CN102119119B - 纳米复合材料 - Google Patents

纳米复合材料 Download PDF

Info

Publication number
CN102119119B
CN102119119B CN200880130072.0A CN200880130072A CN102119119B CN 102119119 B CN102119119 B CN 102119119B CN 200880130072 A CN200880130072 A CN 200880130072A CN 102119119 B CN102119119 B CN 102119119B
Authority
CN
China
Prior art keywords
particle
molecule
composite material
nano
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880130072.0A
Other languages
English (en)
Other versions
CN102119119A (zh
Inventor
叶夫根尼·彼得罗维奇·格列比翁尼科夫
亚历山大·格奥尔基耶维奇·杰维亚
格里戈里·叶夫格尼维奇·阿达莫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102119119A publication Critical patent/CN102119119A/zh
Application granted granted Critical
Publication of CN102119119B publication Critical patent/CN102119119B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

本发明涉及纳米技术,并且涉及具有有效可控光学性能的纳米复合材料的制备,所述材料可用于非线性光学、信息工程、光学存储介质设计等。本发明的纳米复合材料包含:纳米颗粒,在暴露于外部光作用时改变立体构型的中间成键分子-颗粒,和接近纳米颗粒时表现出光学性能的可成键的分子-颗粒,其中所述纳米颗粒、中间成键分子和可成键的分子串联连接形成三维簇状结构。此外,在暴露于外部光作用时改变立体构型的中间成键分子-颗粒可含有提高其成键性能的另外的内含物即官能取代基。

