CN102116634A - 一种着陆深空天体探测器的降维自主导航方法 - Google Patents

一种着陆深空天体探测器的降维自主导航方法 Download PDF

Info

Publication number
CN102116634A
CN102116634A CN2009102169973A CN200910216997A CN102116634A CN 102116634 A CN102116634 A CN 102116634A CN 2009102169973 A CN2009102169973 A CN 2009102169973A CN 200910216997 A CN200910216997 A CN 200910216997A CN 102116634 A CN102116634 A CN 102116634A
Authority
CN
China
Prior art keywords
detector
matrix
speed
noise variance
celestial body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009102169973A
Other languages
English (en)
Other versions
CN102116634B (zh
Inventor
王大轶
黄翔宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN2009102169973A priority Critical patent/CN102116634B/zh
Publication of CN102116634A publication Critical patent/CN102116634A/zh
Application granted granted Critical
Publication of CN102116634B publication Critical patent/CN102116634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明属于深空探测器的制导、导航与控制技术领域,具体公开一种着陆深空天体探测器的降维自主导航方法,它包括以下步骤:确定当前时刻探测器相对惯性坐标系的姿态以及位置和速度初值;确定探测器相对天体中心的距离;确定探测器相对惯性坐标系的三维速度;构建导航系统的状态量、状态方程、观测量、观测方程和测量噪声方差阵;测量噪声方差阵的无量纲化处理和能观度的确定;采用分解变换方法处理测量噪声方差阵、观测方程、观测量和观测矩阵;采用UD协方差分解的扩展卡尔曼滤波确定探测器相对天体中心的距离和速度。本发明的方法能够保证自主导航滤波的稳定性和提高关键导航参数的收敛速度和估计精度。

