CN102116855B - 超导磁体无源匀场方法 - Google Patents

超导磁体无源匀场方法 Download PDF

Info

Publication number
CN102116855B
CN102116855B CN 201010617474 CN201010617474A CN102116855B CN 102116855 B CN102116855 B CN 102116855B CN 201010617474 CN201010617474 CN 201010617474 CN 201010617474 A CN201010617474 A CN 201010617474A CN 102116855 B CN102116855 B CN 102116855B
Authority
CN
China
Prior art keywords
shimming
shim
magnetic field
superconducting magnet
small pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010617474
Other languages
English (en)
Other versions
CN102116855A (zh
Inventor
王赞明
汉斯范奥特
郑国伟
冯津
邹学明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALLTECH MEDICAL SYSTEMS LLC
Original Assignee
ALLTECH MEDICAL SYSTEMS LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALLTECH MEDICAL SYSTEMS LLC filed Critical ALLTECH MEDICAL SYSTEMS LLC
Priority to CN 201010617474 priority Critical patent/CN102116855B/zh
Publication of CN102116855A publication Critical patent/CN102116855A/zh
Application granted granted Critical
Publication of CN102116855B publication Critical patent/CN102116855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种匀场方法,尤其是一种运用于核磁共振设备中的超导磁体无源匀场方法。本发明提供了一种快速达到匀强磁场的超导磁体无源匀场方法,在匀场时,首先用部分匀场体盘将磁场匀到70%-95%磁场要求的均匀度,因此在第一次匀场时匀场体盘以及载入了绝大多数的匀场小片,为保证安全放入,将磁体磁场降至一安全场值,匀场体盘放入后,再升至满场,在后续第匀场时,仅需在未使用的匀场体盘中加入少量的匀场小片,这样匀场体盘所受到的磁场力就比较小,从而可以在不降场的情况下操作,这就不需要反复升降场,从而能够快速的达到匀强磁场。

Description

超导磁体无源匀场方法
技术领域
本发明涉及一种超导磁体匀场方法,尤其是一种运用于核磁共振设备中的超导磁体无源匀场方法。
背景技术
磁共振扫描成像技术不仅要求较高的恒定磁场,还要求恒定磁场有较高的均匀性。所谓的磁场均匀性是指在一定的容积范围内磁场强度的均一性,也就是单位面积内通过的磁力线数目的一致性,磁场的均匀性采用磁场均匀度来衡量。
磁共振成像技术对主磁场均匀度的要求很高,原因在于:高均匀度的场强有助于提高图像信噪比;场强均匀是保证磁共振成像信号空间定位准确性的前提;场强均匀可减少伪影,特别是磁化率伪影;高度均匀的磁场有利于进行大视野的扫描,尤其肩关节等偏中心部位的磁共振成像检查;只有高度均匀的磁场才能充分利用脂肪饱和技术进行脂肪抑制扫描等等。
然而受磁体设计和制造工艺限制,主磁体所要求的空间内磁场无法到要求的均匀度。为了提高磁场均匀度,需要对磁共振系统进行进一步的匀场。匀场是指调节磁场中某区间内磁场分布均匀性的操作过程。磁场匀场是一个相当困难的课题,需要调试人员花大量的时间和精力。
磁共振系统的匀场方法已知有两种:无源匀场和有源匀场。有源匀场,需要安装若干个小线圈组成的匀场线圈阵列,通过适当调整匀场线圈阵列中各线圈的电流强度,使其周围的局部磁场发生变化来调节主磁场以提高磁场整体均匀性。在有源匀场过程中,匀场电源的质量对匀场效果起着至关重要的作用。匀场电源波动时,不仅匀场目的达不到,而且主磁场的稳定性会变差。
无源匀场就是在磁体的匀场孔内壁上添加专用的匀场小片以使实际磁场变形,使其更接近所设计的磁场,达到所需的磁场均匀度,此种匀场技术无需电源,称为无源匀场。无源匀场时,首先升场从而获得磁体磁场的参数与不均匀性,此时再计算出每个磁体的匀场孔内所需加入的匀场小片以达到匀强磁场,要求的磁场均匀度,匀场小片均放入匀场体盘(shimtray)中,然后匀场体盘插入到相应的匀场孔中,因此,实际上也是在计算匀场体盘中加入的匀场小片量。在计算完毕后将匀场体盘内加入相应数量的匀场小片,然后使磁场降场,由于此时没有或减少了磁力作用,匀场体盘可以很容易放入相应的匀场孔中。由于理论计算不可能一次完全达到实际需要,因此还需升场测得加入匀场体盘后的不均匀性及误差,然后再反复计算和微量调节少数匀场体盘中的匀场小片量,这个过程就需要将需调节的匀场体盘拔出然后插入,倘若不降低磁体磁场,则匀场体盘的拔出插入将非常困难,容易发生安全事故,几乎难以操作;而倘若磁体降场,则由于匀场体盘的运动本身对磁体的磁场有一定的影响,这就需要反复的降场,升场,计算,微调,才能最终达到磁体的匀强磁场的效果,这种方法由于需要反复启动超导磁体,因此要消耗大量液氦,浪费能源和时间,人员及磁体的安全性也成问题。
发明内容
本发明所要解决的技术问题是提供一种快速达到匀强磁场的超导磁体无源匀场方法。
本发明解决其技术问题所采用的超导磁体无源匀场方法,包括以下步骤:
A、运行超导磁体使其升场,测得超导磁体的磁场均匀度;
B、保留至少一条匀场体盘不加入匀场小片;计算出其它匀场体盘所需加入的匀场小片量,可以使超导磁体达到70%-95%磁场均匀度范围,并将所需的匀场小片加入到相应的匀场体盘中;
C、使超导磁体降场到安全的值,将装好匀场小片的匀场体盘放入超导磁体上相应的匀场孔中;
D、运行超导磁体使其升场,测得实际的超导磁体的磁场均匀度;
E、计算出剩余空的匀场体盘加入的匀场小片量,以使超导磁体达到100%的磁场均匀度范围;
F、将剩余的匀场体盘放入到在场磁体相应的匀场孔中,检查是否达到所需的磁场均匀度,若满足则结束匀场,否侧需反复调节剩余匀场体盘中的匀场小片量,直至超导磁体达到100%磁场均匀度。
具体的,在B步骤中,保留一半的匀场体盘不加入匀场小片;计算出其它匀场体盘间隔放入周向布置的匀场孔时所需加入的匀场小片量。
具体的,在B步骤中,保留1/3的匀场体盘不加入匀场小片;计算出其它匀场体盘每两条空一格放入周向布置的匀场孔时所需加入的匀场小片量。
具体的,在B步骤中,保留1/4的匀场体盘不加入匀场小片;计算出其它匀场体盘每三条空一格放入周向布置的匀场孔时所需加入的匀场小片量。
本发明的有益效果是:在匀场时,首先仅将磁场匀到70%-95%磁场均匀度,因此在第一次匀场时匀场体盘以及载入了绝大多数的匀场小片,因此在第二次匀场时,仅需在匀场体盘中加入少量的匀场小片,这样匀场体盘所受到的磁场力就比较小,从而可以在不降场的情况下操作,这就不需要反复升降场,从而能够快速的达到匀强磁场。在第一次匀场时加入的匀场体盘和其加入的位置可以根据具体的超导磁体而定,从而满足不同型号超导磁体的需要,这就使得本方法可以运用到各种超导磁体的匀场操作中。
附图说明
图1是超导磁体的示意图;
图2是匀场体盘的示意图;
图中零部件、部位及编号:超导磁体1、匀场孔2、匀场体盘3。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,本发明包括以下步骤:
A、运行超导磁体1使其升场,即将超导磁体1进入工作状态,此时测得超导磁体1的磁场均匀度,磁场均匀度既包括强度的均匀度,也包括空间场的均匀度,因此就可以得知各处场强的大小;