Description

纳米复合材料
相关技术
本发明涉及纳米技术,并且涉及具有有效可控光学性能的纳米复合材料的制备,该材料可用于非线性光学、信息技术、光学存储介质设计等。
现有技术
基于纳米颗粒与成键组分的组合的纳米复合材料在现有技术中是已知的(RU 2224710 C2,B82B3/00,2004;RU2233791 C2,B82B3/00,2004;RU2288167C2,B82B1/00,2004)。然而,已知的纳米复合材料成分的定性组成不含有可改变光学性能的颗粒;这不能控制它们的光学性能例如发光,并且限制纳米复合材料的功能和制造加工可能性。
发明内容
本发明涉及制备具有增加的功能可能性、具有在外部作用下,特别是光辐射下有效改变其光学性能的能力的纳米复合材料。
所提出的目标的解决方案在于:在根据本发明的基于纳米颗粒的纳米复合材料中,纳米复合材料的结构另外含有在暴露于外部光时改变立体构型的中间成键分子-颗粒,和接近纳米颗粒时表现出光学性能的可成键的分子-颗粒,其中所述纳米颗粒、中间成键分子和可成键的分子串联连接,形成三维簇状结构。
此外,纳米复合材料的在暴露于外部光时改变立体构型的中间成键分子-颗粒可含有提高其成成键性能的另外内含物即官能取代基。
本发明的技术效果在于具有增加功能可能性的复合材料的制备,所述增加功能可能性即为在暴露于外部光时有效改变其光学性能的能力(以及相应地,在于具体目的即纳米复合材料的技术手段储备的增加),该技术效果并不是由已知技术得到的,而是由纳米复合材料中存在中间成键分子-颗粒所决定,以及由接近纳米颗粒时表现出光学性能的可成键的分子-颗粒所决定,在暴露于一定波长的光时所述中间成键分子-颗粒的立体构型、特别是长度被改变,相应地纳米颗粒之间的距离被改变,接近该距离时具有局部强电磁场。同时,分布发生改变,即具有光学性能的可成键的分子-颗粒的电磁场发生畸变,这导致后者的受激原子和分子的寿命改变,影响决定光的吸收和自发辐射过程的电子跃迁,相应地导致所述纳米复合材料总体光谱特性和光学性能的可逆改变。
本发明的实施方案
实施本发明的方案中的纳米复合材料的纳米颗粒,可以使用球状、椭圆状、针状、棒状、锥状或者获得可成键的分子性能的最大变化效果的其它形状的金属(例如金)纳米颗粒、半导体纳米颗粒或介电纳米颗粒。
可以使用具有在接近纳米颗粒时有效地表现出/改变发光性能、光致变色性能、极化性能或其它光学性能的其它光学性能的颗粒(硒化镉)作为可成键的分子。
在暴露于一定波长的外部光时立体构型发生改变(例如异构化)的颗粒(光致转变),特别是具有碳-碳、碳-氮或氮-氮类型双键的有机分子,以及能够顺-反异构化的其它分子(例如偶氮染料分子),或者在暴露于电磁场时其立体构型发生改变的颗粒(电致变色转变),可以用作成键分子,其通过形成化学键提供纳米结构的稳定性。
提高中间成键分子的成键性能的官能取代基例如氨基(-NH2)、醛基(-CHO)、巯基(-SH)、羧基(-COOH)或羟基(-OH)或者含有这些基团的其它基团可以用作另外的内含物。
以如下方式获得纳米复合材料。
将成键分子-含有两个巯基的偶氮染料即4,4’-二巯基甲基偶氮苯的颗粒以1∶12的比率引入到例如直径12-15nm的胶体金纳米颗粒的水悬浮体中。所述成键分子在暴露于365nm波长的辐射时由于从反式状态转变为顺式状态而其立体构型发生改变,并且在暴露于435nm波长的可见光时发生可逆转变,其中偶氮染料颗粒分子的长度从9.5nm变为5.5nm并且变回来。在混合后,在金纳米颗粒的表面上形成成键分子-偶氮染料颗粒的配体包膜。向如此获得的体系以相对于金纳米颗粒同样为1∶12的比例加入可成键的分子-硒化镉(CdSe)的胶体颗粒的水悬浮体,金纳米颗粒对硒化镉的光学性能施加有效影响(在硒化镉CdSe颗粒和金纳米颗粒之间的距离为至多10nm时,CdSe颗粒的光致发光的最大明暗强度增强高达5倍,而在约2-5nm的短距离时,由于从硒化镉CdSe光激发量子颗粒到金属颗粒即金纳米颗粒的共振能量转移而抑制光致发光)。在该过程中,可成键的分子-硒化镉的颗粒沉积在金纳米颗粒配体包膜的自由巯基上,形成大分子,这些大分子形成纳米复合材料的三维簇状结构。将制得的纳米复合材料悬浮体置于镜面玻璃支承体上并进行干燥直到形成纳米复合物膜。
在控制光学性能的过程中,用波长为365nm的辐射辐照所获得的纳米复合材料几秒钟,这使所有成键分子-偶氮染料颗粒转变为顺式状态,在该状体下,金纳米颗粒和可成键的分子-硒化镉(CdSe)颗粒之间的距离为9.5nm。在用530nm波长的光激发(辐照)该纳米复合材料时,产生波长为约670nm的强烈红色发光,该红色发光对应于可成键的分子-硒化镉颗粒的直接带间跃迁。为了改变光学性能,用峰值辐射接近435nm的光将能够强烈发光的纳米复合材料辐照几秒钟;这导致可成键的分子-硒化镉颗粒的异构化(因此导致硒化镉颗粒的分子转变为反式状态),并且导致金纳米颗粒和可成键的分子-硒化镉颗粒之间的距离降低到5.5nm。此时,随后用波长为530nm的光激发该纳米复合材料产生发光,但是其强度降低到几十分之一。当用365nm波长的光进行重复辐照,该纳米复合材料在暴露于波长为530nm的激发辐射时发强烈红色光的能力得到完全恢复。
由于以下面方式有效和逐点控制光学性能的可能性,本发明的纳米复合材料结构可以用作光学记录和信息读出的介质。
在用波长为435nm的光初步均匀地辐照该纳米复合材料时,这使可成键的分子-偶氮染料颗粒转变为反式状态。然后透过例如具有0.3mm直径开孔的掩模,用波长为365nm的聚焦辐射以逐点闪光暴光来辐照特征在于发光强度低的该纳米复合材料十分之一秒,这仅在对应于掩模中开孔分布且受到辐照的位置使成键分子-偶氮染料颗粒转变为顺式状态。用530nm波长的光均匀激发该纳米复合材料,出现精确复制所述掩模的点状图案发光。这种复制掩模的点状图案发光在黑暗中保持并无限的时间,并且在任何时候在受到530nm波长激发时可得以再现,或者在随后用365nm或435nm波长的激发均匀闪光暴光时得以擦除。