Description

一种着陆深空天体探测器的降维自主导航方法
技术领域
本发明属于深空探测器的制导、导航与控制技术领域,具体涉及一种着陆深空天体探测器的降维自主导航方法。
背景技术
由于深空天体与地球之间的远距离,基于地面深空网的导航很难满足深空着陆GNC系统对探测器状态实时性和精度的要求,因此,自主导航就成为安全和准确地着陆深空天体探测器的一项关键技术。深空着陆探测器自主导航一般采用的方法是:测距仪获取的高度和测速仪获取的本体系速度作为观测量,利用扩展卡尔曼滤波修正惯性导航的位置和速度误差。对于这种导航方法,尽管所有轨道参数都是能观的,但是由于一些轨道参数(除了径向的两维位置)的能观度较低,在导航模型误差和测量噪声特性不确定的影响下,这些能观度较低的轨道参数不但不收敛,还可能发散,影响自主导航算法的稳定性和关键导航参数的估计精度。
发明内容
本发明的目的在于提供一种着陆深空天体探测器的降维自主导航方法,该方法能够保证自主导航滤波的稳定性和提高关键导航参数的收敛速度和估计精度。
实现本发明的技术方案:一种着陆深空天体探测器的降维自主导航方法,它包括以下步骤:
(1)利用陀螺测量的姿态角速度以及加速度计测量的速度增量和轨道初值,确定当前时刻探测器相对惯性坐标系的姿态以及位置和速度初值;
(2)利用测距测速仪测量得到的视线距离确定探测器相对天体中心的距离;
(3)利用测距测速仪测量得到的速度以及测距测速仪三个测速波束安装指向确定探测器相对惯性坐标系的三维速度;
(4)构建导航系统的状态量、状态方程、观测量、观测方程和测量噪声方差阵;
(5)测量噪声方差阵的无量纲化处理和导航参数能观度的确定;
(6)采用分解变换方法处理测量噪声方差阵、观测方程、观测量和观测矩阵,使之适合采用星上可以实现的基于UD协方差分解的滤波算法;
(7)根据步骤(6)确定的观测方程、观测量和观测矩阵,采用UD协方差分解的扩展卡尔曼滤波确定探测器相对天体中心的距离和速度。
所述的步骤(1)中确定当前时刻探测器相对惯性坐标系的姿态以及位置和速度初值的具体步骤为:
采用探测器上的陀螺测量探测器姿态角速度ω,根据前一时刻t0的探测器惯性姿态四元素q=[q1 q2 q3 q4]T(初始惯性姿态四元素利用着陆过程开始前的星敏感器测量数据确定),确定当前时刻t的探测器本体坐标系与惯性系的姿态转换阵
Figure G2009102169973D00021
其中,
q ‾ t = q ‾ + 1 2 q 4 - q 3 q 2 q 3 q 4 - q 1 - q 2 q 1 q 4 - q 1 - q 2 - q 3 ω ‾ ( t - t 0 ) ;
利用加速度计测量速度增量Δvb和轨道初值,轨道初值包括轨道位置初值rI0、轨道速度初值vI0。可以确定惯性坐标系的速度增量为
Figure G2009102169973D00023
确定探测器的惯性坐标系位置
Figure G2009102169973D00024
确定探测器的惯性速度
Figure G2009102169973D00031
μ为天体引力常数。
所述的步骤(2)中确定探测器相对天体中心的距离的具体步骤为:
利用惯性坐标系的探测器位置,确定探测器相对天体中心方向
Figure G2009102169973D00032
根据步骤(1)确定的姿态转换阵CbI,确定探测器相对天体中心方向在本体系的指向为rb0=CbIrI0;设测距测速仪的一个测距波束在本体坐标系的指向为lb0,确定探测器相对天体中心的方向和测距波束的夹角关系:
Figure G2009102169973D00033
由测距测速仪测量得到的视线距离ρ,确定探测器相对天体表面的高度h=ρcos(θ),确定探测器相对天体中心的距离为rm=h+R。
所述的步骤(3)中确定探测器相对惯性坐标系的三维速度的具体步骤为:
采用探测器上的测速仪测量三个非共面波束的速度v1,v2,v3以及测速仪三个波束安装指向lb1,lb2,lb3,确定探测器本体坐标系的三维速度
Figure G2009102169973D00034
根据速度vb以及步骤(1)确定的姿态转换阵CbI,确定探测器相对惯性坐标系的三维速度vI=CbIvb
所述的步骤(4)中构建导航系统的状态量、状态方程、观测量、观测方程和测量噪声方差阵的具体步骤为:
选取探测器相对天体中心的径向距离r和惯性坐标系的速度v作为状态量X=[r vT],建立状态方程为
Figure G2009102169973D00035
将步骤(2)中得到的探测器相对天体中心的距离rm和步骤(3)中得到的惯性坐标系的探测器三维速度vI作为观测量建立观测方程为
