线,确定在各流径后的水热交换段和蒸汽热交换段之间的分配(division)。该线与该气体温度曲线的倾斜(sloping)部分的交叉点代表热交换器段(即合并的水 & 蒸汽段)内的点,其中气体温度等于假定的定值。通过选择代表蒸汽管的合理暴露极限的气体温度值,这能够测定可提供蒸汽加热负荷的特定热交换器的比例,该部分热交换器低于所选气体温度限。对于实施例1(无FGR)和大约2700℉(1482℃)的气体温度极限705,在图17中图解该方法。根据该图中所列的结果,在大约2700℉(1482℃)或更低的气体温度下,大约1950 MMBtu/hr的能量可以从气体传递到蒸汽。适用于利用这种标准将来自气体的热传送到蒸汽的区域在该图中标作801、802、803和804,它们可以分别完全或部分地并入SH-141、SH-143、SH-145、和SH-147中。这与1700 MMBtu/hr的总蒸汽加热需求量的比较表明该系统可行,只要不违反热力学限制。也就是说,局部气体温度超过局部蒸汽温度,以便从气体传热至蒸汽。由于离开最终热交换器的最终气体温度标称为大约800℉(427℃),这表明这一区段的最终区域最适用于相对低温蒸汽的最初加热,而非相对高温蒸汽的最后加热。
所有三个实施例在大约2300℉(1260℃)、大约2500℉(1371℃)和大约2700℉(1482℃)的气体温度水平下的分析结果概括在表4中。
表4
实施例 在2300℉以下的热交换 在2500℉以下的热交换 在2700℉以下的热交换
1 1245 MMBtu/hr 1610 MMBtu/hr 1950 MMBtu/hr
2 1925 MMBtu/hr 2235 MMBtu/hr 2615 MMBtu/hr
3 2425 MMBtu/hr 2765 MMBtu/hr 2990 MMBtu/hr
这些结果揭示了其中热交换速率高于1700 MMBtu/hr并具有足以在等于或低于指定值的气体温度下满足蒸汽过热要求的能量的情况。因此,这些相同条件可用于实施本发明。此外,在某些实施例,例如实施例2和3中,注氧器之后的绝热气体温度足够低以致不需要在每一区段中都具有第一气体到水热交换器(见图12和13)。
尽管已参照优选实施方案描述本公开,但本领域技术人员会理解,可以在不脱离本公开的范围的情况下作出各种变动并可将其要素换成对等物。此外,可以在不脱离其基本范围的情况下对本公开的教导作出许多修改以适应特定情况或材料。因此,本公开无意局限于作为本发明的最佳实施方式公开的具体实施方案,但本公开包括落在所附权利要求的范围内的所有实施方案。

Claims (26)