Claims (2)

1.一种含有纳米颗粒的纳米复合材料,所述纳米复合材料还包含
在暴露于外部光时改变立体构型的中间成键分子-颗粒,所述中间成键分子-颗粒为4,4’-二巯基甲基偶氮苯的颗粒,和
当接近纳米颗粒时表现出光学性能的可成键的分子-颗粒,所述可成键的分子-颗粒为CdSe,
其中所述纳米颗粒、所述中间成键分子-颗粒和所述可成键的分子-颗粒串联连接形成三维簇状结构。
2.根据权利要求1的纳米复合材料,其中所述在暴露于外部光时改变立体构型的中间成键分子-颗粒含有提高其成键性能的官能取代基。
CN200880130072.0A 2008-06-27 2008-06-27 纳米复合材料 Expired - Fee Related CN102119119B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2008/000398 WO2009157794A1 (ru) 2008-06-27 2008-06-27 Нанокомпозиционный материал

Publications (2)

Publication Number Publication Date
CN102119119A CN102119119A (zh) 2011-07-06
CN102119119B true CN102119119B (zh) 2015-06-17

Family

ID=41444722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880130072.0A Expired - Fee Related CN102119119B (zh) 2008-06-27 2008-06-27 纳米复合材料

Country Status (6)

Country Link
US (1) US9302909B2 (zh)
EP (1) EP2305596B1 (zh)
JP (1) JP5604427B2 (zh)
KR (1) KR101342316B1 (zh)
CN (1) CN102119119B (zh)
WO (1) WO2009157794A1 (zh)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1161490A4 (en) * 1999-02-05 2003-04-09 Univ Maryland NANOPARTICLES IN LIEU OF LUMINESCENCE PROBES
US20020168756A1 (en) * 2001-03-23 2002-11-14 Fuji Photo Film Co., Ltd. Particle size variable reactor
FR2827854B1 (fr) 2001-07-25 2003-09-19 Saint Gobain Rech Substrat revetu d'un film composite, procede de fabrication et applications
DE10153829A1 (de) * 2001-11-05 2003-05-28 Bayer Ag Assay basierend auf dotierten Nanoteilchen
RU2233791C2 (ru) 2002-03-26 2004-08-10 Закрытое акционерное общество "ТЕТРА" Способ получения наночастиц и изготовления материалов и устройств, содержащих наночастицы
RU2224710C1 (ru) 2002-06-27 2004-02-27 МГУ им. М.В. Ломоносова (Химический факультет) Способ получения пленочных полимерных нанокомпозиций
US7273904B2 (en) * 2002-10-03 2007-09-25 The Board Of Trustees Of The University Of Arkansas Nanocrystals in ligand boxes exhibiting enhanced chemical, photochemical, and thermal stability, and methods of making the same
KR100583364B1 (ko) * 2002-12-27 2006-05-25 삼성전자주식회사 디티올 화합물을 이용한 양자점 박막 제조방법
FR2862955B1 (fr) * 2003-12-02 2006-03-10 Commissariat Energie Atomique Nanocristaux inorganiques a couche de revetement organique, leur procede de preparation, et materiaux constitues par ceux-ci.
WO2006037081A2 (en) * 2004-09-28 2006-04-06 The Regents Of The University Of California Nanoparticle radiosensitizers
DE602006015539D1 (de) * 2006-06-14 2010-08-26 Nm Tech Ltd Nanomaterials And Nanomaterial-überzüge für osteointegrierte biomedizinische prothesen
USRE43944E1 (en) * 2006-10-17 2013-01-29 National University Of Singapore Upconversion fluorescent nano-structured material and uses thereof
RU2332352C1 (ru) * 2007-03-15 2008-08-27 Евгений Петрович Гребенников Нанокомпозиционный материал

