CN102154180A - Culture medium for microvesicle bacteria BS03 and preparation method thereof - Google Patents

Culture medium for microvesicle bacteria BS03 and preparation method thereof Download PDF

Info

Publication number
CN102154180A
CN102154180A CN201110040910.9A CN201110040910A CN102154180A CN 102154180 A CN102154180 A CN 102154180A CN 201110040910 A CN201110040910 A CN 201110040910A CN 102154180 A CN102154180 A CN 102154180A
Authority
CN
China
Prior art keywords
microvesicle
culture medium
substratum
bacteria
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110040910.9A
Other languages
Chinese (zh)
Other versions
CN102154180B (en
Inventor
郑天凌
傅丽君
田蕴
李东
安新丽
陈勇
景晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201110040910.9A priority Critical patent/CN102154180B/en
Publication of CN102154180A publication Critical patent/CN102154180A/en
Application granted granted Critical
Publication of CN102154180B publication Critical patent/CN102154180B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a culture medium for microvesicle bacteria BS03 and a preparation method thereof, relating to a microbial culture medium and providing a culture medium, which is suitable for efficient culture of the microvesicle bacteria BS03 and can obviously increase cell live weight of the microvesicle bacteria BS03 and yield of algae-killing active substances, and a preparation method of the culture medium. The culture medium comprises 1L of distilled water, 1-20g/L of peptone and 1-15g/L of cane sugar. The preparation method of the culture medium comprises the steps of: adding the peptone and the cane sugar into the distilled water, enabling a constant volume to be 1L, and sterilizing to obtain the culture medium of the microvesicle bacteria BS03. The composite culture medium suitable for high-dense culture of the microvesicle bacteria BS03 is developed by taking 2216E as a basic culture medium and adopting various methods for optimizing culturing conditions.