Figure G2009102169973D00042
测量噪声方差阵为
Figure G2009102169973D00043
所述的步骤(5)中测量噪声方差阵的无量纲化处理和导航参数能观度的确定的具体步骤为
单位距离L定义为天体参考半径,单位速度V定义为以参考半径为半长轴的参考圆轨道上的探测器速度
Figure G2009102169973D00044
只需要对测量噪声方差阵R进行无量纲化处理,得到无量纲化的测量噪声方差阵
定义导航系统能观度矩阵
Figure G2009102169973D00046
判断能观度矩阵的条件数Cond(G)是否接近1,如果能观度矩阵的条件数是否接近1,则执行步骤(6),否则执行步骤(4)。
能观度矩阵的条件数接近于1表明导航参数的能观度高。这里的导航参数包括高度和速度信息。
所述的步骤(6)中解变换方法处理测量噪声方差阵、观测方程、观测量和观测矩阵的具体步骤为:
测量噪声方差阵R是对称正定矩阵,对其进行UD分解,可以得到R=BDBT,R′=D对角矩阵。
利用变换
Figure G2009102169973D00047
确定测量噪声不相关的观测方程z′和观测量z′m及观测矩阵H′,
Figure G2009102169973D00048
Figure G2009102169973D00049
Figure G2009102169973D000410
所述的步骤(7)中根据上述步骤(6)确定的观测方程z′、观测量z′m、噪声方差阵R′和观测矩阵H′,采用UD协方差分解的扩展卡尔曼滤波确定探测器相对天体中心的距离
Figure G2009102169973D00051
和速度
Figure G2009102169973D00052
的具体方法为:。
X ^ = X ~ + K ( z m ′ - z ′ )
式中,K为UD协方差分解的扩展卡尔曼滤波增益,
Figure G2009102169973D00054
为预估的导航参数。
利用修正后的导航参数修正步骤(1)中得到的惯性坐标系的探测器位置
Figure G2009102169973D00055
利用修正后的导航参数修正步骤(1)中得到的惯性坐标系的探测器速度
Figure G2009102169973D00056
本发明的有益技术效果:引入无量纲化处理和能观度矩阵条件数判断导航参数的能观度,通过选取探测器相对天体中心的距离和惯性系的速度作为观测量,选取关键的导航参数高度和速度作为状态量,保证了构建的降维导航方法的稳定性、收敛速度和精度。针对距离和速度测量存在相关噪声的情况,采用分解变换方法处理测量噪声方差阵、观测方程、观测量和观测矩阵,使之适合采用星上可以实现的基于UD协方差分解的滤波方法。采用降维自主导航滤波方法可以提高导航的稳定性和关键导航参数的收敛速度和估计精度,非常适合于深空着陆导航任务的应用。
附图说明
图1为本发明所提供的一种着陆深空天体的降维自主导航方法的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
一种着陆深空天体探测器的降维自主导航方法,它包括以下步骤:
(1)利用陀螺测量的姿态角速度ω以及加速度计测量的速度增量Δvb和轨道初值,确定当前时刻探测器相对惯性坐标系的姿态q以及位置rI和速度vI初值
采用探测器上的陀螺测量探测器姿态角速度ω,根据前一时刻t0的探测器惯性姿态四元素q=[q1 q2 q3 q4]T,初始惯性姿态四元素利用着陆过程开始前的星敏感器测量确定,确定当前时刻t的探测器本体坐标系与惯性系的姿态转换阵
Figure G2009102169973D00061
其中,
q ‾ t = q ‾ + 1 2 q 4 - q 3 q 2 q 3 q 4 - q 1 - q 2 q 1 q 4 - q 1 - q 2 - q 3 ω ‾ ( t - t 0 ) .
利用加速度计测量速度增量Δvb和轨道初值,轨道初值包括轨道位置初值rI0、轨道速度初值vI0。可以确定惯性坐标系的速度增量为
Figure G2009102169973D00063
确定惯性坐标系的探测器位置
Figure G2009102169973D00064
确定惯性坐标系的探测器速度μ为天体引力常数。
(2)利用测距测速仪测量得到的视线距离ρ确定探测器相对天体中心的距离rm
利用惯性坐标系的探测器位置,确定探测器相对天体中心方向
Figure G2009102169973D00066
根据步骤(1)确定的姿态转换阵CbI,确定探测器相对天体中心方向在本体系的指向为rb0=CbIrI0;设测距测速仪的一个测距波束在本体坐标系的指向为lb0,确定探测器相对天体中心的方向和测距波束的夹角关系:
Figure G2009102169973D00067
由测距测速仪测量得到的视线距离ρ,确定探测器相对天体表面的高度h=ρcos(θ),确定探测器相对天体中心的距离为rm=h+R,其中R为当地天体表面的参考半径。
(3)利用测距测速仪测量得到的速度以及测距测速仪三个测速波束安装指向确定探测器相对惯性坐标系的三维速度
采用探测器上的测速仪测量三个非共面波束的速度v1,v2,v3以及测速仪三个波束安装指向lb1,lb2,lb3,确定探测器本体坐标系的三维速度
Figure G2009102169973D00071
根据速度vb以及步骤(1)确定的姿态转换阵CbI,确定探测器相对惯性坐标系的三维速度vI=VbIvb
(4)构建导航的状态量、状态方程、观测量、观测方程和测量噪声方差阵
选取探测器相对天体中心的径向距离r和惯性坐标系的速度v作为状态量X=[r vT],建立状态方程为其中,μ为天体引力常数。
将步骤(2)中得到的探测器相对天体中心的距离rm和步骤(3)中得到的惯性坐标系的探测器三维速度vI作为观测量
Figure G2009102169973D00073
建立观测方程为其中,nr为径向距离测量噪声,nv为速度测量噪声。测量噪声方差阵为其中,Rr、Rv、Rrv分别为径向距离测量噪声方差、速度测量噪声方差阵和距离速度测量相关噪声方差阵,设
R = 10 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.001 0.01 .
于是,可以确定导航观测矩阵
Figure G2009102169973D00081
显然,观测矩阵H的秩为4,
因此,导航系统状态量全部可观。
(5)测量噪声方差阵的无量纲化处理和能观度的确定
单位距离L定义为天体参考半径,对于月球L=1738000m,单位速度V定义为以参考半径为半长轴的参考圆轨道上的探测器速度
Figure G2009102169973D00082
对于月球,μ=4902.75×109m3/s2,V=1680m/s。只需要对测量噪声方差阵R进行无量纲化处理,得到无量纲化的测量噪声方差阵
Figure G2009102169973D00083
计算可得
R 0 = 10 - 5 × 0.5754 0 0 0 0 0.5954 0 0 0 0 0.5954 0 0 0 0 0.5954 .
定义能观度矩阵
Figure G2009102169973D00085
确定能观度矩阵的条件数Cond(G)=G=1.035。
判断能观度矩阵的条件数是否接近1,能观度矩阵的条件数在1±ε范围内说明其接近1,一般可取ε=0.2。如果能观度矩阵的条件数是否接近1,则执行步骤(6),否则执行步骤(4)。
能观度矩阵的条件数接近于1表明导航信息的可观度高。导航信息包括高度和速度信息。
(6)采用分解变换方法处理测量噪声方差阵、观测方程、观测量和观测矩阵,使之适合采用星上可以实现的基于UD协方差分解的滤波方法。
考虑到测量噪声方差阵R是对称正定矩阵,对其进行UD分解,可以得到R=BDBT,R′=D对角矩阵。计算得到
Figure G2009102169973D00086
Figure G2009102169973D00091
为对角矩阵。
于是利用变换
Figure G2009102169973D00092
确定测量噪声不相关的观测方程z′和观测量z′m及观测矩阵H′。
Figure G2009102169973D00093
Figure G2009102169973D00094
Figure G2009102169973D00095
(7)根据上述步骤(6)确定的观测方程z′、观测量z′m噪声方差阵R′和观测矩阵H′,采用UD协方差分解的扩展卡尔曼滤波确定探测器相对天体中心的距离
Figure G2009102169973D00096
和速度
Figure G2009102169973D00097
X ^ = X ~ + K ( z m ′ - z ′ )
式中,K为UD协方差分解的扩展卡尔曼滤波增益,
Figure G2009102169973D00099
为预估的导航参数。
利用修正后的导航参数修正步骤(1)中得到的惯性坐标系的探测器位置
Figure G2009102169973D000910
利用修正后的导航参数修正步骤(1)中得到的惯性坐标系的探测器速度
Figure G2009102169973D000911
本发明说明书中未作详细描述的内容属于本领域专业人员公知的现有技术。