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gold Nanoparticle Networks with Photoresponsive Interparticle Spacings;Deepti S. Sidhaye et al.;《Langmuir》;20050715;第21卷;第7979-7984页 *
Tunable Smart Surface of Gold Nanoparticles Achieved by Light-Controlled Molecular Recognition Effection;Chunhua Luo et al.;《Macromol. Rapid Commun.》;20071106;第29卷;第149-154页 *

Also Published As

Publication number Publication date
WO2009157794A1 (ru) 2009-12-30
US9302909B2 (en) 2016-04-05
US20110166333A1 (en) 2011-07-07
JP5604427B2 (ja) 2014-10-08
KR101342316B1 (ko) 2013-12-16
JP2011527063A (ja) 2011-10-20
EP2305596A1 (en) 2011-04-06
KR20110085964A (ko) 2011-07-27
EP2305596B1 (en) 2015-05-27
CN102119119A (zh) 2011-07-06
EP2305596A4 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US7976726B2 (en) Prevention of quantum dot quenching on metal surfaces
Gupta et al. Up-conversion hybrid nanomaterials for light-and heat-driven applications
Maenosono et al. Optical memory media based on excitation-time dependent luminescence from a thin film of semiconductor nanocrystals
JP2007127627A (ja) 金属被覆誘電体ナノ微粒子による放射の改善方法
Yadav et al. Tunable random lasing behavior in plasmonic nanostructures
Fukushima et al. Fabrication of gold nanoparticles and their influence on optical properties of dye-doped sol-gel films
Rakshit et al. Resonance energy transfer from β-cyclodextrin-capped ZnO: MgO nanocrystals to included Nile Red guest molecules in aqueous media
Lamri et al. Photochromic control of a plasmon–quantum dots coupled system
Chakraborty et al. Temperature and concentration dependence of J-aggregate of a cyanine dye in a Laponite film fabricated by Langmuir–Blodgett technique
CN102119119B (zh) 纳米复合材料
CN109696428A (zh) 一种银纳米颗粒聚集增强异硫氰酸罗丹明b荧光强度的方法
Kar et al. In situ modulation of gold nanorod's surface charge drives the growth of end-to-end assemblies from dimers to large networks that enhance single-molecule fluorescence by 10000-fold
Yang et al. Au/SiO 2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence
Wen et al. Two-dimensional closely-packed gold nanoislands: A platform for optical data storage and carbon dot generation
Tangod Quenching of fluorescent ADS680HO molecule with eco-friendly synthesized silver nanoparticles
RU2332697C1 (ru) Способ управления оптическими свойствами нанокомпозиционных материалов
Qi et al. Plasmon-enhanced energy transfer between quantum dots and tunable film-coupled nanoparticles
Shelkovnikov et al. Nanometer films of polymethine dyes in optical memory and nonlinear optics
Yasukuni et al. Size-dependent optical properties of dendronized perylenediimide nanoparticle prepared by laser ablation in water
Dong et al. On-line investigation of laser-induced aggregation and photoactivation of CdTe quantum dots by fluorescence correlation spectroscopy
Chang et al. Luminescent Nanomaterials (I)
RU2332352C1 (ru) Нанокомпозиционный материал
Ding et al. Highly efficient one-photon upconversion with cooperative enhancements of photon and phonon absorption in chlorophyll plexciton hybrids
Yoshioka et al. Single-Photon Emission from Organic Dye Molecules Adsorbed on a Quantum Dot via Energy Transfer
KR100837577B1 (ko) 반복 기록 및 삭제가 가능한 형광 메모리용 필름, 및 그필름을 이용한 비-손실 기록 판독 및 재생 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Free format text: FORMER OWNER: GEORGIEVICH DEVYATOV ALEXANDR EVGENEVICH ADAMOV GRIGORY

Effective date: 20150519

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150519

Address after: Russian Federation Moscow

Applicant after: Grebennikov Evgeny Petrovich

Address before: Russian Federation Moscow

Applicant before: Grebennikov Evgeny Petrovich

Applicant before: Devyatov Alexandr Georgievich

Applicant before: Adamov Grigory Evgenevich

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20210627

CF01 Termination of patent right due to non-payment of annual fee