CN102141510A - 一种水产品中硝酸盐含量的快速测定方法 - Google Patents

一种水产品中硝酸盐含量的快速测定方法 Download PDF

Info

Publication number
CN102141510A
CN102141510A CN2010101078857A CN201010107885A CN102141510A CN 102141510 A CN102141510 A CN 102141510A CN 2010101078857 A CN2010101078857 A CN 2010101078857A CN 201010107885 A CN201010107885 A CN 201010107885A CN 102141510 A CN102141510 A CN 102141510A
Authority
CN
China
Prior art keywords
value
solution
concentration
nitrate
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010101078857A
Other languages
English (en)
Other versions
CN102141510B (zh
Inventor
邓尚贵
徐涛
满德慧
黄薇
唐艳
沈璐璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN2010101078857A priority Critical patent/CN102141510B/zh
Publication of CN102141510A publication Critical patent/CN102141510A/zh
Application granted granted Critical
Publication of CN102141510B publication Critical patent/CN102141510B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种水产品中硝酸盐含量的快速测定方法,利用硝酸盐溶液特征峰K值特点,采用斜率还原紫外分光光度法测定硝酸盐含量,将待测水产品称量后灰化处理,配制溶液A、B,其中A液浓度为B液的两倍;分别用紫外分光光度法测定待测液A、B的吸光值,将B溶液吸光值标定在相应位置读取其相对浓度C1值,记作1倍点,将A溶液吸光值标记在两倍C1浓度点C2处,记作2倍点,得到测得的K*值;与标准曲线的K值比较,得到检测液中硝酸盐的浓度;该方法简单、直观、快捷、可靠并且准确,检出限为1μg/ml,且无离子干扰,利用本发明的方法不仅可以检测水产品中硝酸盐含量,而且还可应用于具备特征吸收峰的其它可溶性盐类的快速检测。