Description

Substratum of a kind of microvesicle bacterium BS03 and preparation method thereof
Technical field
The present invention relates to microbiological culture media, substratum of particularly a kind of microvesicle bacterium BS03 and preparation method thereof.
Background technology
In recent years, because stretch of coastal water severe contamination and eutrophication, the red tide occurrence frequency sharply increases, scale constantly enlarges, new red tide algae kind constantly occurs, poisonous red tide algae kind ratio rises, and the region area of harm is also increasing, frequently takes place in more than 30 countries and regions such as the U.S., Japan, China, Canada, France, Sweden, Norway, Philippines, India, Indonesia, Malaysia, Korea S, Hong Kong at present.The reduction water body eutrophication degree is sought effective red tide and the endotoxin contamination controlling way is imperative, and red-tide control becomes the difficult problem that current domestic and international urgent need solves.
At present, the control techniques of algae can reduce 3 kinds, i.e. physical method, chemical process and biological method.Physical method mainly is to make the frustule flocculation sediment by adding flocculation agent or clay etc.; Chemical process is to add some chemical algicides such as copper sulfate etc. in the sensing wawter bloom water body to kill frustule, these two kinds of method costs are all higher, alternative poor, can kill together with some beneficial organisms in the treating processes, also can cause the unexpected release of intracellular toxin simultaneously killing frustule, environment be existed all limitation such as secondary pollution.Biological method mainly is meant the mutual ecological relationship of utilizing between the biology, sets up controlling elements-host's running balance system in specific body of water, with the generation that prevents algae pollution or a kind of method of administering the algae pollution that has taken place.At present, both at home and abroad to the research of the biology mechanism of the outburst of wawter bloom and red tide and extinction also ground zero, molten algae bacterium wherein is as to the biological control of the harmful algal focus of research both at home and abroad especially.
Molten algae bacterium (algicidal bacteria) is that a class suppresses algal grown in direct or indirect mode, or kills the general designation of the bacterium of algae, dissolving frustule.Current, the research to molten algae bacterium both at home and abroad still is in the preliminary stage, also is just to begin for the research of the molten algae active metabolite of bacterium.Kill be seen in the algae bacterium report maximum be to lean on to discharge the outer material of born of the same parents and kill algae, and what of the outer material of secretion born of the same parents are associated with the height of cell density usually, the optimization substratum then is a kind of effective ways that improve cell density.In order to obtain a certain amount of expansion that the algae material is used for effective separation of follow-up active substance and kills the work of algae Study on Mechanism of killing, the optimization work of bacteria culture medium and culture condition just seems particularly important.
Substratum is that the people is the most important culture environment that offers microorganism growth, and being influences microorganism growth propagation and meta-bolites synthetic important factor.The factor that influences microorganism growth process has a lot, mainly comprises substratum (composition, concentration) and culture condition (temperature, pH value, rotating speed, inoculum size, oxygen-supply quantity) etc.Because the fermentation culture based component is numerous, and often there is interaction in each factor, so the medium optimization workload is big and complicated.Multiple optimization method in the mathematical statistics has begun to be widely used in the optimization work of microbiological culture media, and experimental technique wherein relatively more commonly used has methods such as single factor method, orthogonal experimental design method, uniform design, total divisor method of experimental design and response surface design method.
Traditional optimization method such as single factor method are optimized the influence that substratum once can only be considered a factor level, and workload is big, need repeatedly experiment and long test period, also can't show the interaction relationship between each factor.Therefore, the novel culture medium optimized method in conjunction with single factor method and existing mathematical statistics method has been subjected to increasing application.Uniform design be a kind of multifactor optimized method created of the calm and peaceful Wang Yuan of China mathematician Fang Kai (1, Fang Kaitai, Wang Yuan. homogeneous design and uniform designs table [M]. Beijing: Science Press, 1994,21-23).This method combines the principle and the multivariate statistics of number theory, is obtaining many successful examples aspect the optimization of microbiological culture media in recent years.The basic ideas of homogeneous design are exactly to make the experimental point full and uniform dispersion as far as possible, make each test point have better representativeness, but give up neat comparable requirement simultaneously, to reduce test number (TN); Remedy this defective by multivariate statistical method then, make conclusion (of pressure testing) reliable equally.Therefore uniform design is a kind of test design method of considering test point full and uniform distribution in trial stretch, and under the identical condition of test number, the deviation of homogeneous design is little more than orthogonal design.Because homogeneous design is no longer considered the neat comparability of orthogonal test, so its test-results is carried out the quadratic regression match, the last optimum value that can obtain each factor according to fit equation with single factor rotation method with the Return Law progressively.
