CN102123026A - Chaos and hyperchaos based two-level video streaming media encryption method - Google Patents
Chaos and hyperchaos based two-level video streaming media encryption method Download PDFInfo
- Publication number
- CN102123026A CN102123026A CN2011100903086A CN201110090308A CN102123026A CN 102123026 A CN102123026 A CN 102123026A CN 2011100903086 A CN2011100903086 A CN 2011100903086A CN 201110090308 A CN201110090308 A CN 201110090308A CN 102123026 A CN102123026 A CN 102123026A
- Authority
- CN
- China
- Prior art keywords
- data
- encryption
- video
- stream
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000000739 chaotic effect Effects 0.000 claims abstract description 67
- 230000005540 biological transmission Effects 0.000 claims abstract description 34
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 30
- 238000007906 compression Methods 0.000 claims abstract description 20
- 238000013507 mapping Methods 0.000 claims abstract description 19
- 230000006835 compression Effects 0.000 claims abstract description 14
- 238000013461 design Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 19
- 238000004891 communication Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005291 chaos (dynamical) Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000283220 Odobenus rosmarus Species 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
基于混沌与超混沌的两层次视频流媒体加密方法。本发明提供的设计方法包括:提出了基于混沌与超混沌的两层次视频流媒体加密算法。该方法与网络传输下的视频压缩标准H.263相结合,其第一层次是:基于Logistic混沌映射,在视频压缩过程中用基于离散余弦变换(DCT)的选择性加密算法对视频流数据加密;在视频压缩后,进行第二层次的加密,它包括两部分:基于离散Baker映射进行视频流数据置乱和基于超混沌映射对置乱后的数据进行数据混淆;由于采用了多层次的加密,并且超混沌系统加密性能强,因此采用该方法的视频流加密系统能有效地抵抗恶意攻击和专业解密,该加密方法在网络流媒体传输信息安全领域中具有重要应用价值。
A two-level video streaming encryption method based on chaos and hyperchaos. The design method provided by the invention includes: proposing a two-level video streaming media encryption algorithm based on chaos and hyperchaos. This method is combined with the video compression standard H.263 under network transmission. The first level is: based on the Logistic chaotic map, the video stream data is encrypted with a selective encryption algorithm based on the discrete cosine transform (DCT) during the video compression process. ; After video compression, the second level of encryption is carried out, which includes two parts: video stream data scrambling based on discrete Baker mapping and data confusion for scrambled data based on hyperchaotic mapping; due to the use of multi-level encryption , and the hyperchaotic system has strong encryption performance, so the video stream encryption system using this method can effectively resist malicious attacks and professional decryption. This encryption method has important application value in the field of network streaming media transmission information security.
Description
【技术领域】:【Technical field】:
本发明属于信息安全技术和网络通信技术领域,涉及对网络中实时传输的视频流媒体进行加密的算法,为网络视频信息安全保密传输和相关知识产权保护提供安全有效的加密解决方案。The invention belongs to the fields of information security technology and network communication technology, relates to an algorithm for encrypting video streaming media transmitted in real time in a network, and provides a safe and effective encryption solution for safe and confidential transmission of network video information and protection of related intellectual property rights.
【背景技术】:【Background technique】:
当今社会是高度信息化的社会,信息安全问题对国民经济、社会发展和人民生活显得愈发重要。在信息安全问题中,网络多媒体的保密技术占有非常重要的地位。随着计算机技术、网络技术和多媒体技术的快速发展和广泛应用,为人们获取和交流信息提供了极大的方便,同时也蕴涵着巨大的商业利益。如何保护多媒体信息的安全成为国际研究热点。Today's society is a highly informationized society, and information security issues are becoming more and more important to the national economy, social development and people's lives. In information security issues, the security technology of network multimedia occupies a very important position. With the rapid development and wide application of computer technology, network technology and multimedia technology, it provides great convenience for people to obtain and exchange information, and also contains huge commercial benefits. How to protect the security of multimedia information has become an international research hotspot.
随着计算机网络技术及硬件设备的飞速发展,网络视频流媒体也日渐流行,如我们常见的在线视频服务网站、保密视频会议、付费电视、网上电影以及专门的商业或军事视频传输系统等。计算机技术,网络通信技术以及多媒体技术的相互渗透,相互促进,已使得网络流媒体技术的发展,达到了从量变到质变的关键时刻。网络传递的信息科技越来越高,从简单的文字信息发展到目前的文字,图像,声音,视频,动画等几乎所有种类的信息。网络带宽的不断提升,数据传输编码技术和用于发布媒体的服务器技术的不断发展,都在用以满足网络流媒体数据的传输技术要求。但由于互联网的开放性,共享性,动态性等特点使得网络信息的安全受到了严重的威胁和干扰,存在着非法攻击、篡改、下载和盗版等安全问题。因此,网络信息安全尤其是多媒体数据的保密性问题成为关系到经济发展和社会安全的重大问题,引起人们的高度重视。由于视频数据的复杂特点,视频文件的实时性要求高,加上视频的数据量极为庞大,传统的基于代数密码理论体系设计的针对文本文件的加密算法已不适用于视频加密。因此需要采用新的理论和工具去设计可应用于流媒体的信息加密系统。With the rapid development of computer network technology and hardware equipment, online video streaming media is also becoming more and more popular, such as our common online video service websites, confidential video conferencing, pay TV, online movies, and specialized commercial or military video transmission systems. The mutual penetration and mutual promotion of computer technology, network communication technology and multimedia technology has made the development of network streaming media technology reach a critical moment from quantitative change to qualitative change. The information technology transmitted by the network is getting higher and higher, from simple text information to the current text, image, sound, video, animation and almost all kinds of information. The continuous improvement of network bandwidth, the continuous development of data transmission coding technology and server technology for publishing media are all used to meet the transmission technical requirements of network streaming media data. However, due to the openness, sharing, and dynamics of the Internet, the security of network information has been seriously threatened and disturbed, and there are security problems such as illegal attacks, tampering, downloading, and piracy. Therefore, the security of network information, especially the confidentiality of multimedia data, has become a major issue related to economic development and social security, which has attracted people's attention. Due to the complex characteristics of video data, the high real-time requirements of video files, and the huge amount of video data, the traditional encryption algorithm for text files designed based on algebraic cryptography theory system is no longer suitable for video encryption. Therefore, it is necessary to use new theories and tools to design an information encryption system that can be applied to streaming media.
“混沌”被公认为是上世纪最重要的科学发现之一。作为一门具有广阔应用前景的前沿交叉学科,已经在工程技术和电子商务的许多实际领域中被成功应用,并在生物与医学工程、力学工程、电子工程、化学工程、信息工程、计算机工程、激光技术、应用物理等许多领域有着巨大的应用潜力。目前混沌理论最活跃的应用领域是通信领域,涉及数据的保密通信与同步,图像加密、数字水印隐藏、流媒体加密等多个方面。由于混沌系统的一些固有特征,如混沌序列的复杂随机性、难以分析和预测性、对初值的极度敏感性,因此非常适用于信息的加密。但是目前存在的混沌加密算法和系统主要存在以下问题:"Chaos" is recognized as one of the most important scientific discoveries of the last century. As a cutting-edge interdisciplinary subject with broad application prospects, it has been successfully applied in many practical fields of engineering technology and e-commerce, and has been applied in biological and medical engineering, mechanical engineering, electronic engineering, chemical engineering, information engineering, computer engineering, Laser technology, applied physics and many other fields have great application potential. At present, the most active application field of chaos theory is the field of communication, involving secure communication and synchronization of data, image encryption, digital watermark hiding, streaming media encryption and many other aspects. Due to some inherent characteristics of the chaotic system, such as the complex randomness of the chaotic sequence, difficulty in analysis and prediction, and extreme sensitivity to the initial value, it is very suitable for the encryption of information. However, the existing chaotic encryption algorithms and systems mainly have the following problems:
(1)已有的多数混沌加密算法是针对图像、水印等静态对象设计的,不适用于对流媒体信息的在线加密。(1) Most existing chaotic encryption algorithms are designed for static objects such as images and watermarks, and are not suitable for online encryption of streaming media information.
(2)已有的混沌视频加密算法多采用选择性加密算法,其核心思想就是只加密部分数据信息。将视频流信息处理后,选取一些重要部分信息进行加密,虽然保障了实时性,但是此类选择性加密算法从安全性角度上有很多缺陷,易于被攻击和破译。(2) Existing chaotic video encryption algorithms mostly use selective encryption algorithm, the core idea of which is to encrypt only part of the data information. After the video stream information is processed, some important parts of the information are selected for encryption. Although the real-time performance is guaranteed, this kind of selective encryption algorithm has many defects from the perspective of security and is easy to be attacked and deciphered.
(3)混沌加密算法的设计多是基于简单的混沌系统,而简单的混沌系统较易于被成熟的非线性数据处理技术破译。(3) The design of chaotic encryption algorithm is mostly based on simple chaotic system, and simple chaotic system is easier to be deciphered by mature nonlinear data processing technology.
针对以上问题,需要基于混沌理论,提出针对多媒体视频流数据加密的、新的加密算法,基于新算法建立的视频加密系统应用于媒体视频传输,不仅要具有很好的传输性能,如实时性、压缩比和图像传输质量,而且要具有很高的安全性。通常的选择性加密算法只加密部分信息,防御措施较为薄弱,不足以抵挡住恶意攻击者的攻击,因此需要建立多个层次的加密措施。混沌加密算法只采用简单的混沌,于是需要更为复杂的混沌系统-超混沌。超混沌系统产生的复杂时间序列极大地提高了加密质量,非常难以破译。因此将超混沌理论应用于信息加密具有重要的应用前景。In view of the above problems, it is necessary to propose a new encryption algorithm for multimedia video stream data encryption based on chaos theory. The video encryption system established based on the new algorithm is applied to media video transmission. It must not only have good transmission performance, such as real-time, Compression ratio and image transmission quality, and high security. The usual selective encryption algorithm only encrypts part of the information, and the defense measures are relatively weak, which is not enough to resist the attacks of malicious attackers. Therefore, it is necessary to establish multiple levels of encryption measures. The chaotic encryption algorithm only uses simple chaos, so a more complex chaotic system-hyperchaos is needed. The complex time series produced by the hyperchaotic system greatly improves the encryption quality and is very difficult to decipher. Therefore, applying hyperchaos theory to information encryption has an important application prospect.
【发明内容】:【Invention content】:
本发明目的是克服现有技术存在的上述问题,提供具有创新性的基于混沌与超混沌的两层次视频流媒体加密方法,为实现视频流媒体的安全性传输加密系统提供可行的解决方案。The purpose of the present invention is to overcome the above-mentioned problems existing in the prior art, provide an innovative two-level video streaming media encryption method based on chaos and hyperchaos, and provide a feasible solution for realizing the security transmission encryption system of video streaming media.
本发明提供的基于混沌与超混沌的两层次视频流媒体加密方法,其主要内容包括:The two-level video streaming media encryption method based on chaos and hyperchaos provided by the present invention, its main contents include:
第1、基于混沌与超混沌的两层次视频流数据加密方案的结构1. The structure of the two-level video stream data encryption scheme based on chaos and hyperchaos
提出基于混沌与超混沌的两层次的视频流数据加密方案的结构,该加密系统的设计与网络传输下的视频压缩标准H.263相结合,采用逐字节处理模式处理编码后的H.263流,第一层次是在视频压缩过程中对视频流数据进行基于混沌映射的选择性流加密;视频压缩后,对压缩后的视频流数据进行第二层次加密,即对视频流数据进行块置乱和数据混淆,其中块置乱采用二维离散Baker映射,然后对置乱后的数据采用超混沌系统进行数据混淆;A two-level video stream data encryption scheme based on chaos and hyperchaos is proposed. The design of the encryption system is combined with the video compression standard H.263 under network transmission, and the encoded H.263 is processed by byte-by-byte processing mode. stream, the first level is to encrypt the video stream data based on the selective stream encryption based on the chaotic map during the video compression process; Scrambling and data confusion, where block scrambling adopts two-dimensional discrete Baker mapping, and then uses hyper-chaotic system for data confusion on the scrambled data;
第2、基于混沌映射的第一层次的视频流数据加密方案2. The first level video stream data encryption scheme based on chaotic map
第一层次的加密方案是:在视频压缩过程中,基于混沌映射对视频流数据进行选择性的流加密,即基于混沌映射对视频数据的一部分进行流加密,在基于混沌映射的选择性加密算法中,所有的帧内块的离散余弦变换DCT的系数均被流加密;The encryption scheme of the first level is: in the video compression process, the video stream data is selectively encrypted based on the chaotic map, that is, a part of the video data is stream-encrypted based on the chaotic map, and the selective encryption algorithm based on the chaotic map In , the coefficients of the discrete cosine transform DCT of all intra-frame blocks are stream encrypted;
流加密:流加密也叫序列加密,流密码的加密和解密思想是先将视频流数据作为一个由基本编码单元0和1构成的明文流m,然后利用一个密钥流k与该明文流m逐位地加密,得到一个密文流c,解密时以同步产生的同样的密钥流k与这个密文流c逐位地解密来恢复明文流m;这个密钥流k是采用混沌系统生成的序列,混沌系统采用的是离散的一维Logist混沌映射;Stream encryption: Stream encryption is also called sequence encryption. The idea of stream cipher encryption and decryption is to first treat the video stream data as a plaintext stream m composed of
流加密的加密强度完全依赖于密钥流的随机性和不可预测性,而混沌系统具有伪随机性和不可预测性,又由于其在产生密钥流时的易实现性,所以由混沌系统生成的序列可被用作密钥流,在流加密中本发明采用离散的一维Logistic混沌映射;The encryption strength of stream encryption depends entirely on the randomness and unpredictability of the key stream, and the chaotic system has pseudo-randomness and unpredictability, and because of its easy realization when generating the key stream, it is generated by the chaotic system. The sequence of can be used as key stream, and the present invention adopts discrete one-dimensional Logistic chaotic map in stream encryption;
基于混沌的选择性加密算法:核心思想就是只加密部分数据,即基于混沌映射对视频数据的一部分进行流加密;Chaos-based selective encryption algorithm: the core idea is to encrypt only part of the data, that is, to encrypt a part of the video data based on the chaotic map;
离散余弦变换(DCT)系数:DCT是一种数据处理方法,其实质是将一空间域函数转换成频率域函数,根据DCT变换得到的8*8频率系统矩阵,称为DCT系数,进一步突出对视觉影响大的图像主体信息成分(直流和低频分量),而削弱或略去对视觉影响小的次要细节(高频分量);Discrete cosine transform (DCT) coefficient: DCT is a data processing method, its essence is to convert a space domain function into a frequency domain function, and the 8*8 frequency system matrix obtained according to DCT transformation is called DCT coefficient, which further highlights the Main image information components (DC and low-frequency components) that have a large visual impact, while weakening or omitting secondary details (high-frequency components) that have little visual impact;
被压缩的图像的能量主要集中在64个DCT系数的低频部分和直流部分,因此为了获得足够的安全性以抗击可能出现的攻击,我们的基于混沌的选择性加密算法中,所有的帧内块的DCT系数(1个DC和63个AC)均被流加密;The energy of the compressed image is mainly concentrated in the low-frequency part and DC part of the 64 DCT coefficients, so in order to obtain sufficient security against possible attacks, in our selective encryption algorithm based on chaos, all intra-frame blocks The DCT coefficients (1 DC and 63 AC) are all stream encrypted;
第3、基于离散Baker映射和超混沌映射的第二层次的视频流数据加密方案Third, the second level video stream data encryption scheme based on discrete Baker map and hyperchaotic map
对完成第一层次加密编码后的H.263视频流数据,进行第二层次的加密,第二层次的加密方案由两部分组成,即首先采用二维离散Baker映射进行数据置乱,然后基于超混沌映射对置乱后的数据进行数据混淆;For the H.263 video stream data after the first level of encryption and coding, the second level of encryption is performed. The second level of encryption scheme consists of two parts, that is, firstly, the two-dimensional discrete Baker map is used to scramble the data, and then based on the super Chaos mapping performs data obfuscation on the scrambled data;
第3.1、数据置乱Section 3.1, data scrambling
利用二维离散Baker映射实现编码后H.263视频流数据的数据置乱;在对应的密码系统结构中,第一层次加密编码后的H.263视频流数据被用作明文流,下面将给出数据置乱的具体步骤:The data scrambling of the encoded H.263 video stream data is realized by using two-dimensional discrete Baker mapping; in the corresponding cryptographic system structure, the H.263 video stream data encoded by the first level of encryption is used as a plaintext stream, and the following will give The specific steps of data scrambling:
第一步:从第一层次加密编码后的H.263视频流数据中取出N×N个字节数据用于二维离散Baker映射置乱迭代,置乱密钥kB由l,n1,n2,…,nk构成,l代表数据置乱的迭代次数,(ni,i=1,2,…,k)为密钥的分量值,N,l,ni取为大于0的整数,N和l的选取原则为在安全性和处理速度之间取得更好的平衡,N和l越大,安全性越强,处理速度就越慢,(n1,n2,L nk)要满足ni|N,i=1,L,k,且n1+L+nk=N;Step 1: Take N×N bytes of data from the first-level encrypted H.263 video stream data for two-dimensional discrete Baker mapping scrambling iterations. The scrambling key k B is composed of l, n 1 , n 2 ,..., n k constitute, l represents the number of iterations of data scrambling, (n i , i=1, 2,..., k) is the component value of the key, N, l, n i are set to be greater than 0 Integers, the selection principle of N and l is to achieve a better balance between security and processing speed, the larger N and l, the stronger the security, and the slower the processing speed, (n 1 , n 2 , L n k ) must satisfy n i |N, i=1, L, k, and n 1 +L+n k =N;
第二步:将迭代选定的数据(b1,b2,L L bN×N)置乱操作l次,得到置乱后的数据(bp1,bp2,L L bpNN);Step 2: Scramble the iteratively selected data (b 1 , b 2 , L L b N×N ) for one time to obtain the scrambled data (bp 1 , bp 2 , L L bp NN );
第三步:将置乱后的数据(bp1,bp2,L L bpNN)存储到视频流数据的原来位置;Step 3: Store the scrambled data (bp 1 , bp 2 , L L bp NN ) in the original location of the video stream data;
第3.2、数据混淆Section 3.2, data confusion
选用超混沌方程生成的序列实现数据的混淆,超混沌方程生成的状态序列(x1,x2,L L xNN)将被离散化得到比特序列(c1,c2,L L cNN)与置乱后的H.263视频流数据序列(bp1,bp2,L L bpNN)进行混淆操作,混淆操作采用异或操作实现;混淆后的H.263视频流数据与未改变的H.263视频流数据一起用做视频网络传输的输入数据。The sequence generated by the hyperchaotic equation is selected to achieve data confusion. The state sequence (x 1 , x 2 , L L x NN ) generated by the hyperchaotic equation will be discretized to obtain the bit sequence (c 1 , c 2 , L L c NN ) and the set The scrambled H.263 video stream data sequence (bp 1 , bp 2 , L L bp NN ) is used for obfuscation operation, and the obfuscation operation is realized by XOR operation; the obfuscated H.263 video stream data and the unchanged H.263 video Streaming data are used together as input data for video network transmission.
本发明的优点和积极效果Advantages and positive effects of the present invention
本发明提出了基于混沌与超混沌的两层次视频流媒体加密方法,实现了对视频流媒体信息安全性传输的目的。The invention proposes a two-level video streaming media encryption method based on chaos and hyperchaos, and realizes the purpose of secure transmission of video streaming media information.
本发明为视频流媒体加密系统的设计与分析提供了先进有效的方法,极大地提高了视频数据信息传输的安全程度,为网络化社会的信息安全提供了创新型技术,在文化传播产业、商业金融、军事等领域中具有良好的经济效益和社会效益,同时能促进混沌密码学理论的丰富与发展,因此该成果具有重要的理论价值和应用前景。The present invention provides an advanced and effective method for the design and analysis of video stream media encryption system, greatly improves the security degree of video data information transmission, and provides an innovative technology for information security in networked society. It has good economic and social benefits in the fields of finance and military, and can promote the enrichment and development of chaotic cryptography theory. Therefore, this achievement has important theoretical value and application prospects.
本发明具有以下优点:The present invention has the following advantages:
(1)提出了两层次的混沌视频加密系统的设计思想,而且与网络传输下的视频压缩标准H-263相结合,在视频压缩过程中进行基于离散余弦变换(DC)的视频流混沌加密,视频压缩后,对视频流进行块置乱和数据混淆,该加密方案完全适合于再网络视频流媒体传输中应用,具有很好的可行性、通用性和安全性。(1) The design idea of a two-level chaotic video encryption system is proposed, and combined with the video compression standard H-263 under network transmission, video stream chaotic encryption based on discrete cosine transform (DC) is performed in the video compression process, After video compression, block scrambling and data confusion are performed on the video stream. This encryption scheme is completely suitable for application in network video streaming media transmission, and has good feasibility, versatility and security.
(2)第一层次的加密方案是在视频压缩过程中,基于Logistic混沌映射对视频流数据进行选择性的流加密,即基于混沌映射对视频流数据的一部分进行流加密,该层次作为增强整个加密系统安全性的一个辅助性的加密环节,在基于混沌映射的选择性加密算法中,所有的帧内块的离散余弦变换DCT的系数均被流加密,因此可以获得足够的安全性以抗击可能出现的攻击。在视频压缩后,采用二维离散Baker映射进行视频流数据置乱并基于超混沌映射对置乱后的数据进行数据混淆;是多种不同属性的数据加密措施的有机融合,使得加密系统具有更高的安全性。(2) The encryption scheme of the first level is to perform selective stream encryption on the video stream data based on the Logistic chaotic map in the process of video compression, that is, to perform stream encryption on a part of the video stream data based on the chaotic map. An auxiliary encryption link for the security of the encryption system. In the selective encryption algorithm based on chaotic maps, the coefficients of the discrete cosine transform DCT of all intra-frame blocks are encrypted by the flow, so sufficient security can be obtained to resist possible The attack that appears. After video compression, the two-dimensional discrete Baker map is used to scramble the video stream data and the scrambled data is scrambled based on the hyper-chaotic map; it is an organic fusion of data encryption measures with different attributes, which makes the encryption system more efficient. High security.
(3)现存的基于混沌的加密方案利用置乱方法来实现数字图像或视频的密钥置乱。而我们这里的密码系统利用二维离散Baker映射实现编码后H.263视频流的数据置乱。(3) Existing chaos-based encryption schemes use scrambling methods to realize key scrambling of digital images or videos. And our cryptographic system here uses two-dimensional discrete Baker mapping to realize the data scrambling of the encoded H.263 video stream.
(3)在该加密算法中不仅使用了简单的混沌系统,而且还使用了超混沌系统。简单的混沌系统只含有一个正李雅普诺夫指数,具有一维复杂动态扩张,存在着易于被成熟的非线性数据处理技术破译的可能性。超混沌是高维区域复杂动态扩张的混沌系统,它是具有两个以上正李雅普诺夫指数的混沌系统。超混沌系统产生的复杂时间序列具有更大的随机性和不可预测性,采用这种信号加密,极大地提高了加密质量,非常难以破译。(3) Not only a simple chaotic system but also a super chaotic system are used in the encryption algorithm. The simple chaotic system only contains a positive Lyapunov exponent, has a one-dimensional complex dynamic expansion, and has the possibility of being easily deciphered by mature nonlinear data processing techniques. Hyperchaos is a chaotic system with complex dynamic expansion in high-dimensional regions, and it is a chaotic system with more than two positive Lyapunov exponents. The complex time series generated by the hyperchaotic system has greater randomness and unpredictability. Using this signal encryption greatly improves the encryption quality and is very difficult to decipher.
(4)基于这种加密算法实现的两层次超混沌视频加密系统,经在网络环境下测试统计分析,其安全性及各项性能指标如处理速度,压缩比,重建后图像质量均达到理想性能指标要求,显示了该方法的很好的实用性。(4) The two-level hyperchaotic video encryption system based on this encryption algorithm has been tested and analyzed in a network environment, and its security and various performance indicators such as processing speed, compression ratio, and image quality after reconstruction have reached ideal performance indicator requirements, showing the good practicability of the method.
【附图说明】:[Description of drawings]:
图1是混沌视频加密网络通信系统。Figure 1 is a chaotic video encryption network communication system.
图2是UDP协议的套接字(socket)调用时序图。FIG. 2 is a sequence diagram of socket (socket) invocation of the UDP protocol.
图3是基于混沌的视频加密系统模型结构图。Figure 3 is a structural diagram of the chaos-based video encryption system model.
图4是基于混沌与超混沌的两层次视频流媒体加密算法框图。Figure 4 is a block diagram of a two-level video streaming encryption algorithm based on chaos and hyperchaos.
图5是Logistic混沌序列轨迹图。Figure 5 is the trajectory diagram of the Logistic chaotic sequence.
图6是第一层次加密与解密系统工作流程图。Fig. 6 is a working flowchart of the first level encryption and decryption system.
图7是第二层加密系统工作流程图。Fig. 7 is a working flowchart of the second layer encryption system.
图8是二维连续Baker映射图。Fig. 8 is a two-dimensional continuous Baker map.
图9是二维离散Baker映射图。Fig. 9 is a two-dimensional discrete Baker map.
图10是超混沌序列轨迹图。Figure 10 is a hyperchaotic sequence trajectory diagram.
图11是基于混沌与超混沌的两层次视频流数据加密实例效果,(a)为原始图像,(b)为经过第一层加密后的编码图像,(c)为经过第二层加密后的编码图像,(d)为解密后的图像。Figure 11 is an example effect of two-level video stream data encryption based on chaos and hyperchaos, (a) is the original image, (b) is the coded image after the first layer of encryption, and (c) is the second layer of encryption Encoded image, (d) is the decrypted image.
【具体实施方式】:【Detailed ways】:
视频流媒体加密系统主要由以下几部分组成:相关硬件设备、视频流媒体加密软件、视频流媒体解密软件,其中加密软件安置在流媒体发布端,解密软件安置在流媒体接收终端,加密软件和解密软件的核心部分是加密与解密算法,本发明主要描述的是基于混沌与超混沌的视频流加密算法方案的设计步骤和技术原理,在具体实施方式中首先对混沌视频流媒体加密系统的网络连接原理及系统功能设计方面给予介绍,后面主要部分结合视频序列实例描述发明中的加密方法的具体实施步骤。The video streaming media encryption system is mainly composed of the following parts: related hardware equipment, video streaming media encryption software, video streaming media decryption software, where the encryption software is placed at the streaming media publishing end, the decryption software is placed at the streaming media receiving terminal, the encryption software and The core part of the decryption software is the encryption and decryption algorithm. What the present invention mainly describes are the design steps and technical principles of the video stream encryption algorithm scheme based on chaos and hyperchaos. The connection principle and system function design are introduced, and the following main part describes the specific implementation steps of the encryption method in the invention in combination with video sequence examples.
1.基于混沌的视频加密系统的网络连接原理和系统功能设计1. Network connection principle and system function design of chaos-based video encryption system
1.1 视频网络连接原理1.1 Principle of video network connection
对于需要加密的网上流媒体发布、视频会议、数字电视等,均需要把加密后的视频数据通过网络传输到客户端中,因此便产生了相关的网络传输控制问题,我们这里仅给出与本发明中的混沌视频加密系统密切相关的网络传输协议等概念,混沌视频加密网络通信系统如图1所示:For online streaming media publishing, video conferencing, digital TV, etc. that require encryption, the encrypted video data needs to be transmitted to the client through the network, so there are related network transmission control problems, we only give the relevant information here The chaotic video encryption system in the invention is closely related to concepts such as network transmission protocols, and the chaotic video encryption network communication system is shown in Figure 1:
网络环境下,不同计算机之间的通信是分布进程通信,其采用客户机/服务器(Client/Server)模式,客户机与服务器都是进行通信的应用程序,在此模式下客户机向服务器请求服务,而服务器响应并向客户机提供服务。TCP/IP协议即传输控制协议/网际协议是实现网络互联的基础,由底层的IP协议和TCP协议组成;其中IP协议即网际协议,所有通信双方需要在Internet上进行通信,则所有连接到Internet的计算机都必须遵守IP协议。为了完成不同计算机的应用进程之间的通信,TCP/IP协议在全网络范围内唯一的标识一个进程,这时需要使用网络层的IP地址和传输层的端口号,它们合起来就称为套接字(Socket)地址。网络环境中的分布式进程通信需要采用Socket编程方式。网络环境中的每一台计算机都有自己的操作系统,操作系统应该提供给网络应用程序的接口,即网络应用编程接口(Application Program Interface,API)。Socket屏蔽了底层通信软件和具体操作系统的差异,使得任意两台安装TCP协议软件和实现套接字规范的计算机之间通信成为可能。In the network environment, the communication between different computers is distributed process communication, which adopts the client/server (Client/Server) mode. Both the client and the server are application programs for communication. In this mode, the client requests services from the server. , and the server responds and serves the client. The TCP/IP protocol, that is, the Transmission Control Protocol/Internet Protocol, is the basis for realizing network interconnection. It is composed of the underlying IP protocol and the TCP protocol; the IP protocol is the Internet Protocol. All communication parties need to communicate on the Internet, and all connections to the Internet All computers must abide by the IP protocol. In order to complete the communication between application processes of different computers, the TCP/IP protocol uniquely identifies a process within the entire network. At this time, it is necessary to use the IP address of the network layer and the port number of the transport layer. Together, they are called a socket. Socket address. Distributed process communication in the network environment needs to use Socket programming. Each computer in the network environment has its own operating system, and the operating system should provide an interface for network applications, that is, the network application programming interface (Application Program Interface, API). Socket shields the difference between the underlying communication software and the specific operating system, making it possible to communicate between any two computers that install TCP protocol software and implement the socket specification.
视频实时系统对数据传输速率要求较高,在TCP/IP协议中,用户数据包协议UDP协议主要用于对传输效率要求较高的应用层协议。在UDP客户机服务器模式中,客户机服务器表示互相通信的两个应用程序的进程。UDP服务器通过熟知的端口号向客户机提供服务。UDP客户机是指通过临时申请的端口号向服务器请求服务来使用某种网络的应用程序。UDP服务器和UDP客户机都会建立一个输出队列和一个输入队列,他们分别用于发送和接收UDP数据包。UDP服务器采用重复服务器的方式处理并发服务。重复服务器采用一个请求队列来存储到达的服务请求,并根据先到先服务的原则顺序处理服务器请求。重复服务器处理客户机请求的数量受到请求队列长度的限制,但是它可以有效地控制对服务器请求的处理时间。UDP协议的Socket调用时序图如图2所示。实际运行也验证,传输层采用UDP协议可以足够保证混沌视频加密系统中视频数据的实时传输。The real-time video system requires high data transmission rate. Among the TCP/IP protocols, the User Datagram Protocol (UDP) protocol is mainly used for application layer protocols that require high transmission efficiency. In the UDP client-server pattern, the client-server represents two application processes communicating with each other. UDP servers provide services to clients through well-known port numbers. A UDP client refers to an application program that uses a certain network by requesting a service from a server through a temporarily applied port number. Both the UDP server and the UDP client will create an output queue and an input queue, which are used to send and receive UDP packets respectively. The UDP server handles concurrent services in a duplicate server manner. The repeating server uses a request queue to store incoming service requests, and processes server requests sequentially on a first-come, first-served basis. The number of client requests processed by a duplicate server is limited by the length of the request queue, but it can effectively control the processing time of server requests. The timing diagram of the Socket call of the UDP protocol is shown in Figure 2. The actual operation has also verified that the UDP protocol used in the transport layer can sufficiently guarantee the real-time transmission of video data in the chaotic video encryption system.
1.2 系统功能设计1.2 System function design
混沌视频加密系统建立在TCP/IP网络协议中,两个进程间的相互作用的模式是客户机/服务器模式(C/S模式),即网络视频实时采集传输加密系统服务器端等待客户提出请求并予以响应,而网络视频实时采集传输解密系统客户端在需要时向服务器提出申请,服务器端作为守护进程始终进行,监听网络端口,一旦有客户请求,就会启动一个服务进程来响应该用户。软件功能实现主要由四部分构成:视频实时采集及播放、压缩编码与解码;视频网络传输、视频加密与解密。对每个视频输入包,为了实现在局域网中的端对端通信,必须事先知道服务器端的IP和端口号,并进行网络连接对话和数据传输。这里要着重强调一点,本发明实现的密码系统未采用传输控制协议RTP来保证视频数据传输的QoS(Quality of Service),这在以后的实际应用中可以进一步改进以增强在广域网下的适用性。The chaotic video encryption system is established in the TCP/IP network protocol. The interaction mode between the two processes is the client/server mode (C/S mode), that is, the server side of the network video real-time acquisition and transmission encryption system waits for the client to make a request and Respond, and the network video real-time acquisition and transmission decryption system client will apply to the server when needed, and the server will always run as a daemon process, monitoring the network port, once a customer requests, it will start a service process to respond to the user. Software function realization mainly consists of four parts: real-time video capture and playback, compression encoding and decoding; video network transmission, video encryption and decryption. For each video input packet, in order to realize the end-to-end communication in the local area network, the IP and port number of the server must be known in advance, and the network connection dialogue and data transmission must be carried out. Here it is emphasized that the encryption system realized by the present invention does not adopt the transmission control protocol RTP to ensure the QoS (Quality of Service) of video data transmission, which can be further improved in future practical applications to enhance the applicability under the wide area network.
1.3 视频实时采集与播放功能实现1.3 Real-time video capture and playback function realization
在混沌视频加密系统中需要实时采集与播放视频信息,因此有必要选取易于实现且很成熟的视频采集软件和硬件。在视频的软件中应用了视频捕获技术。可采用一个专门用于视频捕获的数字视频软件包VFW(Video for Windows)SDK。VFW SDK为在Windows系统中实现视频捕获提供了标准的接口,从而大大降低了程序的开发难度。VFW能使应用程序通过数字化设备从传统的模拟视频源得到数字化的视频剪辑。VFW的一个关键思想是播放时不需要专用硬件,它引进了一种叫AVI的文件标准,该标准规定视频和音频该如何存储在硬盘上,以及在AVI文件中交替存储视频帧和与之相匹配的音频数据。VFW使程序员能通过发送消息或设置属性来捕获、播放和编辑视频剪辑。AVICap支持实时的视频流捕捉和视频单帧捕捉。Real-time acquisition and playback of video information is required in the chaotic video encryption system, so it is necessary to select easy-to-implement and mature video acquisition software and hardware. The video capture technology is applied in the video software. A digital video software package VFW (Video for Windows) SDK specially used for video capture can be used. VFW SDK provides a standard interface for video capture in Windows system, which greatly reduces the difficulty of program development. VFW enables applications to obtain digitized video clips from traditional analog video sources through digitizing devices. A key idea of VFW is that it does not require special hardware for playback. It introduces a file standard called AVI, which specifies how video and audio should be stored on the hard disk, and alternately stores video frames and corresponding frames in AVI files. Matching audio data. VFW enables programmers to capture, play and edit video clips by sending messages or setting properties. AVICap supports real-time video stream capture and video single frame capture.
AVICap窗口类提供了以下功能:The AVICap window class provides the following functions:
◆单独控制音频、视频的采集;◆Separately control the collection of audio and video;
◆采用overlay(实时叠加)或preview(预览)方式显示视频图像;◆Use overlay (real-time superposition) or preview (preview) to display video images;
◆与ICM和ACM同时工作,将音频和视频数据直接压缩到应用程序中;◆Work simultaneously with ICM and ACM to compress audio and video data directly into the application;
◆将音频、视频流直接压缩入AVI文件而不需要开发人员详细了解AVI文件格式的细节;◆Compress audio and video streams directly into AVI files without requiring developers to understand the details of the AVI file format;
◆动态了解视频和音频的输入设备;◆Know the video and audio input devices dynamically;
◆创建、保存和载入调色板;◆Create, save and load palettes;
◆将图像调色板拷贝到剪切板上;◆Copy the image palette to the clipboard;
◆控制MCI设备;◆Control MCI equipment;
◆捕捉单帧图像并以DIB格式保存。◆Capture a single frame image and save it in DIB format.
1.4压缩编码功能实现1.4 Realization of compression coding function
我们采用H.263标准实现压缩编码和解码功能。H.263标准是一种低数据传输速率的视频压缩编码标准,其采用运动补偿,帧间预测等去除图像在时间域的冗余度,然后用离散余弦变换(DCT)去除图像信息空间的冗余度,最后用变字长的统计编码去除量化后DCT系数中所含的统计冗余度,达到数据压缩的目的。We adopt the H.263 standard to realize compression encoding and decoding functions. The H.263 standard is a video compression coding standard with a low data transmission rate. It uses motion compensation, inter-frame prediction, etc. to remove the redundancy of the image in the time domain, and then uses discrete cosine transform (DCT) to remove the redundancy of the image information space. Redundancy, and finally use variable word length statistical coding to remove the statistical redundancy contained in the quantized DCT coefficients, so as to achieve the purpose of data compression.
2.基于混沌的视频加密系统的模型表述2. Model expression of chaos-based video encryption system
基于混沌的视频加密系统属于数字加密系统,即求解混沌方程产生的混沌序列被设计成有限精度下的密钥与视频序列加密。它也属于对称密钥系统。视频帧被称作明文,对应地加密后的视频帧被称为密文。这里我们给出基于混沌的视频加密系统的模型表述,包括基本概念和结构描述,模型结构如图3所示:The video encryption system based on chaos belongs to the digital encryption system, that is, the chaotic sequence generated by solving the chaotic equation is designed as a key and video sequence encryption under finite precision. It also belongs to the symmetric key system. Video frames are called plaintext, and correspondingly encrypted video frames are called ciphertext. Here we give the model expression of the chaos-based video encryption system, including basic concepts and structural descriptions. The model structure is shown in Figure 3:
基于混沌的视频加密系统由五部分构成,其符号表述为P,C,K,{Ek,k∈K},{Dk,k∈K},数学表达意义如下所示:The chaos-based video encryption system consists of five parts, whose symbols are expressed as P, C, K, {E k , k∈K}, {D k , k∈K}, and the meaning of the mathematical expression is as follows:
1)P代表原始的视频帧的有限集合。1) P represents a finite set of original video frames.
2)C代表加密后的视频帧的有限集合。2) C represents a finite set of encrypted video frames.
3)K代表密钥,其由一个或多个混沌或超混沌系统产生的密钥集合。3) K represents a key, which is a set of keys generated by one or more chaotic or hyperchaotic systems.
4)对每一个k∈K,存在加密方程Ek∈ε及对应的解密方程Dk∈D,这里对每一个Ek:P→C和Dk:C→P有方程(1)如下:4) For each k∈K, there is an encryption equation E k ∈ε and a corresponding decryption equation D k ∈D, here for each E k : P→C and D k : C→P, there is equation (1) as follows:
Dk(Ek(x))=x (1)D k (E k (x)) = x (1)
对每一个视频帧均成立。其中ε和D是所有的加密和解密方程的集合。is true for every video frame. where ε and D are the set of all encryption and decryption equations.
后面第3.2节的基于混沌的第一层次的流加密方案和第3.3.2节的基于超混沌方程的置乱后H.263视频数据混淆加密方案均是在上述的架构下设计的,只不过最大的不同就在于密钥K以及加密方程Ek:P→C及解密方程Dk:C→P的不同,这便是密码设计者所做工作的重点所在。The first-level chaos-based stream encryption scheme in Section 3.2 and the scrambled H.263 video data encryption scheme based on hyperchaotic equations in Section 3.3.2 are designed under the above-mentioned architecture, except that The biggest difference lies in the difference between the key K and the encryption equation E k : P→C and the decryption equation D k : C→P, which is the focus of the work of the cipher designer.
3.基于混沌与超混沌的两层次视频流媒体加密方案实施步骤及实例3. Implementation steps and examples of a two-level video streaming encryption scheme based on chaos and hyperchaos
3.1 基于混沌与超混沌的两层次视频流媒体加密方案的结构3.1 Structure of two-level video streaming encryption scheme based on chaos and hyperchaos
图4给出了所提出的加密方案的结构图。从图4中可以看出,两层次的多混沌视频加密系统也属于对称加密系统,通信双方的客户端和服务器端拥有同样的密钥kA,kB,kC来加密明文和解密密文。在软件实现中,一系列的视频帧被捕捉,压缩并通过IP网络传输,在这个处理过程中,加密算法被应用来抵抗安全威胁,为了满足视频实时传输的要求,该加密系统采用了H.263编解码器,适用于满足H.263标准的各种视频流数据加密。Figure 4 presents the block diagram of the proposed encryption scheme. It can be seen from Figure 4 that the two-level multi-chaotic video encryption system is also a symmetric encryption system. The client and server of both communication parties have the same key k A , k B , k C to encrypt plaintext and decrypt ciphertext . In the software implementation, a series of video frames are captured, compressed and transmitted through the IP network. During this process, encryption algorithms are applied to resist security threats. In order to meet the requirements of real-time video transmission, the encryption system uses H. 263 codec, suitable for encryption of various video stream data meeting the H.263 standard.
在本实例中,使用的视频流数据参数如下:采用的视频帧视频格式为Qcif格式,视频信号亮度分辨率为176x144像素,视频信号色度分辨率为88x72像素,传输比特率为黑白视频6.1Mbit/s、彩色视频9.1Mbit/s,每帧最大允许比特位为64,此外视频帧采用帧内编码的模式,即所有的视频桢被看作I帧。因为我们设计的加密系统属于对称加密系统,解密过程是加密过程的逆过程,因此将只结合实例给出加密算法及加密过程。In this example, the video stream data parameters used are as follows: the video frame video format used is Qcif format, the video signal brightness resolution is 176x144 pixels, the video signal chrominance resolution is 88x72 pixels, and the transmission bit rate is black and white video 6.1Mbit /s, color video 9.1Mbit/s, the maximum allowable bit of each frame is 64, and the video frame adopts the intra-frame coding mode, that is, all video frames are regarded as I frames. Because the encryption system we designed is a symmetric encryption system, the decryption process is the reverse process of the encryption process, so the encryption algorithm and encryption process will only be given with examples.
3.2 基于混沌的第一层次的流加密方案3.2 Chaos-based first-level stream encryption scheme
3.2.1 第一层次混沌加密系统结构3.2.1 The structure of the first level chaotic encryption system
第一层次的加密方案是基于Logistic混沌映射对视频数据进行选择性的流加密,即加密所有DCT系数,算法的具体设计如下。The encryption scheme of the first level is based on the Logistic chaotic map to perform selective stream encryption on the video data, that is, to encrypt all DCT coefficients. The specific design of the algorithm is as follows.
该加密系统参照图3来设计密码系统的结构,它的五个结构元素如下所示:The encryption system designs the structure of the encryption system with reference to Figure 3, and its five structural elements are as follows:
1)密钥k由μ和x0组成;P={ai}={DC,AC1,L L AC63}由DCT过程及量化后的所有64个DCT系数组成;1) The key k is composed of μ and x 0 ; P={a i }={DC, AC 1 , L L AC 63 } consists of the DCT process and all 64 DCT coefficients after quantization;
2)C由所有流加密后的DCT系数集合{bi}组成;2) C consists of the DCT coefficient set {b i } of all streams encrypted;
3)Ek可以被描述成Xor(异或)操作,即由下式(2)所得:3) E k can be described as an Xor (exclusive OR) operation, which is obtained by the following formula (2):
4)Dk可以被描述成异或(Xor)操作,即由下式(3)所得:4) D k can be described as an exclusive OR (Xor) operation, which is obtained by the following formula (3):
3.2.2 基于混沌的视频流加密系统的过程3.2.2 The process of chaos-based video stream encryption system
该加密系统的加密过程由下面六个步骤组成:The encryption process of this encryption system consists of the following six steps:
1)密钥流的产生。根据给定的初始密钥,即混沌系统的初始状态x0和控制参数μ,迭代计算Logistic混沌系统N次得到混沌状态xn,然后离散该混沌状态xn便得到xn的16位的离散化表示。一维离散时间Logistic混沌系统用(4)式表示:1) Generation of key stream. According to the given initial key, that is, the initial state x 0 of the chaotic system and the control parameter μ, iteratively calculate the Logistic chaotic system N times to obtain the chaotic state x n , and then discretize the chaotic state x n to obtain the 16-bit discretization of x n Expressed. One-dimensional discrete-time Logistic chaotic system is expressed by formula (4):
xk+1=μxk(1-xk) (4)x k+1 =μx k (1-x k ) (4)
式中,xk∈X,k=0,1,2,3L为离散时间序列,该系统将序列的当前的状态xk映射到下一个状态xk+1。如从初始状态x0开始,反复迭代,则得到序列{xk∈X,k=0,1,2,3L}。这一序列称为该离散混沌系统的一条轨迹。 其中0<μ≤4称为分支参数,xk+1∈(0,1)。当取3.5699456≤μ≤4时,计算该混沌系统得到的序列即为混沌序列。在本实例中,取μ=3.5699614 x0=0.45678912345;图5为计算出来的Logistic混沌序列。In the formula, x k ∈ X, k=0, 1, 2, 3L is a discrete time sequence, and the system maps the current state x k of the sequence to the next state x k+1 . For example, starting from the initial state x 0 and iterating repeatedly, the sequence {x k ∈X, k=0, 1, 2, 3L} is obtained. This sequence is called a trajectory of the discrete chaotic system. Among them, 0<μ≤4 is called branch parameter, x k+1 ∈(0,1). When 3.5699456≤μ≤4, the sequence obtained by calculating the chaotic system is the chaotic sequence. In this example, μ=3.5699614 x 0 =0.45678912345; Figure 5 shows the calculated Logistic chaotic sequence.
2)从视频序列中取出一帧,再经过视频处理后得到RGB格式的视频数据;2) Take out a frame from the video sequence, and then obtain the video data in RGB format after video processing;
3)进行DCT过程及量化过程以得到所有的帧内宏块;3) Perform DCT process and quantization process to obtain all intra-frame macroblocks;
4)对帧内所有的块的所有DCT系数进行流加密操作,具体的方程为上一节介绍的Ek(异或操作);4) Perform stream encryption operation on all DCT coefficients of all blocks in the frame, the specific equation is Ek (exclusive OR operation) introduced in the previous section;
5)对加密后的视频流进行可变长编码(VLC);5) Variable length coding (VLC) is carried out to the encrypted video stream;
如果处理的帧是视频序列中的最后一帧,则退出整个加密处理过程,否则转到步骤2继续进行。If the processed frame is the last frame in the video sequence, exit the entire encryption process, otherwise go to step 2 to continue.
由于该加密系统是对称加密系统,因此解密过程与其相对应,具体的结构图见图6。Since the encryption system is a symmetric encryption system, the decryption process corresponds to it. See Figure 6 for the specific structure diagram.
3.3基于Bakaer映射和超混沌的第二层次的视频加密方案3.3 Second-level video encryption scheme based on Bakaer map and hyperchaos
第二层的加密方案有两个独立的部分组成,即基于2-D Baker映射进行数据置乱和用超混沌系统对置乱后的数据进行数据混淆,在对应的密码系统结构中,编码后的H.263视频流被用作明文。第二层次的加密方案的设计模块见图7。The encryption scheme of the second layer consists of two independent parts, that is, data scrambling based on 2-D Baker mapping and data obfuscation of the scrambled data with a hyperchaotic system. In the corresponding cryptographic system structure, after encoding The H.263 video stream is used as plaintext. The design module of the encryption scheme of the second level is shown in Fig. 7 .
3.3.1 基于2-D Baker影射的H.263视频数据置乱3.3.1 H.263 video data scrambling based on 2-D Baker mapping
我们这里的密码系统利用2维离散Baker映射(2-D Baker映射)实现编码后H.263视频流的数据置乱。2-D Baker映射的计算方法如下:Our cryptographic system here uses 2-dimensional discrete Baker mapping (2-D Baker mapping) to implement data scrambling of the encoded H.263 video stream. The calculation method of 2-D Baker mapping is as follows:
二维Baker映射是一个混沌映射,可以在单位正方形中定义一个二维Baker映射。如图8所示,在水平方向将单位正方形分成k个矩形块[Fi-1,Fi)×[0,1),i=1,L,k,Fi=p1+Λ+pi,F0=0,其中pi为矩形的宽度,且有p1+L pk=1。对于第i个矩形块[Fi-1,Fi)×[0,1),Baker映射实际上是在宽度方向上拉伸了1/pi,而在长度方向上压缩了pi,最终将一个水平方向排列的矩形块列变成一个垂直方向上相互层叠的矩形块列。上述过程用数学式表达为:A two-dimensional Baker map is a chaotic map that can define a two-dimensional Baker map in the unit square. As shown in Figure 8, the unit square is divided into k rectangular blocks in the horizontal direction [F i-1 , F i )×[0, 1), i=1, L, k, F i =p 1 +Λ+p i , F 0 =0, where p i is the width of the rectangle, and p 1 +L p k =1. For the i-th rectangular block [F i-1 , F i )×[0, 1), the Baker map actually stretches 1/p i in the width direction, and compresses p i in the length direction, and finally Turn a column of rectangular blocks arranged horizontally into a column of rectangular blocks stacked on top of each other in the vertical direction. The above process is expressed mathematically as:
在计算机上实现时,需要将连续Baker映射离散化,即建立2-D Baker映射。具体的2-DBaker映射可按下述步骤进行:When implemented on a computer, it is necessary to discretize the continuous Baker map, that is, to establish a 2-D Baker map. The specific 2-DBaker mapping can be carried out according to the following steps:
1)将N×N正方形在水平方向上分为k个矩形块,每个矩形块有N×ni个像素,其中ni能整除N;1) Divide the N×N square into k rectangular blocks in the horizontal direction, each rectangular block has N×n i pixels, where n i can divide N evenly;
2)每个矩形块再分成ni个子块(如图9所示),因为每个大矩形块有N×ni个像素,所以在分成ni个子块后,每个子块正好有N个像素;2) Each rectangular block is further divided into n i sub-blocks (as shown in Figure 9), because each large rectangular block has N×n i pixels, so after being divided into n i sub-blocks, each sub-block has exactly N pixel;
3)在每个矩形块内,按从下到上,从左到右的顺序重新将像素排列成一行。设正方形为N×N,用代表离散化的一般Baker映射,3) In each rectangular block, rearrange the pixels into a row in order from bottom to top and from left to right. Let the square be N×N, use Represents the discretized general Baker map,
Ni=n1+Λ+ni,ni|N,i=1,A,k,且n1+Λ+nk=N (6)N i =n 1 +Λ+n i , n i |N, i=1, A, k, and n 1 +Λ+n k =N (6)
对于象素(r,s),For pixel (r, s),
其中Ni≤r<Ni+ni,0≤s<N。Where N i ≤r<N i +n i , 0≤s<N.
在迭代一定的次数后,2-D Baker映射便呈现出了混沌的特性。After a certain number of iterations, the 2-D Baker map exhibits chaotic characteristics.
从编码后的H.263视频流数据中取出N×N个字节数据用于二维离散Baker映射置乱迭代,置乱密钥kB由l,n1,n2,…,nk构成,l代表数据置乱的迭代次数,(ni,i=1,2,…,k)为密钥的分量值,N,l,ni取为大于0的整数,N和l越大,加密安全性越强,但是运算量也越大,处理速度就越慢,因此N和l的选取原则为在安全性和处理速度之间取得更好的平衡,(n1,n2,L nk)还要满足ni|N,i=1,L,k,且n1+L+nk=N;在本实例中,取N=32,l=9,k=4,{n1,n2,n3,n4}={4,8,16,4}。Take N×N bytes of data from the encoded H.263 video stream data for two-dimensional discrete Baker mapping scrambling iterations, and the scrambling key k B consists of l, n 1 , n 2 ,...,n k , l represents the number of iterations of data scrambling, (n i , i=1, 2, ..., k) is the component value of the key, N, l, n i are taken as integers greater than 0, the larger N and l are, The stronger the encryption security, but the greater the amount of calculation, the slower the processing speed, so the selection principle of N and l is to achieve a better balance between security and processing speed, (n 1 , n 2 , L n k ) also satisfy n i |N, i=1, L, k, and n 1 +L+n k =N; in this example, take N=32, l=9, k=4, {n 1 , n 2 , n 3 , n 4 }={4, 8, 16, 4}.
下面将给出数据置乱的具体步骤:The specific steps of data scrambling are given below:
1)从编码后的H.263视频流中取出N×N字节数据(在本实例中取N=32)。H.263视频流的前8个字节未改变,主要是因为密码分析者很容易猜出编码后视频流的头结构。1) Take out N×N byte data from the encoded H.263 video stream (N=32 in this example). The first 8 bytes of the H.263 video stream are unchanged, mainly because it is easy for a cryptanalyst to guess the header structure of the encoded video stream.
2)迭代选定的数据(b1,b2,L L bN×N)置乱操作l次。2) Iterate the selected data (b 1 , b 2 , L L b N×N ) scrambling operation l times.
3)将数据置乱后的数据(bp1,bp2,L L bpNN)存储到视频流的原来位置。3) Store the scrambled data (bp 1 , bp 2 , L L bp NN ) in the original position of the video stream.
3.3.2 基于超混沌方程的置乱后H.263视频数据的混淆3.3.2 Confusion of H.263 video data after scrambling based on hyperchaotic equation
数据混淆是改变基于2-D Baker映射的置乱操作的H.263视频数据的字符值,该环节采用基于超混沌的加密系统,在本实例中,超混沌系统序列的计算取如下模型:Data obfuscation is to change the character value of the H.263 video data based on the scrambling operation of 2-D Baker mapping. This link adopts the encryption system based on hyperchaos. In this example, the calculation of the hyperchaotic system sequence takes the following model:
超混沌系统由方程组(8)表示:The hyperchaotic system is represented by equations (8):
对该超混沌方程,只要给出初始状态X0=(x0,y0,z0,w0)可以采用数值计算的方法计算其时间序列{Xj=(xj,yj,zj,wj),j=1,…,NN},常采用经典的龙格库塔(Runge-Kutta)四阶算法进行计算。For this hyperchaotic equation, as long as the initial state X 0 = (x 0 , y 0 , z 0 , w 0 ) is given, the time series {X j = (x j , y j , z j , w j ), j=1,...,NN}, often using the classic Runge-Kutta (Runge-Kutta) fourth-order algorithm for calculation.
在本实例中,取模型参数a=35,b=3,c=12,d=7和e=0.58,密钥kc由方程(8)的初值状态X0=(x0,y0,z0,w0)构成,取为X0=(1.12345678912345,2.12345678912345,3.12345678912345,4.12345678912345)。此时系统运动轨道在两个以上的方向出现指数型扩散的混沌轨迹。从安全的角度看,因为超混沌系统比低维混沌系统具有更复杂的相空间,用它设计加密算法不易被破译。在上面的参数和密钥下,该系统生成的序列轨迹如图10所示。In this example, the model parameters a=35, b=3, c=12, d=7 and e=0.58 are taken, and the key k c is obtained from the initial value state X 0 =(x 0 , y 0 , z 0 , w 0 ), which is taken as X 0 = (1.12345678912345, 2.12345678912345, 3.12345678912345, 4.12345678912345). At this time, the trajectory of the system appears a chaotic trajectory of exponential diffusion in more than two directions. From a security point of view, because the hyperchaotic system has a more complex phase space than the low-dimensional chaotic system, the encryption algorithm designed with it is not easy to be deciphered. Under the above parameters and keys, the sequence trajectory generated by this system is shown in Figure 10.
得到{Xj,j=1,…,NN}后,可以取其中的某个分量,例如第一个分量构成的超混沌状态序列{xj,j=1,…,NN}用于加密。超混沌状态(x1,x2,L L XNN)将被离散化得到比特序列(c1,c1,L L cNN)以实验混淆操作,混淆操作(异或操作)具体方程(10)如下:After obtaining {X j , j=1,...,NN}, one of the components can be taken, for example, the hyperchaotic state sequence {x j ,j=1,...,NN} formed by the first component is used for encryption. The hyperchaotic state (x 1 , x 2 , L L X NN ) will be discretized to obtain a bit sequence (c 1 , c 1 , L L c NN ) to experiment with the confusion operation. The specific equation (10) of the confusion operation (XOR operation) is as follows:
混淆后的H.263视频流与未改变其它H.263视频数据一起用做视频网络传输的输入数据。The obfuscated H.263 video stream is used together with other unchanged H.263 video data as input data for video network transmission.
上述步骤就是基于混沌与超混沌的两层次视频加密方法的完整过程。The above steps are the complete process of the two-level video encryption method based on chaos and hyperchaos.
3.4 两层次视频加密方法效果3.4 The effect of the two-level video encryption method
图11中给出了视频数据海象视频的最后一帧的加密后和解密后的图像效果图,图11.(a)为原始图像,图11.(b)为经过第一层加密后的编码图像,图11.(c)为经过第二层加密后的编码图像,图11.(d)为解密后的图像。从图11.(c)可以看出,两层次视频加密算法具有很好的加密效果,因为从人眼的主观感觉来说,几乎没有可视信息出现在图像中。Figure 11 shows the encrypted and decrypted image renderings of the last frame of the video data walrus video, Figure 11.(a) is the original image, and Figure 11.(b) is the code after the first layer of encryption Image, Figure 11.(c) is the coded image after the second layer of encryption, and Figure 11.(d) is the decrypted image. From Figure 11.(c), it can be seen that the two-level video encryption algorithm has a good encryption effect, because from the subjective perception of the human eye, almost no visible information appears in the image.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100903086A CN102123026A (en) | 2011-04-12 | 2011-04-12 | Chaos and hyperchaos based two-level video streaming media encryption method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100903086A CN102123026A (en) | 2011-04-12 | 2011-04-12 | Chaos and hyperchaos based two-level video streaming media encryption method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102123026A true CN102123026A (en) | 2011-07-13 |
Family
ID=44251490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100903086A Pending CN102123026A (en) | 2011-04-12 | 2011-04-12 | Chaos and hyperchaos based two-level video streaming media encryption method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102123026A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103888637A (en) * | 2014-04-08 | 2014-06-25 | 广东工业大学 | Method for chaotic encryption of multi-path image digital information |
CN105430432A (en) * | 2015-11-11 | 2016-03-23 | 广东省电信规划设计院有限公司 | Video chaos encryption method and system |
CN106127669A (en) * | 2016-06-29 | 2016-11-16 | 广东工业大学 | Based on protecting the New chaotic image encryption method that area B aker maps |
CN106204671A (en) * | 2016-07-18 | 2016-12-07 | 浪潮集团有限公司 | Encryption method based on code grouping and replacement |
CN107181566A (en) * | 2017-05-10 | 2017-09-19 | 桂林电子科技大学 | A kind of chaos interleaving algorithm towards high-speed mobile communications |
CN107222749A (en) * | 2017-06-21 | 2017-09-29 | 同济大学 | A kind of chaos code constructing method for wireless video transmission |
CN107612676A (en) * | 2017-10-24 | 2018-01-19 | 天津工业大学 | Qi hyperchaos video encryption methods based on FPGA |
CN108898028A (en) * | 2018-07-06 | 2018-11-27 | 成都大象分形智能科技有限公司 | It is related to the neural network model encryption protection system and method for iteration and accidental enciphering |
CN108924594A (en) * | 2018-08-07 | 2018-11-30 | 东北大学 | A kind of video encryption method based on hyperchaotic system |
CN108920981A (en) * | 2018-07-06 | 2018-11-30 | 成都大象分形智能科技有限公司 | It is related to the neural network model encryption protection system and method for data iterative cryptographic |
CN109586894A (en) * | 2018-11-16 | 2019-04-05 | 重庆邮电大学 | The encryption method of data in OPC UA edge calculations is realized based on pseudo-random permutation |
CN109788299A (en) * | 2019-03-12 | 2019-05-21 | 广东工业大学 | A video transmission method, system, device and computer medium between mobile devices |
CN110381337A (en) * | 2019-09-04 | 2019-10-25 | 上海金桥信息股份有限公司 | A Video Encryption Method Based on Chaotic Cryptography Incompatible Video Coding |
WO2019214024A1 (en) * | 2018-05-11 | 2019-11-14 | 吉林大学珠海学院 | Encryption and decryption method based on binary modulo operation utilizing stream hash |
CN111093098A (en) * | 2019-12-30 | 2020-05-01 | 北京电子科技学院 | Logistic mapping-based chaotic encryption method |
CN111970519A (en) * | 2020-08-28 | 2020-11-20 | 中国人民解放军国防科技大学 | Airborne video return method |
CN113055545A (en) * | 2021-04-01 | 2021-06-29 | 江苏经贸职业技术学院 | Image encryption system based on two-dimensional index-cosine chaotic system |
CN113079393A (en) * | 2021-04-01 | 2021-07-06 | 江苏经贸职业技术学院 | Video stream encryption system based on two-dimensional exponential-sinusoidal hyperchaotic system |
CN113612596A (en) * | 2021-07-02 | 2021-11-05 | 重庆邮电大学 | Image self-decryption method based on hyperchaotic system |