Claims (8)

1.根据权利要求1所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:它包括以下步骤:
(1)利用陀螺测量的姿态角速度以及加速度计测量的速度增量和轨道初值,确定当前时刻探测器相对惯性坐标系的姿态以及位置和速度初值;
(2)利用测距测速仪测量得到的视线距离确定探测器相对天体中心的距离;
(3)利用测距测速仪测量得到的速度以及测距测速仪三个测速波束安装指向确定探测器相对惯性坐标系的三维速度;
(4)构建导航系统的状态量、状态方程、观测量、观测方程和测量噪声方差阵;
(5)测量噪声方差阵的无量纲化处理和导航参数能观度的确定;
(6)采用分解变换方法处理测量噪声方差阵、观测方程、观测量和观测矩阵,使之适合采用星上可以实现的基于UD协方差分解的滤波算法;
(7)根据步骤(6)确定的观测方程、观测量和观测矩阵,采用UD协方差分解的扩展卡尔曼滤波确定探测器相对天体中心的距离和速度。
2.根据权利要求1所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:所述的步骤(1)中确定惯性坐标系的探测器位置和速度的具体步骤为:
采用探测器上的陀螺测量探测器姿态角速度ω,根据前一时刻t0的探测器惯性姿态四元素q=[q1 q2 q3 q4]T,确定当前时刻t的探测器本体坐标系与惯性系的姿态转换阵
Figure F2009102169973C00021
其中,
Figure F2009102169973C00022
利用加速度计测量速度增量Δvb和轨道初值,轨道初值包括轨道位置初值rI0、轨道速度初值vI0。确定惯性坐标系的速度增量为 Δ v I = C bI T Δ v b , 确定探测器的惯性坐标系位置 r I = r I 0 + v I 0 Δt + 0.5 Δt ( Δ v I + μ r I 0 | | r I 0 | | 3 Δt ) , 确定探测器的惯性速度 v I = v I 0 + Δ v I + Δt ( μ r I 0 | | r I 0 | | 3 ) , μ为天体引力常数。
3.根据权利要求2所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:所述的步骤(2)中确定探测器相对天体中心的距离的具体步骤为:
利用惯性坐标系的探测器位置,确定探测器相对天体中心方向 r ‾ I 0 = r ‾ I | | r ‾ I | | , 根据步骤(1)确定的姿态转换阵CbI,确定探测器相对天体中心方向在本体系的指向为rb0=CbIrI0;设测距测速仪的一个测距波束在本体坐标系的指向为lb0,确定探测器相对天体中心的方向和测距波束的夹角关系:
Figure F2009102169973C00027
由测距测速仪测量得到的视线距离ρ,确定探测器相对天体表面的高度h=ρcos(θ),确定探测器相对天体中心的距离为rm=h+R。
4.根据权利要求3所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:所述的步骤(3)中确定探测器相对惯性坐标系的三维速度的具体步骤为:
采用探测器上的测速仪测量三个非共面波束的速度v1,v2,v3以及测速仪三个波束安装指向lb1,lb2,lb3,确定探测器本体坐标系的三维速度根据速度vb以及步骤(1)确定的姿态转换阵CbI,确定探测器相对惯性坐标系的三维速度vI=CbIvb
5.根据权利要求4所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:所述的步骤(4)中构建导航系统的状态量、状态方程、观测量、观测方程和测量噪声方差阵的具体步骤为:
选取探测器相对天体中心的径向距离r和惯性坐标系的速度v作为状态量X=[r vT],建立状态方程为
Figure F2009102169973C00032
将步骤(2)中得到的探测器相对天体中心的距离rm和步骤(3)中得到的惯性坐标系的探测器三维速度vI作为观测量
Figure F2009102169973C00033
建立观测方程为
Figure F2009102169973C00034
测量噪声方差阵为
Figure F2009102169973C00035
于是,确定导航观测矩阵
Figure F2009102169973C00036
6.根据权利要求5所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:所述的步骤(5)中测量噪声方差阵的无量纲化处理和导航参数能观度的确定的具体步骤为
单位距离L定义为天体参考半径,单位速度V定义为以参考半径为半长轴的参考圆轨道上的探测器速度 V = μ L , 只需要对测量噪声方差阵R进行无量纲化处理,得到无量纲化的测量噪声方差阵
Figure F2009102169973C00042
定义导航系统能观度矩阵 G = H T R 0 - 1 H , 判断能观度矩阵的条件数Cond(G)是否接近1,如果能观度矩阵的条件数是否接近1,则执行步骤(6),否则执行步骤(4)。
能观度矩阵的条件数接近于1表明导航参数的能观度高。这里的导航参数包括高度和速度信息。
7.根据权利要求6所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:所述的步骤(6)中解变换方法处理测量噪声方差阵、观测方程、观测量和观测矩阵的具体步骤为:
测量噪声方差阵R是对称正定矩阵,对其进行UD分解,可以得到R=BDBT,R′=D对角矩阵。
利用变换
Figure F2009102169973C00044
确定测量噪声不相关的观测方程z′和观测量z′m及观测矩阵H′,
Figure F2009102169973C00045
Figure F2009102169973C00046
Figure F2009102169973C00047
8.根据权利要求7所述的一种着陆深空天体探测器的降维自主导航方法,其特征在于:所述的步骤(7)中根据上述步骤(6)确定的观测方程z′、观测量z′m、噪声方差阵R′和观测矩阵H′,采用UD协方差分解的扩展卡尔曼滤波确定探测器相对天体中心的距离 r ^ = X ^ ( 1 ) 和速度 X ^ ( 2 : 4 ) = v I 的具体方法为:。
X ^ = X ~ + K ( z m ′ - z ′ )
式中,K为UD协方差分解的扩展卡尔曼滤波增益,
Figure F2009102169973C00052
为预估的导航参数。
利用修正后的导航参数修正步骤(1)中得到的惯性坐标系的探测器位置 r I = X ^ ( 1 ) r I | | r I | | .
利用修正后的导航参数修正步骤(1)中得到的惯性坐标系的探测器速度 v I = X ^ ( 2 : 4 ) .
CN2009102169973A 2009-12-31 2009-12-31 一种着陆深空天体探测器的降维自主导航方法 Active CN102116634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102169973A CN102116634B (zh) 2009-12-31 2009-12-31 一种着陆深空天体探测器的降维自主导航方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102169973A CN102116634B (zh) 2009-12-31 2009-12-31 一种着陆深空天体探测器的降维自主导航方法