Description

一种水产品中硝酸盐含量的快速测定方法
技术领域
本发明涉及一种水产品中硝酸盐含量的快速测定方法,尤其是一种利用硝酸盐溶液特征K值的特点,采用斜率还原紫外分光光度法测定硝酸盐含量的方法。
背景技术
硝酸盐(NO3 -)硝酸衍生化合物的总称,广泛存在于自然界生物和物理氧化进程中,在环境氮循环和植物合成蛋白质过程中起着必不可少的作用(Finch,M.,Hydes,D.,Clayson,C.,Weigl,B.,Dakin,J.,& Gwilliam,P.(1998).A low power ultra violet spectrophotometer formeasurement of nitrate in seawater:Introduction,calibration and initial sea trials.Analytica Chimica Acta,377,167-177.)。硝酸盐最初主要用作农业肥料,因价格低廉且有较好的抑制肉毒杆菌效果和发色作用,近年来被广泛应用于食品工业。硝酸盐经生物转化为亚硝酸盐进而生成高致癌物质亚硝胺,研究表明亚硝胺含量与硝酸盐本底添加量密切相关,硝酸盐滥用引起的次生代谢产物逐渐引起人们的重视(Hage,D.,Chattopadhyay,A.,Wolfe,C.,Grundman,J.,&Kelter,B.(1998).Determination of nitrate and nitrite in water by capillary electrophoresis:Anundergraduate laboratory experiment.Journal of Chemical Education,75,1588.)。因此,产品硝酸盐残量检测成为食品安全检测迫切问题,然而目前硝酸盐检测方法有镉柱还原法、HPLC、IC和GC法等,均存在操作繁复、污染环境等不利因素无法满足快速检测需要。紫外分光光度法作为一种快速检测手段曾有对淡水和海水中硝酸盐含量检测的成功实验(MicuD.,Danielescu C.,Puiulet M.,Vlaicu I.,Manea F.,Burtica G.and Podaru C.,2006.The physico-chemicalcharacterisation of the underground water sources in the rural plain area of Timis county,Romania,The13th Symposium on Analytical and Enviromnental Problems,pp.144-147.)。但是此方法易受到多种因素的干扰,仅适用于有机质含量低的样品检测(Minear,R.A.(1984).Water analysis,volume2,inorganic species.Orlando,FL:AcademicPress.)。两点和三点吸光差值法被研究应用于误差消除,Finch等经大量实验最终选取了220、240和305nm为基点进行了有效检测。大量实验表明通过差值消除影响有一定可行性但难度较大同时增加了工作量和不确定性,本发明研究并建立了特征峰K值模型检测法,此方法简单、直观、快捷,同时结果可靠、准确(ORDIN 438/2002 Privind aditivii alimentari destinati utilizǎrii
Figure GSA00000012483100021
produsele alimentare pentruconsum uman.;Padarauskas,A.,Paliulionyte,V.,& Pranaityte,B.(2001).Single-run capillaryelectrophoretic determination of inorganic nitrogen species in rainwater.Analytical Chemistry,73,267.;Ridder,W.E.and F.W.Oehme.1974.Nitrates as an environmental,animal,and human hazard.Clin.Toxicol.7(2):145-159.;Rodjana Burakhama,Mitsuko Oshimab,Kate Grudpan a et al.Talanta,2004,64:1259)。
发明内容
本发明所要解决的技术问题是针对现有技术,提供一种能快速测定水产品中硝酸盐含量的方法,利用硝酸盐溶液特征峰K值特点,采用斜率还原紫外分光光度法测定硝酸盐含量,该方法简单、直观、快捷、可靠并且准确。
本发明为解决上述技术问题而采取的技术方案为:一种水产品中硝酸盐含量的快速测定方法,其特征在于包括以下步骤:
1)配制硝酸盐标准溶液,进行全波段扫描确定最佳特征检测峰;
2)制作硝酸盐标准曲线,获得K值;
3)称取待测水产品,灰化处理;
4)配制待测液A、B,其中A液浓度为B液的两倍;分别用紫外分光光度法测定待测液A、B的吸光值,将B溶液吸光值标定在相应位置读取其相对浓度C1值,记作1倍点,将A溶液吸光值标记在两倍C1浓度点C2处,记作2倍点,得到测得的K*值;