CN113784139A (en) * | 2021-08-13 | 2021-12-10 | 同济大学 | Pseudo-analog channel coding method and device based on two-dimensional chaotic coding |
CN114024662A (en) * | 2021-12-21 | 2022-02-08 | 渔翁信息技术股份有限公司 | Random number generator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1581957A (en) * | 2003-07-31 | 2005-02-16 | 索尼英国有限公司 | Access control for digital video stream data |
CN101110944A (en) * | 2007-08-31 | 2008-01-23 | 湖北科创高新网络视频股份有限公司 | Method and apparatus for encrypting video data |
-
2011
- 2011-04-12 CN CN2011100903086A patent/CN102123026A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1581957A (en) * | 2003-07-31 | 2005-02-16 | 索尼英国有限公司 | Access control for digital video stream data |
CN101110944A (en) * | 2007-08-31 | 2008-01-23 | 湖北科创高新网络视频股份有限公司 | Method and apparatus for encrypting video data |
Non-Patent Citations (2)
Title |
---|
《中国图像图形学报》 20060930 ZHANG Meng等 Chaotic Video Encryption Algorithm Based on Baker Map 1327-1333 1 第11卷, 第9期 * |
ZHANG MENG等: "Chaotic Video Encryption Algorithm Based on Baker Map", 《中国图像图形学报》 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103888637B (en) * | 2014-04-08 | 2017-06-13 | 广东工业大学 | The method of multiway images digital information chaos encryption |
CN103888637A (en) * | 2014-04-08 | 2014-06-25 | 广东工业大学 | Method for chaotic encryption of multi-path image digital information |
CN105430432A (en) * | 2015-11-11 | 2016-03-23 | 广东省电信规划设计院有限公司 | Video chaos encryption method and system |
CN105430432B (en) * | 2015-11-11 | 2018-06-05 | 广东省电信规划设计院有限公司 | video chaotic encryption method and system |
CN106127669A (en) * | 2016-06-29 | 2016-11-16 | 广东工业大学 | Based on protecting the New chaotic image encryption method that area B aker maps |
CN106204671A (en) * | 2016-07-18 | 2016-12-07 | 浪潮集团有限公司 | Encryption method based on code grouping and replacement |
CN107181566A (en) * | 2017-05-10 | 2017-09-19 | 桂林电子科技大学 | A kind of chaos interleaving algorithm towards high-speed mobile communications |
CN107222749B (en) * | 2017-06-21 | 2019-10-18 | 同济大学 | A Chaotic Code Construction Method for Wireless Video Transmission |
CN107222749A (en) * | 2017-06-21 | 2017-09-29 | 同济大学 | A kind of chaos code constructing method for wireless video transmission |
CN107612676A (en) * | 2017-10-24 | 2018-01-19 | 天津工业大学 | Qi hyperchaos video encryption methods based on FPGA |
WO2019214024A1 (en) * | 2018-05-11 | 2019-11-14 | 吉林大学珠海学院 | Encryption and decryption method based on binary modulo operation utilizing stream hash |
US10951399B2 (en) | 2018-05-11 | 2021-03-16 | Zhuhai College Of Jilin University | Binary stream hash modulus encryption and decryption method |
CN108920981B (en) * | 2018-07-06 | 2020-06-30 | 成都大象分形智能科技有限公司 | Neural network model encryption protection system and method related to data iterative encryption |
CN108898028A (en) * | 2018-07-06 | 2018-11-27 | 成都大象分形智能科技有限公司 | It is related to the neural network model encryption protection system and method for iteration and accidental enciphering |
CN108920981A (en) * | 2018-07-06 | 2018-11-30 | 成都大象分形智能科技有限公司 | It is related to the neural network model encryption protection system and method for data iterative cryptographic |
CN108924594A (en) * | 2018-08-07 | 2018-11-30 | 东北大学 | A kind of video encryption method based on hyperchaotic system |
CN109586894A (en) * | 2018-11-16 | 2019-04-05 | 重庆邮电大学 | The encryption method of data in OPC UA edge calculations is realized based on pseudo-random permutation |
CN109788299A (en) * | 2019-03-12 | 2019-05-21 | 广东工业大学 | A video transmission method, system, device and computer medium between mobile devices |
CN110381337A (en) * | 2019-09-04 | 2019-10-25 | 上海金桥信息股份有限公司 | A Video Encryption Method Based on Chaotic Cryptography Incompatible Video Coding |
CN110381337B (en) * | 2019-09-04 | 2021-09-24 | 上海金桥信息股份有限公司 | A Video Encryption Method Based on Chaos Cipher Theory for Incompatible Video Coding |
CN111093098A (en) * | 2019-12-30 | 2020-05-01 | 北京电子科技学院 | Logistic mapping-based chaotic encryption method |
CN111970519B (en) * | 2020-08-28 | 2021-06-15 | 中国人民解放军国防科技大学 | Airborne video return method |
CN111970519A (en) * | 2020-08-28 | 2020-11-20 | 中国人民解放军国防科技大学 | Airborne video return method |
CN113055545A (en) * | 2021-04-01 | 2021-06-29 | 江苏经贸职业技术学院 | Image encryption system based on two-dimensional index-cosine chaotic system |
CN113079393A (en) * | 2021-04-01 | 2021-07-06 | 江苏经贸职业技术学院 | Video stream encryption system based on two-dimensional exponential-sinusoidal hyperchaotic system |
CN113612596A (en) * | 2021-07-02 | 2021-11-05 | 重庆邮电大学 | Image self-decryption method based on hyperchaotic system |
CN113784139A (en) * | 2021-08-13 | 2021-12-10 | 同济大学 | Pseudo-analog channel coding method and device based on two-dimensional chaotic coding |
CN113784139B (en) * | 2021-08-13 | 2023-08-29 | 同济大学 | A pseudo-analog channel coding method and device based on two-dimensional chaotic coding |
CN114024662A (en) * | 2021-12-21 | 2022-02-08 | 渔翁信息技术股份有限公司 | Random number generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102123026A (en) | Chaos and hyperchaos based two-level video streaming media encryption method | |
Talhaoui et al. | Fast image encryption algorithm with high security level using the Bülban chaotic map | |
Liu et al. | 2D Logistic-Adjusted-Chebyshev map for visual color image encryption | |
Krikor et al. | Image encryption using DCT and stream cipher | |
Zhang et al. | Image compression and encryption scheme based on compressive sensing and Fourier transform | |
Tong et al. | A new algorithm of the combination of image compression and encryption technology based on cross chaotic map | |
Tresor et al. | A selective image encryption scheme based on 2d DWT, Henon map and 4d Qi hyper-chaos | |
CN107078901B (en) | Encoder, decoder and the method encrypted using partial data | |
Deshmukh et al. | Modified AES based algorithm for MPEG video encryption | |
Li et al. | A novel 1D chaotic system for image encryption, authentication and compression in cloud | |
CN114157772B (en) | Digital image encryption method based on space-time chaotic system and half tensor product compressed sensing | |
Wen et al. | Security analysis of a color image encryption based on bit-level and chaotic map | |
Soleymani et al. | A survey on principal aspects of secure image transmission | |
Wang et al. | Low-cost and confidentiality-preserving multi-image compressed acquisition and separate reconstruction for internet of multimedia things | |
Dhingra et al. | A novel Sine–Tangent–Sine chaotic map and dynamic S-box-based video encryption scheme | |
CN107146192A (en) | Image security protection method and device | |
Kumari et al. | A novel Cosine-Cosine chaotic map-based video encryption scheme | |
Hussain | Medical image encryption using multi chaotic maps | |
Velliangiri | An enhanced multimedia video surveillance security using wavelet encryption framework | |
Zhang et al. | Computation outsourcing meets lossy channel: Secure sparse robustness decoding service in multi-clouds | |
Parekh et al. | Multilayer symmetric and asymmetric technique for audiovisual cryptography | |
Bezerra et al. | Fast chaotic image encryption with simultaneous permutation and diffusion for IoT applications | |
Li et al. | A new image encryption algorithm based on modified optically injected semiconductor laser chaotic system | |
Donev et al. | A novel secure solution of using mixed reality in data transmission for bowel and jaw surgical telepresence: enhanced rivest cipher RC6 block cipher | |
Velliangiri | Improved security in multimedia video surveillance using 2D discrete wavelet transforms and encryption framework |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110713 |