Summary of the invention
But the object of the present invention is to provide a kind of high-efficient culture microvesicle bacterium BS03 and significantly improve its cell density and the substratum of the microvesicle bacterium BS03 of algicdal activity material output.
Another object of the present invention is to provide the preparation method of the substratum of a kind of microvesicle bacterium BS03.
Described microvesicle bacterium BS03 is preserved in Chinese typical culture collection center on September 3rd, 2010, and preservation center deposit number is CCTCC NO:M 2010218, and the address at Chinese typical culture collection center is Chinese Wuhan, Wuhan University.
The composition of the substratum of described microvesicle bacterium BS03 is to contain peptone 1~20g/L, sucrose 1~15g/L in the distilled water of 1L.
The composition of the substratum of described microvesicle bacterium BS03 preferably contains peptone 10.50g, sucrose 8g in the distilled water of 1L.
The preparation method of the substratum of described microvesicle bacterium BS03 is:
With being settled to 1L in Tryptones, the sucrose adding distilled water, promptly get the substratum of microvesicle bacterium BS03 after the sterilization.
Described sterilization can be adopted autoclaving, and described autoclaved condition can be: 121 ℃, and 20min.
The present invention is a basic medium with the 2216E substratum at first, adopt single factor method to explore and optimize culture condition, it is constant promptly to control other conditions, pH, salinity, inorganic salt are chosen different gradients respectively and type experimentizes, investigate its influence, find out major influence factors and carry out homogeneous design thalli growth and algicdal activity material output.Because medium optimization is the work that amount is big and complicated, at first select several complex nutrients sources among the present invention, be those nutritive substances (as peptone, yeast powder) that not only can be used as carbon source but also can be used as nitrogenous source, on their basis, add different trace ingredientss then, investigate each composition thalli growth and the influence of algae efficient extremely.Final selection peptone, sucrose, incubation time, pH value, inoculum size are important factor of influence, utilize uniform design, with bacterium liquid turbidity, dry cell weight and toxic limit medium dose (LD50) is evaluation index, carry out the design that mixes of 5 factors, 15 levels, utilize DPS7.0 software that experimental value is carried out the quadratic polynomial regression analysis again, set up regression model at last.Nutrient media components after the optimization is: peptone 10.50g/L, sucrose 8g/L, incubation time 32h, inoculum size 3.00%, initial pH value 7.5.
Description of drawings
Fig. 1 be in the embodiment of the invention different substratum to microvesicle bacterium BS03 growth with kill the figure that influences of algae efficient.In Fig. 1, X-coordinate is a substratum, from left to right is followed successively by PYS substratum, LBK substratum, 2216E substratum, BK substratum, B substratum, A substratum, and right ordinate zou is the optical density value OD of wavelength under 600nm 600, left ordinate zou is semilethal rate LD 50(%); Histogram is for being semilethal rate LD 50, broken line graph is OD 600
Fig. 2 be in the embodiment of the invention different carbon sources to microvesicle bacterium BS03 growth with kill the figure that influences of algae efficient.In Fig. 2, X-coordinate is a carbon source, from left to right is followed successively by glucose (Glucose), maltose (Maltose), Zulkovsky starch (Solublestarch), sucrose (Cane sugar), lactose (Lactobiose), and left ordinate zou is semilethal rate LD 50(%), right ordinate zou is the optical density value OD of wavelength under 600nm 600, histogram is for being semilethal rate LD 50, broken line graph is OD 600
Fig. 3 be in the embodiment of the invention different nitrogen sources to microvesicle bacterium BS03 growth with kill the figure that influences of algae efficient.In Fig. 3, X-coordinate is a nitrogenous source, from left to right is followed successively by soy peptone (Soya Peptone), peptone (Peptone), extractum carnis (Beefextract), KNO 3, yeast powder (Yeast Powder), NaNO 3, left ordinate zou is semilethal rate LD 50(%), right ordinate zou is the optical density value OD of wavelength under 600nm 600, histogram is for being semilethal rate LD 50, broken line graph is OD 600
Fig. 4 be in the embodiment of the invention different nitrogen sources to microvesicle bacterium BS03 growth with kill the figure that influences of algae efficient.In Fig. 4, X-coordinate is inorganic salt, from left to right is followed successively by NaNO 3, KBr, FeSO 4, CaCl 2, K 2HPO 4,, left ordinate zou is semilethal rate LD 50(%), right ordinate zou is the optical density value OD of wavelength under 600nm 600, histogram is for being semilethal rate LD 50, broken line graph is OD 600
Fig. 5 be in the embodiment of the invention different nitrogen sources to microvesicle bacterium BS03 growth with kill the figure that influences of algae efficient.In Fig. 5, X-coordinate is the pH value, from left to right is followed successively by 5~9,, left ordinate zou is semilethal rate LD 50(%), right ordinate zou is the optical density value OD of wavelength under 600nm 600, histogram is for being semilethal rate LD 50, broken line graph is OD 600
Embodiment
Following examples are to further specify of the present invention, but the invention is not restricted to following embodiment.
Bacterial classification: microvesicle bacterium BS03 is used and environmental microorganism institute separating and preserving by Xiamen University, preliminary evaluation is microvesicle Pseudomonas (Microbulbifer sp.), be preserved in Chinese typical culture collection center on September 3rd, 2010, preservation center deposit number is CCTCC NO:M2010218.
