发明内容
本发明的目的是提供一种与谷子抽穗期基因紧密连锁的分子标记。
本发明的另一目的是提供一种可用于PCR扩增与谷子抽穗期基因紧密连锁的分子标记的引物对,以及由该引物对扩增获得的分子标记。
本发明的再一目的是提供上述分子标记在谷子抽穗期基因定位、检测以及谷子辅助育种中的用途以及上述分子标记的检测方法。
本发明的目的还包括提供一种包括上述分子标记的载体,以及含有该载体的重组细胞;提供一种包括使用上述分子标记的谷子抽穗期基因的定位方法,和使用所述分子标记的谷子辅助育种方法。
为了实现上述目的,本发明采用了以下技术方案:
本发明公开了一种与谷子抽穗期基因紧密连锁的分子标记,所述分子标记含有Seq ID No.1所示序列;优选的所述分子标记具有Seq ID No.1所示序列。
本发明还公开了一种扩增与谷子抽穗期基因紧密连锁的分子标记的引物对,所述引物对的引物1含有Seq ID No.2所示序列,引物2含有Seq ID No.3所示序列;优选的所述引物1具有Seq ID No.2所示序列,引物2具有Seq ID No.3所示序列;
Seq ID No.2:5’-TGATACCGTACGTCAGATGT-3’;
Seq ID No.3:5’-GCTGTGGAGAAACGACTGAG-3’。
本发明还公开了一种与谷子抽穗期基因紧密连锁的分子标记,所述分子标记是由上述的引物对以抽穗期为晚期的谷子基因组DNA为模板经PCR扩增得到的。
优选的由上述引物对扩增得到的分子标记含有Seq ID No.1所示序列。
在本发明的一个实施方案中,所述分子标记(含有Seq ID No.1所示核苷酸序列的DNA片段)为谷子基因组中Seq ID No.1所示核苷酸序列的DNA片段,即所包含的Seq ID No.1的5’端和/或3’端以外的核苷酸序列也是谷子基因组中的序列,优选的,为谷子基因组中Seq ID No.1的5’端和/或3’端的上下游序列。本领域技术人员可以理解,只要扩增或者检测抽穗期为晚期的谷子基因组DNA中的该分子标记,必然能够检测或扩增得到含有Seq ID No.1所示的序列。Seq IDNo.1的5’端和/或3’端的上下游序列的长度为适当长度,并不特别限定,例如,满足分子标记的长度小于10,000bp、小于5,000bp、小于2,000bp、小于1,500bp、小于1,200bp、小于1,000bp、或者小于800bp。
在本发明的一个实施方案中,所述分子标记(含有Seq ID No.1所示核苷酸序列的DNA片段)所包含的Seq ID No.1的5’端和/或3’端可操作地连接有人工序列和/或控制序列,例如启动子、增强子、终止子、酶切位点、引物序列等等。其中,术语“可操作地”在本发明中定义为一种如下构象,在该构象中,控制序列例如启动子被适当地置于Seq ID No.1的一个位置上,以致该控制序列指导Seq ID No.1编码的多肽的产生。
本发明还公开了一种载体,其含有本发明的分子标记。所述载体可以是插入有本发明的分子标记的表达载体或者克隆载体。获得上述载体后,本领域技术人员可以理解,根据不同的需要,将载体转化到合适的细胞中,得到含有该载体的重组细胞。因此,本发明还公开了一种含有所述重组载体的重组细胞。
本发明还公开了本发明的分子标记的制备方法,包括下述步骤:使用抽穗期为晚期的谷子的基因组DNA作为模板,以上述引物对进行PCR扩增,得到的623bp扩增产物即含有所述分子标记;优选地,还包括将PCR扩增产物进行纯化的步骤。
对本领域技术人员而言,可以理解,也可以DNA化学合成的方法得到本发明的分子标记。
本发明还公开了所述分子标记的检测方法,包括步骤:根据上述分子标记的核苷酸序列设计引物,以被检测谷子基因组DNA为模板进行扩增,并判断扩增产物中是否存在该分子标记。优选的,所述引物为上述分别含有Seq ID No.2和Seq ID No.3的引物对。
例如,可以以被检测谷子的基因组DNA为模板,以上述引物(Seq ID No.2和Seq ID No.3)进行PCR扩增,得到扩增产物。可以将得到的扩增产物进行测序或者凝胶电泳。