5)与标准曲线比较,K*与K之差为KΔ,将2倍点吸光值减去2KΔ,带入曲线即可得到检测液中硝酸盐的浓度。
由于含有杂质的溶液可以看做纯溶液和杂质溶液的混合体,杂质必定引起吸光值的增加,2倍浓度A溶液杂质浓度为1倍溶液B浓度的2倍,因而产生K与K*的分离,且K*值一定大于K,K*与K之差KΔ即为杂质浓度,2倍点吸光值减去2KΔ的吸光值即为实际待测物吸光值,带入曲线可求相应浓度。
所述灰化处理的温度为250~350℃。
所述步骤3中,待测水产品灰化处理后,加过量稀盐酸转移至烧杯中,过滤去除不溶杂质,脱色,再定容备用。
所述稀盐酸浓度优选为0.05~0.2mol/L。
本发明利用硝酸盐溶液特征K值特点,以整体法思想,通过设立特定浓度梯度点,绘制K*曲线,比对偏差量,KΔ较直观的得出杂质影响偏差量,经变换将直接得出待测溶液中硝酸盐含量。
与现有技术相比,本发明的优点在于:本发明采用斜率还原紫外分光光度法测定硝酸盐含量,该方法简单、直观、快捷、可靠并且准确,对实验设备要求低。实际检出限为1μg/ml,精密度符合相关实验室测定的质量要求,精度高于食品安全最低检出标准。以整体观角度,恰当选择KΔ的方法,成功避开了样品中其它成分的干扰,离子对测定无显著的影响,检测结果较准确,利用K值法测定水产腌制品具有一定的优越性。利用本发明的方法不仅可以检测水产品中硝酸盐含量,而且还可应用于具备特征吸收峰的其它可溶性盐类的快速检测。
附图说明
图1为本发明的K值模型原理示意图;
图2为1g/L硝酸钾溶液吸光图谱;
图3为0.5g/L硝酸钾溶液吸光图谱;
图4为KNO3标准曲线。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
1、材料与处理方法
选取红膏蟹、鱼生、泥螺等样品于-4℃冷藏备用。称取待测样品5g,通风厨内300℃灰化处理至无烟,冷却后加适量0.1mol/L盐酸转移至200ml烧杯,通常是20ml过量,过滤去除不溶杂质,脱色,定容至100ml容量瓶备用。
2、特征点选取
设置不同浓度梯度的硝酸钾并分别进行全波段扫描,选取特征吸收峰所对应的波段作为检测点,发现对高浓度硝酸钾溶液进行波段扫描时,硝酸钾溶液吸光值在190nm~400nm范围内存在2个明显峰值,分别为230nm和300nm,如图2。当溶液浓度低于0.5g/L时,300nm吸收峰消失,如图3。当浓度低于100mg/L时,230nm峰值也呈现较严谨的线性关系。因此,对于硝酸盐含量较高的样品可选用300nm特征峰检测,而对于相对含量较低的食品类检测,可选用230nm作为特征峰检测点。
3、绘制标准曲线
硝酸钾标准溶液的配制:称取经110℃烘干1h的硝酸钾,配制质量浓度分别为10mg/L,20m g/L,30mg/L,40mg/L,50mg/L的KNO3溶液,所用试剂均为分析纯,水为去离子水。然后以水做空白对照,用紫外分光光度法测定230nm吸光值,以吸光值和溶液浓度建立坐标系,绘制标准曲线,如图4。
4、测试方法
配制待测液A、B,其中A溶液浓度为B溶液浓度的两倍。用紫外分光光度法于230nm处测定其吸光值,将B溶液吸光值标定在相应位置读取其相对浓度C1值,记作1倍点,将A溶液吸光值标记在两倍C1浓度点C2处,记作2倍点,如图1K值模型原理示意图所示,由于含有杂质的溶液可以看做纯溶液和杂质溶液的混合体,杂质必定引起吸光值的增加,2倍浓度A溶液杂质浓度为1倍溶液B浓度的1倍,因而产生K与K*的分离,且K*值一定大于K,K*与K之差KΔ即为杂质浓度,2倍点吸光值减去2KΔ的吸光值即为实际待测物吸光值,带入曲线可求相应浓度。
5、加标回收率检验
K值法的准确度采用实验室加标回收率法检测,经检测,三种样品中硝酸盐含量均低于500mg/kg,如表1所示,红膏蟹180mg/kg,泥螺205mg/kg,鱼生192mg/kg。欧盟法规1882/2006规定对于硝酸盐含量小于500mg/kg的样品,选取方法加标回收率应控制在60-120%之间。因此,K模型方法检测加标回收率实际为85-112%,符合欧盟对硝酸盐检测方法的相关规定。
表1 三种样品硝酸盐含量加标回收率检验
Figure GSA00000012483100051
6、国标对比验证
待检样品为泥螺,分别采用K值法和国标Cd柱还原法检测,并对比二者之间的差异。经检验,K值法检测样品硝酸盐含量为205.192mg/L,标准差为0.167,说明此方法本身变异系数小,而Cd柱还原法实际检测量为193.222mg/L,两者间变异系数为6.19%,略高于Cd柱还原法本身标准差的4.225,因此从统计学角度讲,二者差异不明显,但相比之下,K值法更稳定、简单实用。另外,K值法理论检测极限为0.01μg/ml,实际检测限为1μg/ml,满足实际检测要求。
表2 K值法与Cd柱还原法比较表
Figure GSA00000012483100052
实验证明,分光光度法不适用于水产品硝酸盐检测,主要由于其成分的特殊性,干扰离子较多,主要表现为高盐、高蛋白,成份复杂且多伴有颜色等,如虾酱、鱼糜、鱼露等产品主要为动物蛋白,组成成分及含量范围为水70%~85%、粗蛋白质10%~20%、碳水化合物1%以下、无机盐1%~2%。K值法以整体观角度,恰当选择KΔ的方法,成功避开了样品中其它成分的干扰,检测结果较准确。