1.氧/燃料燃烧系统,包含:
炉,其经安排和布置以接收燃料和氧气并燃烧该燃料和该氧气以形成燃烧流体;
多个热交换器段,其经安排和布置以接收来自该燃烧流体的热;和
多个注氧器,其经安排和布置以向该燃烧流体提供氧气以可控调节该燃烧流体的组成和该燃烧流体的温度。
2.权利要求1的燃烧系统,其中该燃料是固体燃料。
3.权利要求2的燃烧系统,进一步包含经安排和布置用于将该固体燃料传输至该炉的烟道气再循环构造。
4.权利要求2的燃烧系统,进一步包含经安排和布置以仅用于将固体燃料传输至炉的烟道气再循环构造。
5.权利要求1的燃烧系统,进一步包含测量装置,其紧邻所述多个注氧器安排在该系统中,并经布置以测量选自该燃烧流体的温度、该燃烧流体的组成、该热交换器段的温度、接收来自该燃烧流体的热的介质的温度及其组合的性质。
6.权利要求5的燃烧系统,进一步包含控制系统,其经安排和布置以响应由该测量装置进行的测量调节注氧速率和燃料注射速率。
7.权利要求1的燃烧系统,其中该炉进一步包含经安排和布置以去除炉渣的单独的室。
8.权利要求1的燃烧系统,其中该燃烧系统基本不含烟道气再循环构造。
9.权利要求1的燃烧系统,进一步包含经安排和布置以产生氧气和基本包含氮气的副产物的供氧系统。
10.权利要求9的燃烧系统,进一步包含经安排和布置以将来自燃烧流体的热传送至该副产物的第一热交换器,和经安排和布置以将来自该副产物的热传送至该氧气的第二热交换器。
11.权利要求10的燃烧系统,其中离开该第二热交换器的该副产物经构造以用作用于干燥该燃料的介质。
12.权利要求1的燃烧系统,其中该热交换器段的每个包含液体加热段,接着蒸气加热段。
13.权利要求1的燃烧系统,其中所述多个注氧器中的一个或多个安排在该热交换器段之间。
14.权利要求1的燃烧系统,其中注入该炉的该氧气少于或等于该燃料的完全燃烧的化学计算需要量的80%。
15.控制燃料燃烧的方法,包括:
提供系统,其包含经安排和布置以接收燃料和氧气并燃烧该燃料和该氧气以形成燃烧流体的炉、经安排和布置以接收来自该燃烧流体的热的多个热交换器段、和经安排和布置以向该燃烧流体提供氧气以可控调节该燃烧流体的组成和该燃烧流体的温度的多个注氧器;
测量选自该燃烧流体的温度、该燃烧流体的组成、该热交换器段的温度、接收来自该燃烧流体的热的介质的温度及其组合的性质,紧邻该注氧器实现该测量;和
响应该性质提供氧气、燃料、或氧气和燃料的组合。
16.权利要求15的方法,进一步包括提供充足的氧气和燃料以调节来自燃料的该化学热释放。
17.权利要求16的方法,其中调节所提供的氧气和燃料的量以控制该燃烧流体的温度和在该燃烧流体与该热交换段之间的传热速率。
18.权利要求16的方法,其中测量该热交换器段温度,可通过提供来自该燃料的受控化学能释放来调节该热交换器段温度。
19.权利要求16的方法,其中通过调节注氧速率来调节由该燃料释放的化学能。
20.权利要求15的方法,进一步包括测量该燃烧流体中的CO的浓度,可通过调节至少一个注氧器中的注氧速率来调节CO的浓度。
21.权利要求15的方法,进一步包括测量该燃烧流体的温度并响应该燃烧流体的该温度调节在至少一个该注氧器中的注氧速率。
22.权利要求15的方法,进一步包括测量燃烧流体温度和响应该燃烧流体温度激活点火源。
23.权利要求15的方法,进一步包括将少于或等于该燃料的完全燃烧的化学计算需要量的80%的氧气注入到该炉中。
24.权利要求15的方法,其中该燃料是固体燃料。
25.权利要求24的方法,其中该系统进一步包含经安排和布置用于将该固体燃料传输至该炉的烟道气再循环构造。
26.权利要求24的方法,其中该系统进一步包含经安排和布置仅用于将该固体燃料传输至该炉的烟道气再循环构造。
CN200980137774.6A 2008-09-26 2009-09-25 具有最低限度烟道气再循环的氧/燃料燃烧系统 Expired - Fee Related CN102165254B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/238,657 US8316784B2 (en) 2008-09-26 2008-09-26 Oxy/fuel combustion system with minimized flue gas recirculation
US12/238657 2008-09-26
US12/238,657 2008-09-26
PCT/US2009/058292 WO2010036845A2 (en) 2008-09-26 2009-09-25 Oxy/fuel combustion system with minimized flue gas recirculation

Publications (2)

Publication Number Publication Date
CN102165254A true CN102165254A (zh) 2011-08-24
CN102165254B CN102165254B (zh) 2014-05-28

Family

ID=41723128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980137774.6A Expired - Fee Related CN102165254B (zh) 2008-09-26 2009-09-25 具有最低限度烟道气再循环的氧/燃料燃烧系统

Country Status (5)

Country Link
US (1) US8316784B2 (zh)
EP (1) EP2331874A2 (zh)
CN (1) CN102165254B (zh)
CA (1) CA2733121C (zh)
WO (1) WO2010036845A2 (zh)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049848A1 (de) * 2006-10-23 2008-05-08 Ivoclar Vivadent Ag Verfahren zum Betrieb eines Brennofens, insbesondere für den Dentalbereich, sowie Brennofen
AU2009228283B2 (en) 2008-03-28 2015-02-05 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
MY153097A (en) 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US8478446B2 (en) * 2008-06-13 2013-07-02 Air Products And Chemicals, Inc. Oxygen control system for oxygen enhanced combustion
AU2009303735B2 (en) 2008-10-14 2014-06-26 Exxonmobil Upstream Research Company Methods and systems for controlling the products of combustion
JP5898069B2 (ja) 2009-06-05 2016-04-06 エクソンモービル アップストリーム リサーチ カンパニー 燃焼器システムおよびその使用方法
CN102597418A (zh) 2009-11-12 2012-07-18 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
SG10201505280WA (en) 2010-07-02 2015-08-28 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
JP5759543B2 (ja) 2010-07-02 2015-08-05 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
CN102971508B (zh) 2010-07-02 2016-06-01 埃克森美孚上游研究公司 Co2分离系统和分离co2的方法
WO2012018458A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company System and method for exhaust gas extraction
WO2012018457A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
US8671659B2 (en) 2011-04-29 2014-03-18 General Electric Company Systems and methods for power generation using oxy-fuel combustion
JP6019565B2 (ja) 2011-11-16 2016-11-02 株式会社Ihi 酸素燃焼ボイラの微粉燃料供給方法及び酸素燃焼ボイラシステム
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9518734B2 (en) * 2013-01-28 2016-12-13 General Electric Technology Gmbh Fluid distribution and mixing grid for mixing gases
US9696030B2 (en) 2013-01-28 2017-07-04 General Electric Technology Gmbh Oxy-combustion coupled firing and recirculation system
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
US10221762B2 (en) 2013-02-28 2019-03-05 General Electric Company System and method for a turbine combustor
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9784182B2 (en) 2013-03-08 2017-10-10 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN106090895A (zh) * 2016-07-29 2016-11-09 东方电气集团东方锅炉股份有限公司 高效烟气再循环富氧燃烧系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245878A (zh) * 1998-08-20 2000-03-01 株式会社日立制作所 锅炉
US6042365A (en) * 1999-06-28 2000-03-28 Chen; Yaosheng Fuel combustion monitoring apparatus and method
US20040231332A1 (en) * 2003-03-19 2004-11-25 Victor Saucedo Real time optimization and control of oxygen enhanced boilers
US7261046B1 (en) * 2003-06-10 2007-08-28 Aptech Engineering Services, Inc. System and method of reducing pulverizer flammability hazard and boiler nitrous oxide output

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865344A (en) 1955-06-21 1958-12-23 Combustion Eng Apparatus and method for heating steam
US5222446A (en) * 1991-05-29 1993-06-29 Edwards A Glen Non-polluting incinerator
US6314896B1 (en) 1999-06-10 2001-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for operating a boiler using oxygen-enriched oxidants
US6619041B2 (en) 2001-06-29 2003-09-16 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Steam generation apparatus and methods
JP2008519958A (ja) 2004-11-12 2008-06-12 ジュピター オキシジェン コーポレーション ボイラ過熱温度を制御する装置および方法
US7516620B2 (en) 2005-03-01 2009-04-14 Jupiter Oxygen Corporation Module-based oxy-fuel boiler
US7621973B2 (en) * 2005-12-15 2009-11-24 General Electric Company Methods and systems for partial moderator bypass
US20090293782A1 (en) * 2008-05-30 2009-12-03 Foster Wheeler Energia Oy Method of and system for generating power by oxyfuel combustion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245878A (zh) * 1998-08-20 2000-03-01 株式会社日立制作所 锅炉
US6042365A (en) * 1999-06-28 2000-03-28 Chen; Yaosheng Fuel combustion monitoring apparatus and method
US20040231332A1 (en) * 2003-03-19 2004-11-25 Victor Saucedo Real time optimization and control of oxygen enhanced boilers
US7261046B1 (en) * 2003-06-10 2007-08-28 Aptech Engineering Services, Inc. System and method of reducing pulverizer flammability hazard and boiler nitrous oxide output

Also Published As

Publication number Publication date
WO2010036845A2 (en) 2010-04-01
US8316784B2 (en) 2012-11-27
EP2331874A2 (en) 2011-06-15
US20100077941A1 (en) 2010-04-01
CN102165254B (zh) 2014-05-28
CA2733121A1 (en) 2010-04-01
WO2010036845A3 (en) 2010-05-20
CA2733121C (en) 2013-10-15

Similar Documents

Publication Publication Date Title
CN102165254B (zh) 具有最低限度烟道气再循环的氧/燃料燃烧系统
CN102369396B (zh) 氧/燃料燃烧系统中的工艺温度控制
US9243799B2 (en) Combustion system with precombustor for recycled flue gas
US9752773B2 (en) Apparatus and method of controlling the thermal performance of an oxygen-fired boiler
CN101784839B (zh) 用于使旋风燃烧室里的氮氧化物(NOx)排放物降至最少的系统和方法
CN101952659A (zh) 通过富氧燃烧控制动力发生过程的方法
US20140338577A1 (en) Oxygen enhanced combustion of biomass
Ilbas et al. Effect of oxy-fuel combustion on flame characteristics of low calorific value coal gases in a small burner and combustor
US11781751B2 (en) Combustion system comprising an annular shroud burner
US5832846A (en) Water injection NOx control process and apparatus for cyclone boilers
US20220325888A1 (en) Combustion system comprising an annular shroud burner
US20080006188A1 (en) Increasing boiler output with oxygen
EP2592362B1 (en) Flameless boiler for producing hot water
CN114593415A (zh) 一种零碳排放燃烧系统
TW202417782A (zh) 鍋爐控制裝置、鍋爐控制方法、及鍋爐控制程式
Kvrivishvili et al. Burning of High-Ash Ekibastuz Coal in the Boiler Furnace of 300–500 MW Power Units
WO2012078269A2 (en) Directly fired oxy-fuel boiler with partition walls
Storm et al. Boiler optimization increases fuel flexibility

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140528

Termination date: 20160925