B、保留至少一条匀场体盘3不加入匀场小片,也就是这些匀场体盘3所对应的匀场孔2暂时不加入匀场小片或用少量;计算出其它匀场体盘3所需加入的匀场小片量,以使超导磁体1达到60%-95%磁场均匀度,并将所需的匀场小片加入到相应的匀场体盘3中,这种计算方法即采用原有的计算方法,将超导磁体1的磁场均匀度调节到70%-95%时,这些匀场体盘3中所需加入的匀场小片量;
C、使超导磁体1降场,将装好匀场小片的匀场体盘3放入超导磁体1上相应的匀场孔2中,此时超导磁体1的磁场均匀度基本达到了70%-95%;
D、运行超导磁体1使其升场,测得实际的超导磁体1的初匀后的磁场不均匀度;
E、、计算出剩余空的匀场体盘3加入的匀场小片量,以使超导磁体1达到100%的磁场均匀度,此处100%的磁场均匀度为所需的磁场均匀度,而非绝对的匀强磁场,此步骤的计算方法与B步骤相同。
F、将剩余的匀场体盘3放入到在场的磁体相应的匀场孔2中,测得实际的超导磁体1的磁场均匀度,若没有达到所需的均匀度,反复调节这些剩余匀场体盘3中的匀场小片量,直至超导磁体1达到100%磁场均匀度范围
从上述方法中可以看出,仅有F步骤需要在升场的时候操作匀场体盘3插入与取出,由于在B步骤中,已经有大部分的匀场小片放入到匀场孔2中,因此,F步骤中的匀场体盘3仅需要加入较少的匀场小片进行调节,因此在操作过程中,匀场体盘3受到的磁力较小,普通操作者即可顺利的完成,而且不需要升场和降场,从而节约了能源与时间,提高了匀场精度。
实施例一
以设置有26个匀场孔2超导磁体为例,其配有26条匀场提盘3,采用以下步骤进行匀场:
A、运行超导磁体1使其升场,测得超导磁体1的磁场均匀度;
B、保留13条匀场体盘3暂时不加入匀场小片;其它13条匀场体盘3将间隔装入相应的匀场孔2,计算达到80%磁场均匀度时分别所需在这13条匀场体盘3中加入的匀场小片量,然后将所需的匀场小片量分别加入到相应的匀场体盘3中;
C、使超导磁体1降场,将装好匀场小片的匀场体盘3间隔放入超导磁体1上相应的匀场孔2中;
D、运行超导磁体1使其升场,测得实际的超导磁体1的磁场均匀度;
E、计算出剩余空的匀场体盘3加入的匀场小片量,以使超导磁体1达到100%的磁场均匀度;
F、将剩余的匀场体盘3放入到相应的匀场孔2中,并在场反复调节剩余匀场体盘3中的匀场小片量,直至超导磁体1达到100%磁场均匀度。
本例中在第一次降场时已经间隔加入了一半的匀场体盘3,因为此时调节的磁场均匀度较大,所以需装入较多的匀场小片。在F步骤匀场时,仅需调节20%左右的磁场均匀度,因此匀场体盘3中只装入较少的匀场小片,在升场的条件下,匀场体盘3也不会受到较大的磁力,因此可以方便的操作。当然,本例中还可以在B步骤中,计算达到70%磁场均匀度时分别所需在这13条匀场体盘3中加入的匀场小片量。
实施例二
以设置有33个匀场孔2超导磁体为例,其配有33条匀场提盘3,其方法与实施例一在B步骤不同,本例的B步骤为:保留11条匀场体盘3暂时不加入匀场小片;其它22条匀场体盘3将按下列方式安装:装入两个连续的匀场孔,然后再空一个匀场孔,再连续装入两个匀场孔,以此类推直至22条匀场体盘3装完;计算达到80%磁场均匀度时分别所需在这22条匀场体盘3中分别加入的匀场小片量,然后将所需的匀场小片量分别加入到相应的匀场体盘3中。
本例适合磁场均匀度偏差较大的情况,首先在C步骤中加入的匀场体盘3能够将超导磁体1的磁场均匀度调节到80%左右,最后再利用剩余的11条匀场体盘3在F步骤中微调,直至达到所需的磁场均匀度。
实施例三
以设置有36个匀场孔2超导磁体为例,其配有36条匀场提盘3,其方法与实施例一在B步骤不同,本例的B步骤为:保留9条匀场体盘3暂时不加入匀场小片;其它27条匀场体盘3将按下列方式安装:装入三个连续的匀场孔,然后再空一个匀场孔,再连续装入三个匀场孔,以此类推直至27条匀场体盘3装完;计算达到85%磁场均匀度时分别所需在这27条匀场体盘3中分别加入的匀场小片量,然后将所需的匀场小片量分别加入到相应的匀场体盘3中。
本例适用于磁场均匀度偏差较小的情况,首先在C步骤中加入的匀场体盘3能够将超导磁体1的磁场均匀度调节到85%左右,最后再利用剩余的9条匀场体盘3在F步骤中微调,直至达到所需的磁场均匀度。本例在F步骤中能使用的匀场体盘3较少,但是可以减少在升场情况下的工作量。
实施例四
以设置有30个匀场孔2超导磁体为例,其配有30条匀场提盘3,其方法与实施例一在B步骤不同,本例的B步骤为:保留6条匀场体盘3暂时不加入匀场小片;其它24条匀场体盘3装入连续的24个匀场孔中,计算达到95%磁场均匀度时分别所需在这24条匀场体盘3中分别加入的匀场小片量,然后将所需的匀场小片量分别加入到相应的匀场体盘3中。
本例适用于磁场均匀度在一个方向上偏斜的情况,首先在C步骤中加入的匀场体盘3布满了超导磁体1一侧的大部分区域,将超导磁体1的磁场均匀度调节到95%左右,最后再利用剩余的6条匀场体盘3在F步骤中磁场均匀度偏斜的位置微调,直至达到所需的磁场均匀度。

Claims (4)

1.超导磁体无源匀场方法,包括以下步骤:
A、运行超导磁体(1)使其升场,测得超导磁体(1)的磁场均匀度;
B、保留至少一条匀场体盘(3)不加入匀场小片;计算出其它匀场体盘(3)所需加入的匀场小片量,以使超导磁体(1)达到70%-95%磁场均匀度范围,并将所需的匀场小片加入到相应的匀场体盘(3)中;
C、使超导磁体降场(1)到安全的值,将装好匀场小片的匀场体盘(3)放入超导磁体(1)上相应的匀场孔(2)中;
D、运行超导磁体(1)使其升场,测得实际的超导磁体(1)的磁场均匀度;
E、计算出剩余空的匀场体盘(3)加入的匀场小片量,以使超导磁体(1)达到100%的磁场均匀度范围;
F、将剩余的匀场体盘(3)放入到在场的磁体相应的匀场孔(2)中,测得实际的超导磁体(1)的磁场均匀度,若没有达到所需的均匀度,反复调节这些剩余匀场体盘(3)中的匀场小片量,直至超导磁体(1)达到100%磁场均匀度范围。
2.如权利要求1所述的超导磁体无源匀场方法,其特征在于:在B步骤中,保留一半的匀场体盘(3)不加入匀场小片;计算出其它匀场体盘(3)间隔放入周向布置的匀场孔(2)时所需加入的匀场小片量。
3.如权利要求1所述的超导磁体无源匀场方法,其特征在于:在B步骤中,保留1/3的匀场体盘(3)不加入匀场小片;计算出其它匀场体盘(3)每两条空一格放入周向布置的匀场孔(2)时所需加入的匀场小片量。
4.如权利要求1所述的超导磁体无源匀场方法,其特征在于:在B步骤中,保留1/4的匀场体盘(3)不加入匀场小片;计算出其它匀场体盘(3)每三条空一格放入周向布置的匀场孔(2)时所需加入的匀场小片量。
CN 201010617474 2010-12-31 2010-12-31 超导磁体无源匀场方法 Active CN102116855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010617474 CN102116855B (zh) 2010-12-31 2010-12-31 超导磁体无源匀场方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010617474 CN102116855B (zh) 2010-12-31 2010-12-31 超导磁体无源匀场方法

Publications (2)

Publication Number Publication Date
CN102116855A CN102116855A (zh) 2011-07-06
CN102116855B true CN102116855B (zh) 2013-10-16

Family

ID=44215711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010617474 Active CN102116855B (zh) 2010-12-31 2010-12-31 超导磁体无源匀场方法

Country Status (1)