Claims (4)

1.一种水产品中硝酸盐含量的快速测定方法,其特征在于包括以下步骤:
1)配制硝酸盐标准溶液,进行全波段扫描确定最佳特征检测峰;
2)制作硝酸盐标准曲线,获得K值;
3)称取待测水产品,灰化处理;
4)配制待测液A、B,其中A液浓度为B液的两倍;分别用紫外分光光度法在最佳特征检测峰的波长下测定待测液A、B的吸光值,将B溶液吸光值标定在相应位置读取其相对浓度C1值,记作1倍点,将A溶液吸光值标记在两倍C1浓度点C2处,记作2倍点,得到测得的K*值;
5)与标准曲线比较,K*与K之差为KΔ,将2倍点吸光值减去2KΔ,带入曲线即可得到检测液中硝酸盐的浓度。
2.根据权利要求1所述的快速测定方法,其特征在于所述灰化处理温度为250~350℃。
3.根据权利要求1所述的快速测定方法,其特征在于所述步骤2中,待测水产品灰化处理后,加过量稀盐酸转移至烧杯中,过滤去除不溶杂质,脱色,再定容备用。
4.根据权利要求3所述的快速测定方法,其特征在于所述稀盐酸浓度为0.05~0.2mol/L。
CN2010101078857A 2010-02-03 2010-02-03 一种水产品中硝酸盐含量的快速测定方法 Expired - Fee Related CN102141510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101078857A CN102141510B (zh) 2010-02-03 2010-02-03 一种水产品中硝酸盐含量的快速测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101078857A CN102141510B (zh) 2010-02-03 2010-02-03 一种水产品中硝酸盐含量的快速测定方法

Publications (2)

Publication Number Publication Date
CN102141510A true CN102141510A (zh) 2011-08-03
CN102141510B CN102141510B (zh) 2012-11-21

Family

ID=44409179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101078857A Expired - Fee Related CN102141510B (zh) 2010-02-03 2010-02-03 一种水产品中硝酸盐含量的快速测定方法

Country Status (1)

Country Link
CN (1) CN102141510B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155271A (zh) * 2014-07-23 2014-11-19 北京理工大学 一种含水体系中对i-的高选择性识别的方法
CN104155256A (zh) * 2014-07-23 2014-11-19 北京理工大学 一种含水体系中对no2-的高选择性识别的方法
CN109030396A (zh) * 2018-08-04 2018-12-18 海南威尔检测技术有限公司 养殖水中硝酸盐的快速测定方法
CN109827922A (zh) * 2019-03-20 2019-05-31 深圳市艾科尔特检测有限公司 受铜离子污染水中硝酸盐氮测定时铜离子干扰的校正方法
CN111735788A (zh) * 2020-07-21 2020-10-02 赛默飞世尔(上海)仪器有限公司 在水质分析仪中用于确定样品浓度的方法和水质分析仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320816A (zh) * 2000-04-24 2001-11-07 攀枝花市卫生防疫站 一种食品中亚硝酸盐的快速测定方法
CN2674437Y (zh) * 2004-01-17 2005-01-26 福州大学 便携式硝酸盐快速检测仪

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155271A (zh) * 2014-07-23 2014-11-19 北京理工大学 一种含水体系中对i-的高选择性识别的方法
CN104155256A (zh) * 2014-07-23 2014-11-19 北京理工大学 一种含水体系中对no2-的高选择性识别的方法
CN104155256B (zh) * 2014-07-23 2016-04-06 北京理工大学 一种含水体系中对no2-的高选择性识别的方法
CN104155271B (zh) * 2014-07-23 2016-08-31 北京理工大学 一种含水体系中对i-的高选择性识别的方法
CN109030396A (zh) * 2018-08-04 2018-12-18 海南威尔检测技术有限公司 养殖水中硝酸盐的快速测定方法
CN109827922A (zh) * 2019-03-20 2019-05-31 深圳市艾科尔特检测有限公司 受铜离子污染水中硝酸盐氮测定时铜离子干扰的校正方法
CN109827922B (zh) * 2019-03-20 2021-08-13 深圳市艾科尔特检测有限公司 受铜离子污染水中硝酸盐氮测定时铜离子干扰的校正方法
CN111735788A (zh) * 2020-07-21 2020-10-02 赛默飞世尔(上海)仪器有限公司 在水质分析仪中用于确定样品浓度的方法和水质分析仪
CN111735788B (zh) * 2020-07-21 2021-01-05 赛默飞世尔(上海)仪器有限公司 在水质分析仪中用于确定样品浓度的方法和水质分析仪

Also Published As

Publication number Publication date
CN102141510B (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
Hernes et al. Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments
Yilmaz et al. Ultrasound assisted-deep eutectic solvent based on emulsification liquid phase microextraction combined with microsample injection flame atomic absorption spectrometry for valence speciation of chromium (III/VI) in environmental samples
Zhang et al. A sensitive colorimetric method for the determination of nitrite in water supplies, meat and dairy products using ionic liquid-modified methyl red as a colour reagent
Soylak et al. Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration
Fichot et al. The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river‐influenced ocean margins
Bahadır et al. Separation and preconcentration of lead, chromium and copper by using with the combination coprecipitation-flame atomic absorption spectrometric determination
Škrlíková et al. A novel, environmentally friendly dispersive liquid–liquid microextraction procedure for the determination of copper
CN102141510B (zh) 一种水产品中硝酸盐含量的快速测定方法
López-García et al. Ultrasound-assisted dispersive liquid–liquid microextraction for the speciation of traces of chromium using electrothermal atomic absorption spectrometry
DeGrandpre et al. Considerations for the measurement of spectrophotometric pH for ocean acidification and other studies
Peker et al. Dysprosium (III) hydroxide coprecipitation system for the separation and preconcentration of heavy metal contents of table salts and natural waters
Yasri et al. Spectrophotometric determination of formaldehyde based on the telomerization reaction of tryptamine
CN102507564A (zh) 快速检测燕窝中亚硝酸盐的试剂盒及其在燕窝检测中的应用
CN101782508A (zh) 一种海水中亚铁、三价铁及总铁含量的测定方法
CN104597258A (zh) 基于核酸适配体的比色法检测17β-雌二醇的方法
Patsavas et al. Physical–chemical characterization of purified cresol red for spectrophotometric pH measurements in seawater
Kulkarni et al. A rapid assessment method for determination of iodate in table salt samples
Kiran Spectrophotometric determination of iron in water samples using 3-hydroxy benzyl amino benzoic acid
Yari et al. An optical copper (II)-selective sensor based on a newly synthesized thioxanthone derivative, 1-hydroxy-3, 4-dimethylthioxanthone
Adu et al. Spectrophotometric determination of boron in food products by ester borate distillation into curcumin
Safavi et al. Catalytic determination of traces of oxalic acid in vegetables and water samples using a novel optode
Liu et al. Modifications of the curcumin method enabling precise and accurate measurement of seawater boron concentration
Xiong et al. Simple multimodal detection of selenium in water and vegetable samples by a catalytic chromogenic method
Jannatin et al. A novel spectrophotometric method for determination of histamine based on its complex reaction with Cu (II) and alizarin red S
Qiu et al. Determination of water-soluble ammonium ion in soil by spectrophotometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121121

Termination date: 20160203

CF01 Termination of patent right due to non-payment of annual fee