Publications (2)

Publication Number Publication Date
CN102116634A true CN102116634A (zh) 2011-07-06
CN102116634B CN102116634B (zh) 2012-08-08

Family

ID=44215508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102169973A Active CN102116634B (zh) 2009-12-31 2009-12-31 一种着陆深空天体探测器的降维自主导航方法

Country Status (1)

Country Link
CN (1) CN102116634B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607561A (zh) * 2012-02-28 2012-07-25 西安费斯达自动化工程有限公司 基于加速度计的飞行器欧拉角修正模型
CN102700727A (zh) * 2012-06-27 2012-10-03 北京理工大学 一种基于速度控制的对空拦截飞行器制导方法
CN102997923A (zh) * 2012-11-30 2013-03-27 北京控制工程研究所 一种基于多模型自适应滤波的自主导航方法
CN103512575A (zh) * 2012-06-26 2014-01-15 北京自动化控制设备研究所 一种测绘车用惯导系统零速修正方法
CN103884340A (zh) * 2014-03-31 2014-06-25 北京控制工程研究所 一种深空探测定点软着陆过程的信息融合导航方法
CN103968844A (zh) * 2013-02-04 2014-08-06 上海新跃仪表厂 基于低轨平台跟踪测量的大椭圆机动航天器自主导航方法
CN104296753A (zh) * 2014-09-26 2015-01-21 北京控制工程研究所 一种基于多模型滤波的空间目标定位方法
CN104374403A (zh) * 2014-10-28 2015-02-25 上海卫星工程研究所 利用天体相对运动的天文测速自主导航系统地面试验方法
CN105043389A (zh) * 2015-07-07 2015-11-11 中国人民解放军第二炮兵工程大学 一种基于单个外辐射源的组合导航方法
CN109341725A (zh) * 2018-12-06 2019-02-15 北京理工大学 行星接近段导航性能快速评估方法
CN111637894A (zh) * 2020-04-28 2020-09-08 北京控制工程研究所 一种定常系数陆标图像导航滤波方法
CN114485678A (zh) * 2021-12-31 2022-05-13 上海航天控制技术研究所 天地一体月面着陆导航方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607561A (zh) * 2012-02-28 2012-07-25 西安费斯达自动化工程有限公司 基于加速度计的飞行器欧拉角修正模型
CN102607561B (zh) * 2012-02-28 2014-10-15 西安费斯达自动化工程有限公司 基于加速度计的飞行器欧拉角修正模型
CN103512575A (zh) * 2012-06-26 2014-01-15 北京自动化控制设备研究所 一种测绘车用惯导系统零速修正方法
CN102700727A (zh) * 2012-06-27 2012-10-03 北京理工大学 一种基于速度控制的对空拦截飞行器制导方法
CN102700727B (zh) * 2012-06-27 2014-04-09 北京理工大学 一种基于速度控制的对空拦截飞行器制导方法
CN102997923B (zh) * 2012-11-30 2015-11-25 北京控制工程研究所 一种基于多模型自适应滤波的自主导航方法
CN102997923A (zh) * 2012-11-30 2013-03-27 北京控制工程研究所 一种基于多模型自适应滤波的自主导航方法
CN103968844A (zh) * 2013-02-04 2014-08-06 上海新跃仪表厂 基于低轨平台跟踪测量的大椭圆机动航天器自主导航方法
CN103884340B (zh) * 2014-03-31 2016-08-17 北京控制工程研究所 一种深空探测定点软着陆过程的信息融合导航方法
CN103884340A (zh) * 2014-03-31 2014-06-25 北京控制工程研究所 一种深空探测定点软着陆过程的信息融合导航方法
CN104296753A (zh) * 2014-09-26 2015-01-21 北京控制工程研究所 一种基于多模型滤波的空间目标定位方法
CN104374403A (zh) * 2014-10-28 2015-02-25 上海卫星工程研究所 利用天体相对运动的天文测速自主导航系统地面试验方法
CN105043389A (zh) * 2015-07-07 2015-11-11 中国人民解放军第二炮兵工程大学 一种基于单个外辐射源的组合导航方法
CN109341725A (zh) * 2018-12-06 2019-02-15 北京理工大学 行星接近段导航性能快速评估方法
CN111637894A (zh) * 2020-04-28 2020-09-08 北京控制工程研究所 一种定常系数陆标图像导航滤波方法
CN114485678A (zh) * 2021-12-31 2022-05-13 上海航天控制技术研究所 天地一体月面着陆导航方法
CN114485678B (zh) * 2021-12-31 2023-09-12 上海航天控制技术研究所 天地一体月面着陆导航方法