The algae kind: the no bacterial strain of Alexandrium tamarense (AT), algae kind system is provided by hydrobiont institute of Ji'nan University, and the Alexandrium tamarense that obtains through the degerming of the aseptic algae technology of the applicant does not have bacterial strain.The used nutrient solution of algae is the f/2 nutrient solution.Algae places indoor triangular flask to cultivate, and temperature is 20 ± 1 ℃, and illumination condition is 12h illumination, the 12h dark.
Initial medium (2216E): peptone (Peptone) 5g, yeast extract (Yeast Extract) 1g, high ferric phosphate 0.1g, agar powder 10g (solid medium), pH7.0~7.2, the Chen Haishui constant volume is to 1L.
Tuurbidimetry: get the thalline fermented liquid of suitable stoste or dilution, do contrast, under wavelength 600nm, measure optical density(OD) (OD) value with empty substratum.
Dry cell weight (DCW): draw fermented liquid 10ml, the centrifugal 10min of 8000r/min uses deionized water wash thalline 3 times after the supernatant discarded, and 80 ℃ of constant temperature dry to constant weight, and weigh and calculate DCW (g/L).
LD 50: get the no mycetocyte filtrate after the fermentation culture, according to 0.5%, 1.0%, 1.5% 3 kind of different concns be added in the test algae, fixes with Compound Iodine Solutlon behind the effect 24h, under opticmicroscope, count.Use blue cosmos LD 50Software calculates mld (LD 50).
Embodiment 1
Employing 2216E is a basic medium, carries out the exploration that single factor method is optimized culture condition.
Temperature Influence: setting culture temperature respectively is 20,25,28,30 and 35 ℃, and it is 50ml that pH7.0~7.2,1% inoculum sizes, 250ml triangle shake bottled liquid measure, after the 180r/min shaking table is cultivated 24h, gets bacterium liquid and measures OD 600And LD 50
The influence of rotating speed: set shaking table concussion speed respectively and be 120,150,180 and 210r/min, all the other conditions are same as described above, cultivate to get fermented liquid behind the 24h and measure OD 600And LD 50
The influence of initial pH: the HCl that selects 2.0mol/l respectively for use and the pH of the NaOH accent substratum of 2.0mol/l are 5.0,6.0,7.0,8.0 and 9.0,28 ℃ of temperature, 1% inoculum size, it is 50ml that the 250ml triangle shakes bottled liquid measure, after the 180r/min shaking table is cultivated 24h, get bacterium liquid and measure OD 600And LD 50
The influence of salinity: the salinity of setting substratum with artificial seawater respectively is 10,20,30,40 and 50 ‰, initial pH7.0~7.2,28 ℃ of temperature, it is 50ml that 1% inoculum size, 250ml triangle are shaken bottled liquid measure, after the 180r/min shaking table is cultivated 24h,, get fermented liquid then and measure OD600 and LD 50
Experimental result shows: temperature plays an important role for the biomass of bacterial strain and the secretion of active metabolite in microorganism growth process, this BS03 bacterial strain mycetocyte density between 20~30 ℃ increases along with the rising of temperature, when temperature during greater than 30 ℃, the nectar degree descends to some extent.In the temperature change process, thalli growth is consistent with the generation rule of killing the algae material.Consider and save the energy so select 28 ℃ to be culture condition.The change of microbial cultivation process medium speed directly influence be exactly the dissolved oxygen amount of microorganism, too high or too low dissolved oxygen speed all is unfavorable for thalli growth, when rotating speed is 180r/min, this BS03 bacterial strain biomass and LD 50Be respectively 1.726,0.648, this value is the shaking speed of suitable thalli growth and product active substance.PH influences bigger in microorganism growth process, and this bacterium is that its biomass increases along with the rising of pH value under 5.0~8.0 the culture condition at pH, and LD 50The pH value be 7.0 o'clock minimum, promptly this moment thalline to produce the ability of active substance the strongest.When the pH value greater than 8.0 and less than 6.0 the time thalline biomass and to produce the ability of actives all restricted.So this bacterium is adapted at growing under the neutral meta-alkalescence condition most.Salinity has significance for the growth increment of marine microorganism, and by the result as can be known, the generation of BS03 growth and algicdal activity material thereof all is subjected to the remarkably influenced that salt concn changes.When the substratum salinity was 10 ‰, thalli growth was slow, and the ability of producing molten algae active substance is low, at this moment LD 50Be 4.105.Along with salinity increase thalli growth is rapid, molten algae active substance secretion capacity also obviously strengthens.When salinity greater than 30 ‰, increase though the algae rate of killing of this bacterium has slightly, thalli growth obviously slows down.Therefore 30 ‰ be the salinity range that is fit to microvesicle bacterium BS03.
So the optimal culture condition of BS03 is: culture temperature is 28 ℃, and the initial pH of suitable culture base is 7.0, and salinity is 30 ‰, and rotating speed is 180r/min.
Embodiment 2
At first select in the present embodiment several complex nutrients sources be those not only can be used as carbon source but also can make the nutritive substance (as peptone, yeast powder etc.) of nitrogenous source and two kinds inorganic nitrogen-sourced.On their basis, add different trace ingredientss then, investigate each composition growth of microvesicle bacterium and the influence (referring to Fig. 1~5) of producing active substance.