Country Link
CN (1) CN102116855B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454605B (zh) * 2012-05-30 2017-02-08 西门子(深圳)磁共振有限公司 超导磁体的匀场调节装置
CN107064840B (zh) * 2012-10-17 2019-10-08 上海联影医疗科技有限公司 超导磁体的降场电路和方法
CN104714201B (zh) * 2015-02-09 2018-01-12 浙江大学 一种有效矫正磁共振成像系统的主磁场的方法
CN105652225B (zh) * 2015-12-28 2019-01-25 沈阳东软医疗系统有限公司 一种磁共振系统的匀场方法和装置
CN109085519B (zh) * 2018-08-06 2024-01-23 杭州佩伟拓超导磁体技术有限公司 超导磁体磁场匀场系统及方法
CN110261802A (zh) * 2019-06-11 2019-09-20 东南大学 一种用于Halbach磁体磁场均匀度调节的装置和方法
CN114200366A (zh) * 2021-12-16 2022-03-18 武汉联影生命科学仪器有限公司 匀场装置、磁场组件、磁共振成像系统及匀场方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778054B1 (en) * 2003-10-03 2004-08-17 General Electric Company Methods and apparatus for passive shimming of magnets
CN101484822A (zh) * 2006-07-06 2009-07-15 西门子磁体技术有限公司 磁共振成像磁体系统的无源匀场
CN101903790A (zh) * 2007-12-21 2010-12-01 皇家飞利浦电子股份有限公司 增加体线圈中的有效b0和b1均匀性的无源匀场片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990877A (en) * 1989-12-04 1991-02-05 General Electric Company Passive shimming assembly for MR magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778054B1 (en) * 2003-10-03 2004-08-17 General Electric Company Methods and apparatus for passive shimming of magnets
CN101484822A (zh) * 2006-07-06 2009-07-15 西门子磁体技术有限公司 磁共振成像磁体系统的无源匀场
CN101903790A (zh) * 2007-12-21 2010-12-01 皇家飞利浦电子股份有限公司 增加体线圈中的有效b0和b1均匀性的无源匀场片

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP平3-185802A 1991.08.13
任自艳.基于中心磁场参照的MRI永磁主磁体匀场方法研究.《中国优秀硕士学位论文全文数据库工程科技II辑》.2009,(第09期),第44页5.1.1节-第49页5.1.2节.
任自艳等.开放式MRI永磁型主磁体的匀场方法.《电工技术学报》.2010,第25卷(第3期),全文.
基于中心磁场参照的MRI永磁主磁体匀场方法研究;任自艳;《中国优秀硕士学位论文全文数据库工程科技II辑》;20090915(第09期);第44页5.1.1节-第49页5.1.2节 *
开放式MRI永磁型主磁体的匀场方法;任自艳等;《电工技术学报》;20100331;第25卷(第3期);全文 *

Also Published As

Publication number Publication date
CN102116855A (zh) 2011-07-06

Similar Documents

Publication Publication Date Title
CN102116855B (zh) 超导磁体无源匀场方法
Han et al. Integrated parallel reception, excitation, and shimming (iPRES)
CN102640010B (zh) 用于产生均匀磁场的方法和装置
CN102150222B (zh) 用于限定用于成像体积的磁场的磁组件和方法
CN1604240B (zh) 具有用于主磁场调整的可动永久磁体的永久磁体装置
TW201712357A (zh) 用於磁共振成像之鐵磁增強
CN100434038C (zh) 磁共振成像设备磁场的调节装置
CN101452065B (zh) 磁共振设备中的局部线圈、磁共振设备以及成像方法
US11422213B2 (en) Ferromagnetic frame for magnetic resonance imaging
CN103454605B (zh) 超导磁体的匀场调节装置
CN102100556A (zh) 提高mri系统中磁体稳定性的设备和方法
US20140128267A1 (en) Open-type nuclear magnetic resonance magnet system having an iron ring member
CN102955140A (zh) 具有集成的匀场导体的局部线圈装置
CN201555939U (zh) 一种磁共振设备的匀场结构
CN104135922A (zh) 超导磁体的调整方法
CN100565235C (zh) 调整磁共振成像磁场发生组件的方法和系统及磁共振成像磁场发生组件
CN109415894A (zh) 具有竖直和水平可调节性的支架
CA2833620C (en) Nmr signals spatial encoding using magnetic susceptibility markers
US6778054B1 (en) Methods and apparatus for passive shimming of magnets
CN102478647B (zh) Mri用超导磁体的调整方法
Niu et al. A novel design method of independent zonal superconducting shim coil
CN201548675U (zh) 核磁共振成像设备的磁场调节装置
Hong et al. Shimming permanent magnet of MRI scanner
CN103713269A (zh) 用于磁体的匀场片、匀场条以及磁体和磁共振系统
EP2745130B1 (en) Hybrid magnet for mri

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Superconducting magnet passive shimming method

Effective date of registration: 20170119

Granted publication date: 20131016

Pledgee: Chengdu SME financing Company Limited by Guarantee

Pledgor: AllTech Medical Systems, LLC

Registration number: 2017510000005

PLDC Enforcement, change and cancellation of contracts on pledge of patent right or utility model
PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20191016

Granted publication date: 20131016

Pledgee: Chengdu SME financing Company Limited by Guarantee

Pledgor: AllTech Medical Systems, LLC

Registration number: 2017510000005