本发明还公开了所述的分子标记在谷子抽穗期基因定位或检测中的用途。
本发明还公开了一种谷子抽穗期基因定位的方法,所述方法包括使用本发明的分子标记的步骤。
本发明还公开了所述的分子标记在谷子辅助育种中的用途。
本发明还公开了一种谷子辅助育种方法,所述方法包括检测本发明的分子标记或分子标记引物对的步骤。
本发明的分子标记可用于今后的分子标记辅助育种中,本领域技术人员可以理解,比如通过检测是否存在本发明的分子标记来筛选谷子是否含有控制抽穗期为晚期的抽穗期基因(例如,可以参考,DNA分子标记在小麦抗病育种中的用途,陇东学院学报(自然科学版),2006年4月第16卷第1期,P65-69)。所述检测可以是PCR检测的方法,具体地,可以使用上述的本发明的分子标记的引物对。所述检测还可以通过测序方法进行。该谷子辅助育种方法具有简便、快速、高通量的优点。
在本发明中,具体地,所述谷子可以为张谷1号、谷子A2不育系、张杂谷3号、或张杂谷3号自交产生的F2代。其中,张谷1号、张杂谷3号或张杂谷3号自交产生的部分F2代抽穗期为晚期;谷子A2不育系、张杂谷3号自交产生的部分F2代抽穗期为早期。
由于采用以上技术方案,使本发明具备的有益效果在于:
本发明提供了与谷子抽穗期基因紧密连锁的分子标记,该分子标记将基因组DNA序列与谷子抽穗期基因联系起来,有利于谷子分子标记辅助育种体系的建立;所述分子标记与谷子抽穗期基因的遗传紧密连锁距离为3.2cM。本发明的分子标记及分子标记扩增引物可以简便、快速、高通量地应用于谷子育种实践和资源及品种鉴定。
具体实施方式
本发明公开了一种引物对以及与谷子抽穗期基因紧密连锁的分子标记SIsv0010。利用本发明的引物对,以谷子基因组DNA为模板进行PCR,可以得到与谷子抽穗期基因紧密连锁的分子标记,该分子标记在本发明中命名为分子标记SIsv0010。需要指出的是,本领域技术人员可以理解,除了通过上述PCR扩增获得本发明的分子标记外,还可以通过化学合成获得本发明的分子标记。
本发明的引物对分别含有序列表Seq ID No.2和Seq ID No.3所示序列,
Seq ID No.2:5’-TGATACCGTACGTCAGATGT-3’;
Seq ID No.3:5’-GCTGTGGAGAAACGACTGAG-3’。
本领域技术人员熟知,在上述Seq ID No.2和Seq ID No.3所示序列中,可在其5’端或3’端分别增加1~10个碱基,所增加的碱基类型可根据谷子基因组DNA上与Seq ID No.2和Seq ID No.3相匹配区域的碱基类型并依据碱基配对原则来确定,由此得到的引物对与Seq ID No.2和Seq ID No.3的扩增产物基本相同(上游和下游引物之间的DNA序列相同)。因此,上述在Seq ID No.2和SeqID No.3的5’端或3’端分别增加1~10个碱基并能扩增得到基本相同DNA片段的引物对,均包括在本发明的引物对中。在本发明具体的实施方式中,本发明的引物对优选为Seq ID No.2和Seq ID No.3所示序列。
一般谷子种子从萌发到抽穗需要70天左右,在本发明中,所述抽穗期晚期是指抽穗比一般谷子晚10天左右,抽穗期早期是指抽穗比一般谷子早10天左右。
本发明将父本抽穗期晚期和母本抽穗期早期的纯合子杂交,获得F1代(张杂谷3号),再以F1代自交产生F2代群体,共480个单株。
优选的采用SV分子标记开发方法,首先对父本进行de novo测序(60Xcontig N50:22K,scaffold N50:320K;Total size:400Mb),母本重测序(10X);然后根据父母本测序数据,利用华大自主开发的SOAP软件比较父母本之间的序列差异,分别在父本差异序列的5’端和3’端外侧约50bp位置,随机选取20bp左右的长度设计差异序列扩增的引物,根据不同的差异序列设计了1105对引物。以父母本及F1的DNA为模板进行扩增,从1105对引物中筛选出616对具有多态性和有效性的引物。采用开发出的616对引物,对F2群体的480个个体进行PCR检测,并进行数据统计分析,用Map Maker3.0软件进行遗传图谱绘制,得到本发明所述的与抽穗期基因紧密连锁的分子标记,及其扩增引物。采用筛选出的引物对扩增得到的父本序列,即本发明中的分子标记SIsv0010。对F2个体进行性状分析,并根据基因性状数据和表型性状数据将谷子抽穗期基因定位在遗传图谱上。
下面通过具体实施例并结合附图对本发明作进一步详细说明。以下实施例仅仅对本发明进行进一步的说明,不应理解为对本发明的限制。
实施例1:谷子F2代分离群体的构建
父本:抗拿捕净,株型高,旗叶长而窄,刚毛红色,颖壳红色,可育,叶色偏绿,花粉黄白色,抽穗期为晚期。父本为张谷1号种子。
母本:不抗拿捕净,株型矮,旗叶短而宽,刚毛绿色,颖壳绿色,部分不育,叶色偏黄,花粉棕色,抽穗期为早期。母本为谷子A2不育系种子。
F2群体构建:父本和母本杂交得到F1代(F1抽穗期为晚期),F1自交得到F2。其中F1是张杂谷3号种子。共得F2代单株480株。
上述张谷1号种子、谷子A2不育系种子及张杂谷3号种子可参见中国专利申请《与谷子抗除草剂基因紧密连锁的分子标记SIsv0372》,公开号CN101974521A,公布日2011年2月16日。
实施例2:父母本以及F1代、F2代个体基因组DNA的提取
用CTAB法分别提取实施例1中的父母本、F1代、以及480个F2代个体的基因组DNA,具体方法如下:
(1)称取1.0g新鲜叶片,剪碎放入研钵,用液氮研磨后加入3mL 1.5×CTAB,研磨成匀浆转入15mL的离心管中,然后往研钵中加入1mL 1.5×CTAB冲洗再转入离心管中。混匀后于65℃水浴30min,期间不时缓慢摇匀。
其中1.5×CTAB配方如下(1L):
加去离子水定容至1L,使用前加入终浓度为0.2%(2ml)的巯基乙醇。
(2)待冷却至室温,加入等体积氯仿/异戊醇(24∶1),轻轻混匀,至下层液变为深绿色。
(3)4200rpm离心10min,将上层水相移到新的15mL离心管,加2倍体积预冷的无水乙醇,混合静止5min。于-20℃放置30min沉淀DNA。
(4)4200rpm离心10min,弃掉上清,加入1mL 75%乙醇洗涤沉淀1次,倒置离心管干燥DNA,加入200μL TE溶解DNA。
(5)用0.8%的琼脂糖凝胶检测基因组DNA。
(6)将得到的父母本以及F1代、F2代个体的基因组DNA存于-20℃备用。
实施例3:分子标记的制备
以实施例2中提取的父本、F1代、或F2代的基因组DNA为模板,以分子标记扩增引物对(Seq ID No.2和Seq ID No.3)进行PCR扩增。
PCR反应体系如下:
PCR反应程序如下:
94℃预变性5分钟;94℃变性30秒,60℃退火30秒,72℃延伸40秒,运行35个循环;最后72℃延伸3分钟。PCR扩增产物可以在4℃保存。
经上述扩增过程得到分子标记,优选扩增后将扩增产物进行纯化操作。纯化后进行测序,结果如Seq ID No.1所示。
对本领域技术人员而言,可以理解,也可以通过DNA化学合成的方法得到该分子标记。
实施例4:SV分子标记开发
父本:de novo测序,60X contig N50:22K,scaffold N50:320K;Total size:400Mb;母本:重测序10X。
根据父母本测序数据,利用华大自主开发的SOAP软件(例如SOAP2.20,可以从http://soap.genomics.org.cn/下载,也可以使用其它的序列比对软件)比较父母本之间的序列差异,然后基于差异的序列,用primer premier软件设计扩增差异序列的引物;基于不同的差异序列,一共设计了1105对引物。下面的表1中示出了其中的部分引物序列(Seq ID No.2-Seq ID No.41)
表11105对随机引物中的部分引物
分别以提取的父母本及F1代的基因组DNA为模板,以设计的1105对引物进行PCR扩增。
PCR反应体系(25μL):
PCR反应程序:94℃预变性5min;然后进入35个循环:94℃变性30s,60℃退火30s,72℃延伸40s;循环结束后72℃延伸3min;4℃保存。
PCR产物电泳检测:1.2%的琼脂糖凝胶120v电泳25min,EB染色10min,照胶并记录。
引物的有效性和多态性:在此有效性是指是否有扩增产物,多态性是指父母本间扩增产物的片段大小有差异。
按照如下的筛选标准进行引物的筛选:父母本及F1均有扩增产物,并且父母本扩增产物均只有一条明晰的带型且大小有差异,F1表现为有父母本带型的杂合带型,即有父本和母本带型的两条带。
筛选结果:根据上述筛选标准,从设计的1105对引物中筛选出616对引物。
实施例5:遗传图谱构建和基因定位
(1)遗传图谱构建
用开发的616对具有多态性的分子标记对F2群体的480个个体进行PCR检测,所用模板为制得的F2群体的480个个体的基因组DNA。
对PCR产物进行琼脂糖凝胶电泳,得到分子标记引物对480个个体扩增的结果。
将全部电泳结果进行数据统计分析,具体方法如下:将F2群体单株扩增条带为父本型的记为a,扩增条带为母本型的记为b,扩增条带同时含有父本型和母本型的记为h,带型模糊或者缺失记为-,相当于数据缺失,最终得到F2群体480个个体的616对引物扩增的基因型数据。比如,用第一对引物得到的480个个体的数据是a,b,h,-,b,......共480个数据,用第二对引物得到的数据为b,a,h,a,-,......共480个数据,共616对引物分别统计,所得即为该F2群体的基因型数据。
用MapMaker 3.0软件(Constructing genetic maps with MAPMAKER/EXP3.0,S Lincoln,M Daly,E Lander-Cambridge,MA:Whitehead Institute,1992)进行遗传连锁图谱绘制,得到遗传连锁图。从该得到的遗传连锁图上可确定616对引物的位置及与谷子抽穗期基因的遗传距离。
(2)基因定位
根据480个个体的抽穗期表型,与父本型性状相似的记为a(抽穗期为晚期),与母本型性状相似的记为b(抽穗期为早期),性状居于父本和母本之间的记为h。得到480个个体的表型数据,将480个个体的表型数据与之前得到的480个个体的基因型数据进行比较,相似高则代表该标记与抽穗期性状紧密连锁,并将抽穗期基因定位在遗传连锁图谱上。
实施例6:与谷子抽穗期基因紧密连锁的分子标记的验证
1.在实施例5制得的遗传连锁图谱的基础上,根据与谷子抽穗期基因的遗传连锁距离,在与谷子抽穗期基因的遗传紧密连锁距离为3.2cM的位置确定了分子标记引物(Seq ID No.2和Seq ID No.3),并找到对应的父本序列位置,上下游引物之间的序列即为分子标记,其核苷酸序列如Seq ID No.1所示。
Seq ID No.2:5’-TGATACCGTACGTCAGATGT-3’;
Seq ID No.3:5’-GCTGTGGAGAAACGACTGAG-3’。
2.另外,在实施例5中的对F2代的480个个体的PCR扩增产物的电泳中,对于分子标记引物(Seq ID No.2和Seq ID No.3)的扩增结果是:约360株抽穗期为晚期的植株的扩增产物均有623bp大小的条带,约120株抽穗期为早期的植株的PCR扩增产物均没有623bp的条带(部分扩增结果如图1所示)。并且经测序证明该623bp的片段的序列与Seq ID No.1相同。
可见,本发明的分子标记(Seq ID No.1)为与谷子抽穗期基因紧密连锁的分子标记。
实施例7:分子标记克隆
将实施例6中扩增获得的623bp的片段克隆到pMD18-T载体中,获得重组载体。将该重组载体转化到大肠杆菌JM109中,挑单克隆,培养获得重组细胞。从重组细胞中提取质粒,所述质粒即重组载体,采用M13通用引物(序列信息参考TaKaRa商品目录)对克隆片段进行测序,结果显示,重组载体中含有本发明的分子标记(Seq ID No.1)。上述克隆、转化、培养、质粒提取等步骤参考《分子克隆实验指南第三版》,黄培堂等译,科学出版社2002年9月出版。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。