Also Published As

Publication number Publication date
CN102116634B (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
CN102116634B (zh) 一种着陆深空天体探测器的降维自主导航方法
Wu et al. Velocity/position integration formula part I: Application to in-flight coarse alignment
CN104197927B (zh) 水下结构检测机器人实时导航系统及方法
CN103090870B (zh) 一种基于mems传感器的航天器姿态测量方法
CN101949703B (zh) 一种捷联惯性/卫星组合导航滤波方法
CN101788296B (zh) 一种sins/cns深组合导航系统及其实现方法
CN104374388B (zh) 一种基于偏振光传感器的航姿测定方法
RU2558724C2 (ru) Устройство диагностического комплекса для определения положения трубопровода и способ определения относительного перемещения трубопровода по результатам двух и более инспекционных пропусков диагностического комплекса для определения положения трубопровода
CN103913181B (zh) 一种基于参数辨识的机载分布式pos传递对准方法
CN104344837B (zh) 一种基于速度观测的冗余惯导系统加速度计系统级标定方法
CN102116628B (zh) 一种着陆或附着深空天体探测器的高精度导航方法
CN101706284B (zh) 提高船用光纤陀螺捷联惯导系统定位精度的方法
CN102175260B (zh) 一种自主导航系统误差校正方法
CN103674034B (zh) 多波束测速测距修正的鲁棒导航方法
CN103900576B (zh) 一种深空探测自主导航的信息融合方法
CN104344836B (zh) 一种基于姿态观测的冗余惯导系统光纤陀螺系统级标定方法
CN105091907B (zh) Sins/dvl组合中dvl方位安装误差估计方法
EP3460398A1 (en) Methods, apparatuses, and computer programs for estimating the heading of an axis of a rigid body
CN103076026B (zh) 一种捷联惯导系统中确定多普勒计程仪测速误差的方法
CN104697526A (zh) 用于农业机械的捷联惯导系统以及控制方法
CN102169184A (zh) 组合导航系统中测量双天线gps安装失准角的方法和装置
CN105241456B (zh) 巡飞弹高精度组合导航方法
CN103884340A (zh) 一种深空探测定点软着陆过程的信息融合导航方法
CN109708663B (zh) 基于空天飞机sins辅助的星敏感器在线标定方法
Troni et al. Preliminary experimental evaluation of a Doppler-aided attitude estimator for improved Doppler navigation of underwater vehicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant