CN102095929B - 一种快速测量交流电信号频率的方法 - Google Patents

一种快速测量交流电信号频率的方法 Download PDF

Info

Publication number
CN102095929B
CN102095929B CN 201010593580 CN201010593580A CN102095929B CN 102095929 B CN102095929 B CN 102095929B CN 201010593580 CN201010593580 CN 201010593580 CN 201010593580 A CN201010593580 A CN 201010593580A CN 102095929 B CN102095929 B CN 102095929B
Authority
CN
China
Prior art keywords
frequency
sampled
signal
cycle
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010593580
Other languages
English (en)
Other versions
CN102095929A (zh
Inventor
戴尔晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN 201010593580 priority Critical patent/CN102095929B/zh
Publication of CN102095929A publication Critical patent/CN102095929A/zh
Application granted granted Critical
Publication of CN102095929B publication Critical patent/CN102095929B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供了一种快速测量交流电信号频率的方法。该方法包括以下步骤:对被测电信号进行采样;根据采样值,在信号零点附近选择若干个采样点,计算若干个采样点的采样值的平均值
Figure 2010105935801100004DEST_PATH_IMAGE002
和平均采样发生时间
Figure DEST_PATH_IMAGE004
;由当前信号的特点和经计算获得一个时间,由
Figure DEST_PATH_IMAGE008
来近似表示该信号的过零点;根据过零点,计算被测信号的周期或频率。本发明不需要将交流电信号转换成方波,尤其适合于固定频率的低频正弦信号的频率测量,系统检测方便,硬件开销小;系统具有一定的抗干扰能力;实现简单合理,数据准确、可靠。

Description

一种快速测量交流电信号频率的方法
技术领域
本发明涉及一种快速测量交流电信号频率的方法,也可以用于固定频率或频率变化不大的低频正弦信号的频率测量。
背景技术
在日常生活、生产过程中常常需要监测信号的频率,测量的频率越准确,应用的效果往往更好。在现有的低频信号的频率测量方法中,多是将低频信号先通过整形电路形成方波,检测方波相邻两个上升沿或者下降沿的时间间隔T,求倒数得出频率。除此之外还有一些软件测量频率的方法,比如:零交法、解析法、误差最小化原理类算法、DFT类算法、正交去调制法等等。但是这些算法有些易于实现但精度较低,有些算法的运算量过大。
现有技术一:申请号为02107167的中国专利公开了一种三相交流电频率的测量方法和装置,通过采样电压或电流信号,求取电压或电流旋转矢量的角速度,然后再利用旋转矢量角速度折算频率。该测量装置虽然抗干扰能力强,但是缺点是利用旋转矢量角速度折算频率时需要大量复杂的运算,并且该测量装置专用于三相交流电频率测量,不能用于民用单相交流电的频率测量,更不能用于普通非三相低频信号的频率测量。
现有技术二:申请号201010150157的中国专利公开了一种低频率信号的频率测量方法,其实质也是一种过零点检测方法,但这种方法可能存在运算量较大的情形。
发明内容
本发明解决的技术问题是针对现有技术中交流信号的频率测量精度不够准确或者是测量过程中运算量过大的缺点,提出一种快速测量交流电信号频率的方法,该方法也可以用于固定频率或频率变化不大的低频正弦信号的频率测量。
为解决上述技术问题,本发明提出了一种快速测量交流电信号频率的方法,包括以下步骤:
步骤1),对被测电信号进行采样,得到被测电信号的采样值;在电信号的采样值的某一个零点附近选择任意组合的n个采样点;
步骤2),假设每个采样点的采样时间为ti,采样值为yi,则n个采样点的采样值的平均值M和平均采样发生时间T表示为:
M j = Σ 1 n y i n , T j = Σ 1 n t i n ;
上式中,n≥1,n、i、j均为自然数,则(Mj,Tj)表示一个虚拟点;
步骤3),根据被测电信号在过零点附近的交流电信号是上升或下降的过程、电信号有效值或者峰值,以及步骤2)所述n个采样点的采样值的平均值Mj,通过计算的方式来获得一个时间差T′j,所述时间差T′j代表纯正弦信号下离虚拟点(Mj,Tj)最近的过零点与该虚拟点之间的时间差;则对应的过零点时间表示为:Tzj=Tj+T′j
将在零点附近的正弦信号近似看作一条直线,则过零点时间Tzj的计算方法如下:
Figure BDA0000038961800000023
其中fc是交流电标准频率,Tc是交流电标准周期,UMAX是交流电信号最大值,UEMS是交流电信号有效值,上式成立的条件是或者的值接近于0;
步骤4),依次在电信号采样值的其它零点附近选择任意组合的n个采样点,重复步骤2)和步骤3)得到若干个过零点时间,根据这若干个过零点时间,计算得出被测电信号的周期或频率。
进一步的,前述的快速测量交流电信号频率的方法中,步骤1)所述对电信号进行采样是等时间间隔采样或者是不等时间间隔采样。
进一步的,前述的快速测量交流电信号频率的方法中,步骤1)所述的采样为对电信号的整周波进行采样。
进一步的,前述的快速测量交流电信号频率的方法中,步骤4)中所述的计算被测电信号的周期或频率的具体步骤如下:重复步骤2)、步骤3)得到若干个过零点时间Tz1,Tz2,Tz3...Tzj,Tzj+1,Tzj+2...Tzn...,则被测交流电信号的周期:Tpj=Tzj+2-Tzj,被测交流电信号的频率:
Figure BDA0000038961800000031
进一步的,前述的快速测量交流电信号频率的方法中,在被测交流电实际周期偏移交流电标准周期时,步骤3)中采用当前周波的预测周期T′c代替交流电标准周期Tc来进行计算,获得T′c的方法如下:
a)设由计算得到的交流电信号前几个周波的周期依次为Tpk-3,Tpk-2,Tpk-1,Tpk,当前几个周波的周期不存在或得不到时,令其等于交流电标准周期;
b)预测的当前周波的周期表示为:
T′c=K1×Tpk+K2×Tpk-1+K3×Tpk-2+K4×Tpk-3;其中K1、K2、K3、K4为任意常数,但须满足条件K1+K2+K3+K4=1。
进一步的,前述的快速测量交流电信号频率的方法中,还包括以下步骤:重复步骤1)到步骤4),测量出被测电信号的若干个周期或频率值,然后对得到的若干个周期或频率值采用平均法计算出最终频率。
本发明采用以上技术方案具有以下技术效果:
1)传统的零交法采用符号相反的两个连续点来确定过零点,虽然算法物理概念清晰,但是容易受谐波、测量误差等的干扰,测量精度低。随着数据采集速度的提高,可以在零点附近任意选择若干个采样点。由选取的若干个采样点可经过计算得出过零点。确定了信号的过零点之后,可以计算出交流信号的频率和周期。相比较传统的零交法而言,运算量有所下降,系统的抗干扰能力有所提高。
2)本发明在正弦曲线的零点附近将正弦曲线拟合为直线,存在一定的计算误差,但在虚拟点的Mj非常接近零时,误差几乎可以忽略不计。
3)本发明还可以实现有限的频率预测,具体可以参见图3,图3中的四个采样点来源于图2中的S0,S1,S2,S3,且都是正电平,在S3采样结束之后(此时信号还没有到达零点),可以根据S0,S1,S2,S3四个采样点计算后获取信号的下一个过零点Z0,因此采用此种方法可以实现有限的频率预测。
附图说明:
图1是正弦信号有从低向高过零点和从高向低过零点的两种可能的示意图。
图2是在零点附近进行等时间间隔采样而获取的8个采样点的示意图(采样点的电平由高到低)。
图3是由4个正电平采样点进行计算后所获得的信号过零点的示意图。
图4是由3个正电平和1个负电平采样点进行计算后所获得的信号过零点的示意图。
图5是由2个正电平和2个负电平采样点进行计算后所获得的信号过零点的示意图。
图6是在零点附近进行等时间间隔进行采样而获取的8个采样点的示意图(采样点的电平由低到高)。
图7是在不等时间间隔采样情形下,由3个正电平和1个负电平采样点进行计算后所获得的信号过零点的示意图。
图8是对交流电信号进行采样后在每一个零点附近进行计算并后获得过零点的示意图。
具体实施方式
下面结合附图对本发明的技术方案进行详细说明:
本发明的实质是在零点附近选择若干个采样点,计算若干个采样点的平均值M和平均采样发生时间T,然后根据当前信号的特点和平均值M计算获取T′,由T+T′来近似表示信号的过零点,从而计算出信号的频率或周期。选取的采样点不宜过多,选取的采样点如果较多的话,计算复杂度会高一些;选取得采样点也不宜过少,选取的采样点如果较少的话,容易受到干扰的影响。因此用户可以根据需要选取合理的采样点组合和个数来进行计算。
为获得较为精确的测量结果,建议的采样点的选取方案是:正的采样点的数量和负的采样点的数量相等或者大致相等,采样点的个数则可根据具体实际情况来确定。
本发明的原理通过测量交流信号的两个周波的频率来进行说明,随着采样速度的提高,在每个周波内的采样点也越来越多,当采样次数足够多时,可以在零点附近选取若干个采样点,对采样点计算后可获取交流电信号的过零点。后续的具体实施方式中都采用了四个采样点来计算过零点,实际应用中可以根据需要适当增加或者减少采样点的个数。
本发明的具体实施过程如下:
1.对被测电信号进行采样,这里所述的采样为对整周波进行的采样。可以是等时间间隔采样,也可以是不等时间间隔采样。
2.在信号的每一个零点附近选择任意组合的若干个采样点。选出的采样点的采样值可以全部为正;也可以是全部为负;也可以根据需要选择若干个采样值为正、若干个采样值为负的采样点。
3.得到过零点的过程如下:假设选取的采样点数为n,每个采样点的采样时间为ti,采样值为yi,则n个采样点的采样值的平均值M和平均采样发生时间T可表示为:
M j = Σ 1 n y i n , T j = Σ 1 n t i n ;
上式中,n≥1,i、j均为自然数,(Mj,Tj)可看作是一个虚拟点;
获取(Mj,Tj)后,由当前信号的特点、信号的有效值(或者峰值)和Mj通过计算来获得T′j,T′j的物理意义是纯正弦信号下,离虚拟点(Mj,Tj)最近的过零点与该虚拟点之间的时间差。在过零点附近的交流电信号可能是上升的(图1中的2),也有可能是下降的(图1中的1)。
针对过零点附近是上升的交流电信号(频率为50Hz),T′j可表示为:
T j ′ = - 1 × arcsin M j U EMS × 2 2 × π × f = - 1 × arcsin M j U MAX 2 × π × f
Figure BDA0000038961800000054
Figure BDA0000038961800000055
较小时,T′j可近似表示为:
T j ′ = - 1 × arcsin M j U EMS × 2 2 × π × f ≈ - 1 × M j U EMS × 2 × 2 × π × f c = - 1 × M j × T c U EMS × 2 × 2 × π
T j ′ = - 1 × arcsin M j U MAX 2 × π × f ≈ - 1 × M j U MAX × 2 × π × f c = - 1 × M j × T c U MAX × 2 × π ;
针对过零点附近是下降的交流电信号(频率为50Hz),T′j可表示为:
T j ′ = arcsin M j U EMS × 2 2 × π × f = arcsin M j U MAX 2 × π × f
Figure BDA0000038961800000064
Figure BDA0000038961800000065
较小时,T′j可近似表示为:
T j ′ = arcsin M j U EMS × 2 2 × π × f ≈ M j U EMS × 2 × 2 × π × f c = M j × T c U EMS × 2 × 2 × π ;
T j ′ = arcsin M j U MAX 2 × π × f ≈ M j U MAX × 2 × π × f c = M j × T c U MAX × 2 × π
上述几个公式中,fc是交流电标准频率,Tc是交流电标准周期,UMAX是交流电信号最大值,UEMS是交流电信号有效值。这几个公式的成立条件是 尽量小。在通常情况下,
Figure BDA00000389618000000610
Figure BDA00000389618000000611
越小,则应用的效果越好,后续的应用中要求
Figure BDA00000389618000000612
的范围在[-0.1,0.1]才进行过零点的计算。
则对应的过零点时间可表示为:Tzj=Tj+T′j
4.在被测交流电实际周期偏移交流电标准周期时,如果采用交流电标准周期Tc来计算过零点Tzj的话,则可能会产生较大的计算误差,此时可以采用当前周波的预测周期T′c代替交流电标准周期Tc来进行计算。获得T′c的方法如下:设由计算得到的交流电信号前几个周波的周期依次为Tpk-3,Tpk-2,Tpk-1,Tpk(在前面周波的周期没有计算得到时,可令部分或者全部的Tpk-3,Tpk-2,Tpk-1,Tpk等于交流电标准周期);则预测的当前周波的周期可表示为:T′c=K1×Tpk+K2×Tpk-1+K3×Tpk-2+K4×Tpk-3;公式中的K1,K2,K3,K4可为任意常数,但须满足条件K1+K2+K3+K4=1。如采用当前周波的预测周期T′c来计算过零点Tzj,可以得到更加准确的结果。在后续的实验中,令K1=1,K2=K3=K4=0,则T′c=Tpk,即认为当前周波的周期与上一周波的周期相同。
5.具体操作可以参见图2、图3、图4和图5。图2上的S0,S1,S2,S3,S4,S5,S6,S7是在零点附近进行等时间间隔采样而获取的8个采样点。图3中的空心三角形所在的点是由图2中的采样点S0,S1,S2,S3进行计算后获得的虚拟点(M0,T0),Z0是经计算后获得的过零点;图4中的空心三角形所在的点是由图2中的采样点S1,S2,S3,S4进行计算后获得的虚拟点(M1,T1),Z1是经计算后获得的过零点;图5中的空心三角形所在的点是由图2中的采样点S2,S3,S4,S5进行计算后获得的虚拟点(M2,T2),Z2是经计算后获得的过零点。图3、图4、图5说明了信号由高到低穿越零点时的情形。当信号由低向高穿越零点时(此种情况可以参见图6)计算的方法相同。图3、图4、图5的例子是等时间间隔采样,图7是不等时间间隔采样情形下经过计算获取虚拟点(M3,T3),Z3是经计算后获得的过零点。
6.重复上述步骤,可以得到若干个过零点时间T1,T2,T3...Tj,Tj+1,Tj+2...Tn...,则被测交流电信号的周期:Tpj=Tj+2-Tj,被测交流电信号的频率:
Figure BDA0000038961800000071
对交流电信号进行采样后在每一个零点附近进行计算的图形如图8。图8中的交流电信号存在4个过零点,因此进行了四次计算。计算时采用的是零点附近的2个正电平、2个负电平采样点,图中空心三角形所在的点为计算得到的虚拟点,图中的空心圆点是得到的过零点,过零点依次是:Ti-1,Ti,Ti+1,Ti+2。则该信号的周期可以表示为Tp=Ti+1-Ti-1或者Tp=Ti+2-Ti。频率Fp则是Tp的倒数。
优选方案是步骤1)所述的采样为等时间间隔采样。
采用本方法可以在一个信号周期内可以进行多次频率测量。
综上所述,本发明所涉及的一种快速测量交流电信号频率的方法,不需要将交流电信号转换成方波,尤其适合于低频正弦信号的频率测量,系统检测方便,硬件开销小;系统的抗干扰能力较强;实现起来简单合理,数据准确、可靠;有较广泛的应用前景。

Claims (6)

1.一种快速测量交流电信号频率的方法,其特征在于:包括以下步骤:
步骤1),对被测电信号进行采样,得到被测电信号的采样值;在电信号的采样值的某一个零点附近选择任意组合的n个采样点;
步骤2),假设每个采样点的采样时间为ti,采样值为yi,则n个采样点的采样值的平均值Mj和平均采样发生时间Tj表示为:
M j = Σ 1 n y i n , T j = Σ 1 n t i n ;
上式中,n≥1,n、i、j均为自然数,则(Mj,Tj)表示一个虚拟点;
步骤3),根据被测电信号在过零点附近的交流电信号是上升或下降的过程、电信号有效值或者峰值,以及步骤2)所述n个采样点的采样值的平均值Mj,通过计算的方式来获得一个时间差T′j,所述时间差T′j代表纯正弦信号下离虚拟点(Mj,Tj)最近的过零点与该虚拟点之间的时间差;则对应的过零点时间表示为:Tzj=Tj+T′j
将在零点附近的正弦信号近似看作一条直线,则过零点时间Tzj的计算方法如下: T zj = T j + T j ′ ≈ T j ± M j U EMS × 2 × 2 × π × f c = T j ± M j × T c U EMS × 2 × 2 × π T zj = T j + T j ′ ≈ T j ± M j U MAX × 2 × π × f c = T j ± M j × T c U MAX × 2 × π ,
其中fc是交流电标准频率,Tc是交流电标准周期,UMAX是交流电信号最大值,UEMS是交流电信号有效值,上式成立的条件是
Figure FDA00002095782500014
或者
Figure FDA00002095782500015
的值接近于0,即要求
Figure FDA00002095782500016
的值在范围[-0.1,0.1]才进行过零点的计算;
步骤4),依次在电信号采样值的其它零点附近选择任意组合的n个采样点,重复步骤2)和步骤3)得到若干个过零点时间,根据这若干个过零点时间,计算得出被测电信号的周期或频率。
2.根据权利要求1所述的快速测量交流电信号频率的方法,其特征在于:步骤1)所述对电信号进行采样是等时间间隔采样或者是不等时间间隔采样。
3.根据权利要求1所述的快速测量交流电信号频率的方法,其特征在于:步骤1)所述的采样为对电信号的整周波进行采样。
4.根据权利要求1所述的快速测量交流电信号频率的方法,其特征在于:步骤4)中所述的计算被测电信号的周期或频率的具体步骤如下:重复步骤2)、步骤3)得到若干个过零点时间Tz1,Tz2,Tz3...Tzj,Tzj+1,tzj+2...Tzn...,则被测交流电信号的周期:Tpj=Tzj+2-Tzj,被测交流电信号的频率:
Figure FDA00002095782500021
5.根据权利要求1至4任一项所述的快速测量交流电信号频率的方法,其特征在于:在被测交流电实际周期偏移交流电标准周期时,步骤3)中采用当前周波的预测周期Tc'代替交流电标准周期Tc来进行计算,获得Tc'的方法如下:
a)设由计算得到的交流电信号前几个周波的周期依次为Tpk-3,Tpk-2,Tpk-1,Tpk,当前几个周波的周期不存在或得不到时,令其等于交流电标准周期;
b)预测的当前周波的周期表示为:
Tc'=K1×Tpk+K2×Tpk-1+K3×Tpk-2+K4×Tpk-3;其中K1、K2、K3、K4为任意常数,但须满足条件K1+K2+K3+K4=1。
6.根据权利要求1至4中任一项所述的快速测量交流电信号频率的方法,其特征在于:还包括以下步骤:重复步骤1)到步骤4),测量出被测电信号的若干个周期或频率值,然后对得到的若干个周期或频率值采用平均法计算出最终频率。
CN 201010593580 2010-12-17 2010-12-17 一种快速测量交流电信号频率的方法 Expired - Fee Related CN102095929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010593580 CN102095929B (zh) 2010-12-17 2010-12-17 一种快速测量交流电信号频率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010593580 CN102095929B (zh) 2010-12-17 2010-12-17 一种快速测量交流电信号频率的方法

Publications (2)

Publication Number Publication Date
CN102095929A CN102095929A (zh) 2011-06-15
CN102095929B true CN102095929B (zh) 2013-01-02

Family

ID=44129101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010593580 Expired - Fee Related CN102095929B (zh) 2010-12-17 2010-12-17 一种快速测量交流电信号频率的方法

Country Status (1)

Country Link
CN (1) CN102095929B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707133B (zh) * 2012-06-12 2015-12-16 深圳市世强先进科技有限公司 一种测量频率可变的交流电压的装置、系统和方法
CN103575981A (zh) * 2012-07-26 2014-02-12 南京邮电大学 一种交流电频率的精确测量方法
CN104808054B (zh) * 2014-01-26 2017-09-22 南京邮电大学 一种电信号频率的测量方法
CN105259409B (zh) * 2015-10-13 2017-11-28 安徽节源环保科技有限公司 一种基于过零时域特性的电力信号频率计算方法
CN108181505A (zh) * 2018-01-08 2018-06-19 广东电网有限责任公司电力科学研究院 一种基于预测的微电网频率实时测量方法及装置
CN108362940B (zh) * 2018-03-14 2020-07-14 贵州电网有限责任公司 一种半周波畸变信号的动态谐波频率提取方法
CN110873822A (zh) * 2018-09-02 2020-03-10 青岛鼎信通讯股份有限公司 一种馈线终端交流采样中频率计算的方法
CN116125138B (zh) * 2023-04-17 2023-07-14 湖南工商大学 基于旋转调节的正弦信号频率快速估计方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726664A (zh) * 2008-10-27 2010-06-09 华为技术有限公司 信号相位差测量方法、装置和系统
CN101833036A (zh) * 2010-04-15 2010-09-15 南京邮电大学 一种交流电的瞬时相位测量方法
CN101871965A (zh) * 2010-06-11 2010-10-27 威胜集团有限公司 电力正弦信号过零时间、频率、相位差的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272365A (ja) * 1989-04-14 1990-11-07 Omron Corp 開閉器制御装置の位相検出回路
JP5214163B2 (ja) * 2007-03-30 2013-06-19 北海道旅客鉄道株式会社 位相差計測システムおよび位相差計測方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726664A (zh) * 2008-10-27 2010-06-09 华为技术有限公司 信号相位差测量方法、装置和系统
CN101833036A (zh) * 2010-04-15 2010-09-15 南京邮电大学 一种交流电的瞬时相位测量方法
CN101871965A (zh) * 2010-06-11 2010-10-27 威胜集团有限公司 电力正弦信号过零时间、频率、相位差的检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP平2-272365A 1990.11.07
JP特开2008-249472A 2008.10.16

Also Published As

Publication number Publication date
CN102095929A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
CN101806832B (zh) 一种低频率信号的频率测量方法
CN102095929B (zh) 一种快速测量交流电信号频率的方法
CN102033161B (zh) 一种交流电信号的频率测量方法
CN102435844B (zh) 一种频率无关的正弦信号相量计算方法
CN101833036B (zh) 一种交流电的瞬时相位测量方法
CN101813725B (zh) 一种低频率信号的相位差测量方法
CN102809687B (zh) 一种交流电频率的数字化测量方法
CN102095934A (zh) 一种交流电信号的相位差测量方法
CN103116064A (zh) 一种基于能量算子和频谱校正的电压波动与闪变检测方法及装置
CN107621591B (zh) 一种基于零模行波波速变化特性的输电线路迭代测距方法
CN102508031A (zh) 一种基于傅里叶级数的局部放电脉冲相角测量方法
CN105699738B (zh) 一种基于pwm的交流信号有效值测量方法
CN102095935B (zh) 一种交流电信号的瞬时相位测量方法
CN103575979B (zh) 一种数字化测量交流电频率的方法
CN102095936B (zh) 一种快速测量交流电信号相位差的方法
CN103575981A (zh) 一种交流电频率的精确测量方法
CN102778606B (zh) 一种交流电的瞬时相位的数字化测量方法
CN102928666B (zh) 一种交流电的相位差的数字化测量方法
CN106970265B (zh) 一种采用多时间尺度不完全s变换估计谐波参数的方法
CN102095937B (zh) 一种快速测量交流电信号瞬时相位的方法
CN104808060A (zh) 一种电信号相位差的数字化测量方法
CN104407197A (zh) 一种基于三角函数迭代的信号相量测量的方法
CN103105532A (zh) 一种改进傅里叶变换的谐波电能计量系统及其控制方法
CN103575991B (zh) 一种交流电的瞬时相位的精确测量方法
CN203012015U (zh) 一种改进傅里叶变换的谐波电能计量系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102

Termination date: 20151217

EXPY Termination of patent right or utility model