With 2216E is basic medium (no carbon source and nitrogenous source), is complex nutrients sources and NaNO with 5.0g/L soy peptone, peptone, extractum carnis, yeast powder 3And KNO 3For inorganic nitrogen-sourced.All the other component concentrations are same as basic medium.Culture condition is: inoculum size is 1%, 28 ℃, and 180r/min, pH are 7, and salinity is 30 ‰, measures OD behind the shake-flask culture 24h 600And LD 50The result shows that the BS03 bacterial strain is more suitable for being grown in the organonitrogen.The biomass of thalline is lower in the inorganic nitrogen, KNO 3, NaNO 3OD 600Value is respectively 0.071,0.06133, and the biomass of extractum carnis condition hypothallus reaches maximum OD in the organonitrogen 600Be 1.126, peptone takes second place 1.003, but the secretion capacity of the molten algae active substance of bacterial strain BS03 this moment is strong down not as the peptone culture condition.So analysis-by-synthesis BS03 strain cultures selects peptone as its optimum nitrogen source, continues follow-up experiment.
The Zulkovsky starch, maltose, lactose, glucose, the sucrose that add 1g/L on the basis of 5.0g/L Tryptones respectively serve as carbon source, and only to be added with peptone in contrast 1, all the other component concentrations are same as basic medium, and 2216E is contrast 2.Culture condition is: inoculum size is 1%, 28 ℃, and 180r/min, pH are 7, and salinity is 30 ‰, measures OD behind the shake-flask culture 24h 600And LD 50In conjunction with increment and LD 50Investigate the component that adds and whether there is promoter action in the BS03 bacterial strain.The result shows: the fermented liquid biomass of different tests group substratum BS03 is all compared according to 2 (former substratum 2216E) many, but difference is little.And the difference of the molten algae effect of each group is clearly, may since medium component and proportioning Different Effects BS03 produce active ability of killing the algae material.
The contrast 1 that only is added with peptone is an increment or killing the algae rate all is starkly lower than contrast 2, promptly former basic medium; Carbon source is added in the component, adds the LD of its cell of substratum born of the same parents filtrate of dextrose plus saccharose 50Be 1.021,0.965, all be lower than 1.201 of former basic medium, and the LD of its cell of the substratum of other several interpolation carbon sources born of the same parents filtrate 50The LD that all is higher than the cell born of the same parents filtrate of former basic medium 50, this shows that dextrose plus saccharose has promoter action to microvesicle bacterium BS03 secretion activity material in these carbon source compositions; Because of considering that cost problem event subsequent experimental is selected sucrose is the optimum carbon source of bacterial strain BS03 substratum.
In fermentation process, the inoculum size of thalline and fermentation time also are generation and the active metabolite excretory important factors that influences the microbial cells biomass.So follow-up experiment is listed the inoculum size and the fermentation time of thalline in influence bacterial strain BS03 fermentation factor of influence, participates in the medium optimization process.
Illustrate that this equation is believable to the simulation and forecast of dry cell weight.By the experiment of above homogeneous design, each factor all has certain influence to killing algae rate and thalli growth amount as can be known, this microvesicle bacterium BS03 the optimal medium scheme be: pH value 7.5, incubation time 32h, peptone 10.50g/L, sucrose 8.0g/L, inoculum size is 3.0%.
Embodiment 3
According to pre-stage test, selecting peptone, sucrose, pH, inoculum size, incubation time is the homogeneous design that factor of influence carries out 5 factors, 15 levels, and all the other components are same as initial medium.Five factors are respectively independent variable(s) X1, X2, X3, X4 and X5, dry cell weight and OD 600Be dependent variable Y 1, Y 2Culture condition is selected: 28 ℃, and 180r/min, salinity is 30 ‰.Each factor all is provided with 15 levels, and experimental result through DPS software data treatment system quadratic polynomial stepwise regression analysis, and is carried out test of significance (referring to table 1, table 2) to this model
Table 1
Figure BDA0000047184820000061
Regression equation is:
Y=5.38134906+113.60189202X1×X1-3.793014914X2×X2+2.5854730603X3×X3-28.422411492X4×X4-0.15092230997X5×X5-65.98236457X1×X3-270.25223629X1×X5-10.298424271X2×X3+20.758363788X2×X4+49.38660676X2×X5+28.185002912X3×X4+145.52421280X3×X5-135.09790077X4×X5。
Coefficient R=0.99982, F value=209.8485, conspicuous level p=0.0540, residual standard deviation S=0.06049, adjusted coefficient R a=0.99743, Durbin-Watson statistic d=1.72.
Table 2
Figure BDA0000047184820000071
Regression equation is:
Y=10.83501238-172.80147120X3+432.5156109X5+8.067639869X3×X3-0.03230489278X4×X4-0.014902212031X1×X2-0.03589177354X1×X5+2.7406271234X2×X3-6.868578732X2×X5+0.017883024404X3×X4-20.232457027X3×X5。
Coefficient R=0.98340, F value=11.7502, conspicuous level p=0.0149, residual standard deviation S=0.25665, adjusted coefficient R a=0.94063, Durbin-Watson statistic d=2.91.
By the experiment of above homogeneous design, must this microvesicle bacterium BS03 the optimal medium scheme be: pH7.5, incubation time 32h, peptone 10.50g/L, sucrose 8.0g/L, inoculum size is 3.0%.The result is consistent with the result who with the dry weight is index.
Embodiment 4
By above-mentioned optimization experiment, obtained optimum medium prescription and the optimal culture condition of microvesicle bacterium BS03.With initial medium with optimize the shake-flask culture that substratum is respectively applied for BS03, culture condition adopts optimizes culture condition.Thalline fermentation obvious effect of increasing production (referring to table 3) after the optimization.Cultivate 32h in shaking bottle after, the dry cell weight value of its stationary phase can be up to 4.725g/L, surpasses the 3.498g/L with the predictor of regression model, and has improved 0.4 times than the basic medium before optimizing; Bacterial strain OD value after the optimization reaches 2.807, also surpasses the predictor 2.619 of regression model.Illustrate and utilize the homogeneous design optimization experiment not only feasibility is high, and effect is remarkable.
Table 3
Figure BDA0000047184820000081

Claims (4)

1. the substratum of a microvesicle bacterium BS03 is characterized in that described microvesicle bacterium BS03 is preserved in Chinese typical culture collection center on September 3rd, 2010, and deposit number is CCTCC NO:M 2010218;
The composition of the substratum of described microvesicle bacterium BS03 is to contain peptone 1~20g/L, sucrose 1~15g/L in the distilled water of 1L.
2. the substratum of a kind of microvesicle bacterium BS03 as claimed in claim 1, the composition that it is characterized in that the substratum of described microvesicle bacterium BS03 are to contain peptone 10.50g, sucrose 8g in the distilled water of 1L.
3. the preparation method of the substratum of a kind of microvesicle bacterium BS03 as claimed in claim 1 is characterized in that its concrete steps are: with being settled to 1L in Tryptones, the sucrose adding distilled water, promptly get the substratum of microvesicle bacterium BS03 after the sterilization.
4. the preparation method of the substratum of a kind of microvesicle bacterium BS03 as claimed in claim 3 is characterized in that the condition of described sterilization is: 121 ℃, and 20min.
CN201110040910.9A 2011-02-18 2011-02-18 Culture medium for microvesicle bacteria BS03 and preparation method thereof Expired - Fee Related CN102154180B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110040910.9A CN102154180B (en) 2011-02-18 2011-02-18 Culture medium for microvesicle bacteria BS03 and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110040910.9A CN102154180B (en) 2011-02-18 2011-02-18 Culture medium for microvesicle bacteria BS03 and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102154180A true CN102154180A (en) 2011-08-17
CN102154180B CN102154180B (en) 2013-01-02

Family

ID=44435855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110040910.9A Expired - Fee Related CN102154180B (en) 2011-02-18 2011-02-18 Culture medium for microvesicle bacteria BS03 and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102154180B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818301A (en) * 2015-04-09 2015-08-05 江苏师范大学 Method for synthesizing p-hydroxybenzoic acid and esters by microvesicle bacteria
CN110218667A (en) * 2019-05-16 2019-09-10 华南农业大学 One plant of bacterial strain SH-1 for producing alginate lyase and its application
CN113897309A (en) * 2021-09-22 2022-01-07 厦门大学 Marine microvesicle bacterium with broad-spectrum algae-killing activity and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1775943A (en) * 2004-11-16 2006-05-24 中国科学院微生物研究所 Semi-synthetic culture medium of cordyceps sineusis
CN1837357A (en) * 2006-03-09 2006-09-27 刘捷 A culture medium and method for culturing micro vibrio cholerae therewith
CN101735968A (en) * 2009-12-29 2010-06-16 中国科学院南海海洋研究所 Marine bacteria chromogenic isolation medium and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1775943A (en) * 2004-11-16 2006-05-24 中国科学院微生物研究所 Semi-synthetic culture medium of cordyceps sineusis
CN1837357A (en) * 2006-03-09 2006-09-27 刘捷 A culture medium and method for culturing micro vibrio cholerae therewith
CN101735968A (en) * 2009-12-29 2010-06-16 中国科学院南海海洋研究所 Marine bacteria chromogenic isolation medium and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818301A (en) * 2015-04-09 2015-08-05 江苏师范大学 Method for synthesizing p-hydroxybenzoic acid and esters by microvesicle bacteria
CN110218667A (en) * 2019-05-16 2019-09-10 华南农业大学 One plant of bacterial strain SH-1 for producing alginate lyase and its application
CN113897309A (en) * 2021-09-22 2022-01-07 厦门大学 Marine microvesicle bacterium with broad-spectrum algae-killing activity and application thereof
CN113897309B (en) * 2021-09-22 2023-08-18 厦门大学 Marine microbubble with broad-spectrum algicidal activity and application thereof

Also Published As

Publication number Publication date
CN102154180B (en) 2013-01-02

Similar Documents

Publication Publication Date Title
Jiang et al. Harvesting of microalgae Chlorella pyrenoidosa by bio-flocculation with bacteria and filamentous fungi
CN102586116B (en) Common chlorella as well as culturing method and application thereof
CN102747017B (en) Bacillus amyloliquefaciens and application thereof
CN102391960B (en) Arthrobacter chlorophenolicus L4 and application thereof
CN103937695B (en) A kind of composite bacteria agent and manufacture method thereof of processing livestock and poultry cultivation sewage
Bhattacharjee et al. Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors
Xing et al. Growth and potential purification ability of Nitzschia sp. benthic diatoms in sea cucumber aquaculture wastewater
CN105985917B (en) Method for increasing biomass of chlorella in pig-raising wastewater
CN106135285A (en) The application in prevention and control rice blast of the Rhodopseudomonas palustris biocontrol agent
CN103614302A (en) High-efficiency phosphate-solubilizing penicillium oxalicum with heavy metal tolerance characteristic
CN103496791A (en) Production method for compound microbial preparation for aquatic products
CN104311348A (en) Improved liquid fermentation culture medium of pleurotus eryngii and method for culturing liquid strain of pleurotus eryngii by utilizing improved liquid fermentation culture medium
CN101139140A (en) Aerugo microcapsule algae degradation method using animalcule
CN101407761A (en) Liquid inocula composed of yeast fused strain, Geotrichum candidum Link and Rhizopus, and preparation and use thereof
CN102154180B (en) Culture medium for microvesicle bacteria BS03 and preparation method thereof
CN105441348B (en) One bacillus subtilis novel bacterial strain, probiotics and application
CN101988045B (en) Composite culture medium for algae-killing bacterium and preparation method thereof
Zhu et al. Effects of ambient temperature on the redistribution efficiency of nutrients by desert cyanobacteria-Scytonema javanicum
Mkpuma et al. Commercial paper as a promising carrier for biofilm cultivation of Chlorella sp. for the treatment of anaerobic digestate food effluent (ADFE): Effect on the photosynthetic efficiency
CN103352010B (en) Bacillus cereus strain CZBC1 capable of dissolving pond oscillatoria, and its application
CN103710284A (en) Bacterium composite agent with ammonia nitrogen degradation ability and application thereof
CN103409348A (en) Bacillus pumilus with efficient alga-lysing activity and application thereof
CN110054302A (en) Inhibit the processing material and preparation method thereof of algal grown
Wu et al. Effective removal of nitrogen and phosphorus from saline sewage by Dunaliella tertiolecta through acclimated cultivation
CN105217799A (en) A kind of industrial fermentation method of molten algae streptomycete active substance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102

Termination date: 20200218