CN102075482A - Mimo-ofdm系统中信道估计的方法及装置 - Google Patents

Mimo-ofdm系统中信道估计的方法及装置 Download PDF

Info

Publication number
CN102075482A
CN102075482A CN2009102412081A CN200910241208A CN102075482A CN 102075482 A CN102075482 A CN 102075482A CN 2009102412081 A CN2009102412081 A CN 2009102412081A CN 200910241208 A CN200910241208 A CN 200910241208A CN 102075482 A CN102075482 A CN 102075482A
Authority
CN
China
Prior art keywords
scattered pilot
data
pilot
channel
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009102412081A
Other languages
English (en)
Other versions
CN102075482B (zh
Inventor
王军伟
葛启宏
刘斌彬
王静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Taimei Shiji Science & Technology Co Ltd
Original Assignee
Beijing Taimei Shiji Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Taimei Shiji Science & Technology Co Ltd filed Critical Beijing Taimei Shiji Science & Technology Co Ltd
Priority to CN 200910241208 priority Critical patent/CN102075482B/zh
Priority to PCT/CN2010/078996 priority patent/WO2011063734A1/zh
Publication of CN102075482A publication Critical patent/CN102075482A/zh
Application granted granted Critical
Publication of CN102075482B publication Critical patent/CN102075482B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Abstract

本发明的实施例提出了一种MIMO-OFDM系统中信道估计的方法,包括以下步骤:接收设备接收双发射天线OFDM系统发送的数据;根据导频配置模式,把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换;将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。本发明提出的技术方案解决了接收天线的接收信号是两个发射天线的发射信号经过信道叠加后,接收天线通过接收数据进行信道估计不便的问题,通过在发射端对导频信息进行合理的配置后让每一个接收天线利用这些导频信息获得各个发射端信号所经历的信道信息。

Description

MIMO-OFDM系统中信道估计的方法及装置
技术领域
本发明涉及数字通信领域,具体而言,本发明涉及MIMO-OFDM系统中信道估计的方法及装置。
背景技术
移动和宽带成为现代通信技术的发展方向,在诸多的宽带无线通信技术中,OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)无疑是最具有应用前景的技术之一。在信道的衰落特性中,对宽带无线移动业务影响最大的是多径衰落和多普勒频移。而OFDM不但可以通过插入循环前缀(CP)的方法,有效地抑止多径带来的符号间干扰,还可以通过对信道时变特性的合理估计,灵活地设计系统的符号长度,减轻信道时变特性对系统性能的影响。由于OFDM的这些技术特点,避免了在接收机中采用复杂的时域均衡器和自适应跟踪算法。并且,通过使用快速傅立叶变换(FFT),可以保证在相对简单的系统硬件结构下,提供可靠、稳定的通信质量。正是因为这些优势,OFDM技术已经被各种无线通信标准所广泛采用。OFDM多载波系统已开始在数字音频广播、高清晰度电视HDTV的地面广播系统以及WIMAX通信系统等领域得到实际应用。而且人们开始集中越来越多的精力开发OFDM技术在高速移动通信领域的应用,OFDM技术已经成为的现代移动通信技术最重要的候选标准。
如何消除同信道干扰、多址干扰与多径衰落的影响成为人们在提高无线移动通信系统性能时考虑的主要因素。MIMO(Multiple Input MultipleOutput,多入多出)多天线系统指的是利用多根发射天线和多根接收天线进行无线传输的技术。它的实质是将空间通信链路划分为多个独立并行的子信道,进而为无线通信系统提供空间复用增益或者空间分集增益。空间复用增益可以提高系统的信道容量,空间分集增益可以提高信道的可靠性,降低误码率。MIMO无线通信系统引入了多个发射天线和多个接收天线,巧妙地利用了多个收发天线之间的空间信道的随机性,将曾经被视为干扰的多径信道转变为有利于提高传输性能的资源,从而在稀缺的频谱资源之外增加了额外的空间自由度,可以大幅度提高系统的频谱利用率或降低系统的传输差错率,适合高速无线通信或高可靠性无线通信。
在基于OFDM系统的MIMO通信系统中,通常具备了上述两种通信方式的优点。在MIMO-OFDM系统中,通常采用导频进行信道估计。在双发射天线系统中,每个接收天线的接收信号是两个发射天线所发射信号经过信道后的叠加,这就给利用每个接收天线的接收数据的导频进行信道估计带来了不便。因此,有必要提出一种有效的技术方案,通过对导频信息进行巧妙且合理的配置,使得接收端有效地利用这些导频信息并获得各个发射端信号所经历的信道信息,从而提高系统性能。
发明内容
本发明的目的旨在至少解决上述技术缺陷之一,特别是解决接收天线的接收信号是两个发射天线的发射信号经过信道叠加后,接收天线通过接收数据进行信道估计不便的问题,通过在发射端对导频信息进行巧妙且合理的配置后让每一个接收天线利用这些导频信息获得各个发射端信号所经历的信道信息。
为了实现本发明之目的,本发明实施例一方面提出了一种MIMO-OFDM系统中信道估计的方法,包括以下步骤:
接收设备接收双发射天线OFDM系统发送的数据,其中,发射天线1发射信号离散导频携带的信息为序列{Xi},0≤i<C,发射天线2的发射信号在与发射天线1的信号中相同的离散导频位置处发送与{Xi}正交的序列{X′i},使得X′i=Xi·ejiπ,C为离散导频个数;
根据导频配置模式,把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换;
将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。
本发明实施例另一方面还提出了一种MIMO-OFDM系统中信道估计的装置,包括接收模块,判断模块以及分离模块,
所述接收模块,用于接收双发射天线OFDM系统发送的数据,其中,发射天线1发射信号离散导频携带的信息为序列{Xi},0≤i<C,发射天线2的发射信号在与发射天线1的信号中相同的离散导频位置处发送与{Xi}正交的序列{X′i},使得X′i=Xi·ejiπ,C为离散导频个数;
所述判断模块,用于判断接收到的数据的导频配置模式,根据导频配置模式把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换;
所述分离模块,用于将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。
根据本发明的实施例提出的技术方案,解决了接收天线的接收信号是两个发射天线的发射信号经过信道叠加后,接收天线通过接收数据进行信道估计不便的问题,通过在发射端对导频信息进行巧妙且合理的配置后让每一个接收天线利用这些导频信息获得各个发射端信号所经历的信道信息。本发明的实施例提出的技术方案,合理高效使用系统资源,优化系统性能。此外,本发明的实施例提出的技术方案,对现有系统的改动很小,能够和单发射天线的OFDM的信道估计方法兼容,不会影响系统的兼容性,而且实现简单、高效。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例MIMO-OFDM系统中信道估计的方法流程图;
图2为本发明实施例信号处理示意图;
图3为本发明实施例导频配置模式一的示意图;
图4为本发明实施例导频配置模式二的示意图;
图5为本发明实施例另一个信号处理示意图;
图6为本发明实施例含有两个信道信息的时域信道响应的示意图;
图7为本发明实施例分离出两信道时域信道响应信息的示意图;
图8本发明实施例MIMO-OFDM系统中信道估计装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
为了实现本发明之目的,本发明实施例提出了一种MIMO-OFDM系统中信道估计的方法,包括以下步骤:接收设备接收双发射天线OFDM系统发送的数据,其中,发射天线1发射信号离散导频携带的信息为序列{Xi},0≤i<C,发射天线2的发射信号在与发射天线1的信号中相同的离散导频位置处发送与{Xi}正交的序列{X′i},使得X′i=Xi·ejiπ,C为离散导频个数;根据导频配置模式,把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换;将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。
如图1所示,为本发明实施例MIMO-OFDM系统中信道估计的方法流程图,包括以下步骤:
步骤S101:接收双发射天线OFDM系统发送的数据。
在步骤S101中,接收设备接收双发射天线OFDM系统发送的数据,其中,发射天线1发射信号离散导频携带的信息为序列{Xi},0≤i<C,发射天线2的发射信号在与发射天线1的信号中相同的离散导频位置处发送与{Xi}正交的序列{X′i},使得X′i=Xi·ejiπ,C为离散导频个数。
如图2所示,为本发明实施例双发射天线的OFDM系统接收端信道估计信号流向示意图。首先对接收数据的频域OFDM符号数据提取其离散导频;其次把相邻符号的离散导频数据进行对插,;对插后的离散导频数据进行频/时域变换;在变换域上分离来自不同发射机发射信号的信道信息;最后对不同的信道信息进行降噪处理得到不同信道的时域冲击响应。
步骤S102:把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换。
在步骤S102中,根据导频配置模式,把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换。
为了便于理解本发明,下面结合具体的通信系统,对本发明作具体说明。
在本实施例中,定义了13种OFDM系统,具体配置参数如表1所示。
表1几种OFDM系统的采样率、系统带宽、离散导频数量及FFT长度
  系统编号   SYS1   SYS2   SYS3   SYS4   SYS5   SYS6   SYS7   SYS8   SYS9   SYS10   SYS11   SYS12   SYS13
  采样率(MHz)   2.5   5   10   10   10   10   8.96   8.96   8.96   11.2   11.2   8.96   11.2
  带宽(MHz)   2   5   6   7   8   10   8   8   8   10   10   8   10
  离散导频数量   78   234   284   334   384   482   420   438   424   418   420   106   108
  FFT长度 1024 2048 4096 4096 4096 4096 4096 4096 4096 4096 4096 1024 1024
在上述OFDM系统中,为了实现本发明,离散导频的配置定义了有两种模式,分别如图3和图4所示。每种模式下每帧的第n(n≥0)个OFDM符号中离散导频对应的有效子载波编号m取值规则为如下:
模式1
if mod(n,2)==0
m = 8 p + 1 , p = 0,1 , . . . , M 8 p + 3 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,2)==1
m = 8 p + 5 , p = 0,1 , . . . , M 8 p + 7 , p = M + 1 , M + 2 , . . . , 2 M + 1
模式2
if mod(n,4)==0
m = 8 p + 1 , p = 0,1 , . . . , M 8 p + 3 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,4)==1
m = 8 p + 5 , p = 0,1 , . . . , M 8 p + 7 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,4)==2
m = 8 p + 3 , p = 0,1 , . . . , M 8 p + 5 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,4)==3
m = 8 p + 7 , p = 0,1 , . . . , M 8 p + 1 , p = M + 2 , M + 3 , . . . , 2 M + 2
参数M对应于以上OFDM系统的取值见表2。
表2两种模式下离散导频对应子载波编号取值规则中的参数M
Figure B2009102412081D0000065
对应于以上13种双发射天线OFDM系统,实现信道估计的信号流向示意图如图5所示。
在本实施例中,相应于图3、图4的导频信息的配置模式一和模式二,定义的导频配置模式包括模式一和模式二:
模式一为将相邻两个符号的离散导频对插后形成离散导频集,所述离散导频集为对插后的离散导频数据;
模式二为将相邻四个符号的离散导频对插后形成离散导频集,所述离散导频集为对插后的离散导频数据。
具体而言,导频配置模式为模式一时,所述接收设备接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,2)=0时,将相邻两个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+1,0,sn,1,sn+1,1,…,sn,C-1,sn+1,C-1};
当mod(n,2)=1时,将相邻两符号的离散导频对插后形成的离散导频集为
Sn={si}={sn+1,0,sn,0,sn+1,1,sn,1,…,sn+1,C-1,sn,C-1}。
具体而言,导频配置模式为模式二时,所述接收设备接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,4)=0时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+2,0,sn+1,0,sn+3,0,…,sn,C-1,sn+2,C-1,sn+1,C-1,sn+3,C-1};
当mod(n,4)=1时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+3,0,sn+1,0,sn,0,sn+2,0,…,sn+3,C-1,sn+1,C-1,sn,C-1,sn+2,C-1};
当mod(n,4)=2时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+2,0,sn,0,sn+3,0,sn+1,0,…,sn+2,C-1,sn,C-1,sn+3,C-1,sn+1,C-1};
当mod(n,4)=3时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+1,0,sn+3,0,sn+2,0,sn,0,…,sn+1,C-1,sn+3,C-1,sn+2,C-1,sn,C-1}。
对于每个时隙最后的符号需要用其前边的符号的离散导频按以上相似方法进行对插。
进行频/时域变换时,首先对对插后的离散导频集的中间位置插‘0’,满足Sn长度为K,当离散导频按模式1配置时,K=FFT长度/4;当离散导频按模式2配置时,K=FFT长度/2,FFT长度见表1。然后对Sn序列做逆傅里叶变换(IFFT)。
p ( n ) = IFFT [ S n ] = 2 K Σ i = 0 K - 1 s i · e j 2 πin / K , 0≤n≤K-1
步骤S103:将频/时域变换变换后的数据进行分离。
在步骤S103中,将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。
具体而言,如图5所示,将经过逆傅里叶变换IFFT后得到的具有两个发射天线数据所经信道的信道时域响应p(n),含有两个信道信息的时域响应信号例如如图6所示,从p(n)中分离出两个长度分别为K/2的单个信道的信道冲击响应p1(n)和p2(n),K为OFDM符号导频对插并插0后的长度。即K的长度根据OFDM符号长度和导频配置决定,具体而言,它是导频对插并插0后的长度,对第一种模式K为FFT长度的1/4,对第二种模式,K为FFT长度的1/2。
进一步而言,根据系统设置的参数L,将p(n)中的{p(K/2-L),p(K/2-L+1),…,p(K/2-1)}和{p(K-L),p(K-L+1),…,p(K-1)}互换位置后,前半部分数据构成发射天线1发射数据经历的信道冲击响应p1(n),后半部分数据构成了发射天线2发射数据经历的信道冲击响应p2(n),其中L<K/2。互换位置后,示意图如图7所示,p1(n)如图7中的b,p2(n)如图7中的c。
为了进一步优化系统性能,还可以进行降噪滤波处理,例如,计算p1(n)和p2(n)的平均功率
P j , aveg = 1 K / 2 Σ n = 0 K / 2 - 1 | p j ( n ) | 2 , j=1,2,
对p1(n)和p2(n)进行降噪处理,得到降噪后的信道冲激响应
p j &prime; ( n ) = p j ( n ) , | p j ( n ) | 2 &GreaterEqual; 2 P j , aveg 0 , | p j ( n ) | 2 < 2 P j , aveg , j = 1,2 .
此外,由于降噪后的离散导频序列{p’j(n)}的长度K/2小于FFT长度,因此需要在{p′j(n)}的中间位置补若干个0以使其长度达到系统所对应的FFT长度,(此处并非由于降噪而使得其长度小于FFT长度,降噪前所做的IFFT长度为K/2,而此处补0是为了使得其长度达到OFDM符号长度,即FFT_len,把这些补0后的数据再做FFT就可以得到整个符号所对应的信道响应了)即FFT_len。进一步而言,对补0后的{p’j(n)}序列做傅里叶变换(FFT),就可以得到两个信道的频域响应。
H j ( k ) = 2 FFT [ p j &prime; ( n ) ] = 2 FFT _ len &Sigma; n = 0 FFT _ len - 1 p j &prime; ( n ) &CenterDot; e - j 2 &pi;nk / FFT _ len , 0≤k<FFT_lenj=1,2。
本发明提出的上述方法,解决了接收天线的接收信号是两个发射天线的发射信号经过信道叠加后,接收天线通过接收数据进行信道估计不便的问题,通过在发射端对导频信息进行巧妙且合理的配置后让每一个接收天线利用这些导频信息获得各个发射端信号所经历的信道信息。本发明的实施例提出的技术方案,合理高效使用系统资源,优化系统性能。此外,本发明的实施例提出的技术方案,对现有系统的改动很小,能够和单发射天线的OFDM的信道估计方法兼容,不会影响系统的兼容性,而且实现简单、高效。
如图8所示,为MIMO-OFDM系统中信道估计装置100的结构示意图,包括接收模块110,判断模块120以及分离模块130。
其中,接收模块110用于接收双发射天线OFDM系统发送的数据,其中,发射天线1发射信号离散导频携带的信息为序列{Xi},0≤i<C,发射天线2的发射信号在与发射天线1的信号中相同的离散导频位置处发送与{Xi}正交的序列{X′i},使得X′i=Xi·ejiπ,C为离散导频个数。
判断模块120用于判断接收到的数据的导频配置模式,根据导频配置模式把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换。
为了便于理解本发明,下面结合具体的通信系统,对本发明作具体说明。在本实施例中,定义了13种OFDM系统,具体配置参数如表1所示。为了实现本发明,离散导频的配置定义了有两种模式,分别如图3和图4所示。每种模式下每帧的第n(n≥0)个OFDM符号中离散导频对应的有效子载波编号m取值规则为如下:
模式1
if mod(n,2)==0
m = 8 p + 1 , p = 0,1 , . . . , M 8 p + 3 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,2)==1
m = 8 p + 5 , p = 0,1 , . . . , M 8 p + 7 , p = M + 1 , M + 2 , . . . , 2 M + 1
模式2
if mod(n,4)==0
m = 8 p + 1 , p = 0,1 , . . . , M 8 p + 3 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,4)==1
m = 8 p + 5 , p = 0,1 , . . . , M 8 p + 7 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,4)==2
m = 8 p + 3 , p = 0,1 , . . . , M 8 p + 5 , p = M + 1 , M + 2 , . . . , 2 M + 1
if mod(n,4)==3
m = 8 p + 7 , p = 0,1 , . . . , M 8 p + 1 , p = M + 2 , M + 3 , . . . , 2 M + 2
参数M对应于以上OFDM系统的取值见表2。
在本实施例中,相应于图3、图4的导频信息的配置模式一和模式二,具体而言,判断模块120判断的导频配置模式包括模式一和模式二:
模式一为将相邻两个符号的离散导频对插后形成离散导频集,离散导频集为对插后的离散导频数据;
模式二为将相邻四个符号的离散导频对插后形成离散导频集,离散导频集为对插后的离散导频数据。
例如,导频配置模式为模式一时,接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,2)=0时,判断模块120将相邻两个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+1,0,sn,1,sn+1,1,…,sn,C-1,sn+1,C-1};
当mod(n,2)=1时,判断模块120将相邻两符号的离散导频对插后形成的离散导频集为
Sn={si}={sn+1,0,sn,0,sn+1,1,sn,1,…,sn+1,C-1,sn,C-1}。
例如,导频配置模式为模式二时,接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,4)=0时,判断模块120将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+2,0,sn+1,0,sn+3,0,…,sn,C-1,sn+2,C-1,sn+1,C-1,sn+3,C-1};
当mod(n,4)=1时,判断模块120将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+3,0,sn+1,0,sn,0,sn+2,0,…,sn+3,C-1,sn+1,C-1,sn,C-1,sn+2,C-1};
当mod(n,4)=2时,判断模块120将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+2,0,sn,0,sn+3,0,sn+1,0,…,sn+2,C-1,sn,C-1,sn+3,C-1,sn+1,C-1};
当mod(n,4)=3时,判断模块120将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+1,0,sn+3,0,sn+2,0,sn,0,…,sn+1,C-1,sn+3,C-1,sn+2,C-1,sn,C-1}。
分离模块130用于将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。
在本实施例中,分离模块130得到来自不同发射天线发射信号的信道信息包括:
将经过逆傅里叶变换IFFT后得到的具有两个发射天线数据所经信道的信道时域响应p(n),分离模块130从p(n)中分离出两个长度分别为K/2的单个信道的信道冲击响应p1(n)和p2(n),K为OFDM符号导频对插并插0后的长度。即K的长度根据OFDM符号长度和导频配置决定,具体而言,它是导频对插并插0后的长度,对第一种模式K为FFT长度的1/4,对第二种模式,K为FFT长度的1/2。
在本实施例中,分离模块130从p(n)中分离出两个长度分别为K/2的单个信道的信道冲击响应p1(n)和p2(n)包括:
根据系统设置的参数L,分离模块130将p(n)中的{p(K/2-L),p(K/2-L+1),…,p(K/2-1)}和{p(K-L),p(K-L+1),…,p(K-1)}互换位置后,分离模块130将前半部分数据构成发射天线1发射数据经历的信道冲击响应p1(n),分离模块130将后半部分数据构成了发射天线2发射数据经历的信道冲击响应p2(n),其中L<K/2。互换位置后,示意图如图7所示,p1(n)如图7中的b,p2(n)如图7中的c。
本发明提出的上述装置,解决了接收天线的接收信号是两个发射天线的发射信号经过信道叠加后,接收天线通过接收数据进行信道估计不便的问题,通过在发射端对导频信息进行巧妙且合理的配置后让每一个接收天线利用这些导频信息获得各个发射端信号所经历的信道信息。本发明的实施例提出的技术方案,合理高效使用系统资源,优化系统性能。此外,本发明的实施例提出的技术方案,对现有系统的改动很小,能够和单发射天线的OFDM的信道估计方法兼容,不会影响系统的兼容性,而且实现简单、高效。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

1.一种MIMO-OFDM系统中信道估计的方法,其特征在于,包括以下步骤:
接收设备接收双发射天线OFDM系统发送的数据,其中,发射天线1发射信号离散导频携带的信息为序列{Xi},0≤i<C,发射天线2的发射信号在与发射天线1的信号中相同的离散导频位置处发送与{Xi}正交的序列{X′i},使得X′i=Xi·ejiπ,C为离散导频个数;
根据导频配置模式,把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换;
将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。
2.如权利要求1所述的MIMO-OFDM系统中信道估计的方法,其特征在于,所述导频配置模式包括模式一和模式二:
模式一为将相邻两个符号的离散导频对插后形成离散导频集,所述离散导频集为对插后的离散导频数据;
模式二为将相邻四个符号的离散导频对插后形成离散导频集,所述离散导频集为对插后的离散导频数据。
3.如权利要求2所述的MIMO-OFDM系统中信道估计的方法,其特征在于,所述导频配置模式为模式一时,所述接收设备接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,2)=0时,将相邻两个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+1,0,sn,1,sn+1,1,…,sn,C-1,sn+1,C-1};
当mod(n,2)=1时,将相邻两符号的离散导频对插后形成的离散导频集为
Sn={si}={sn+1,0,sn,0,sn+1,1,sn,1,…,sn+1,C-1,sn,C-1}。
4.如权利要求2所述的MIMO-OFDM系统中信道估计的方法,其特征在于,所述导频配置模式为模式二时,所述接收设备接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,4)=0时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+2,0,sn+1,0,sn+3,0,…,sn,C-1,sn+2,C-1,sn+1,C-1,sn+3,C-1};
当mod(n,4)=1时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+3,0,sn+1,0,sn,0,sn+2,0,…,sn+3,C-1,sn+1,C-1,sn,C-1,sn+2,C-1};
当mod(n,4)=2时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+2,0,sn,0,sn+3,0,sn+1,0,…,sn+2,C-1,sn,C-1,sn+3,C-1,sn+1,C-1};
当mod(n,4)=3时,将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+1,0,sn+3,0,sn+2,0,sn,0,…,sn+1,C-1,sn+3,C-1,sn+2,C-1,sn,C-1}。
5.如权利要求1所述的MIMO-OFDM系统中信道估计的方法,其特征在于,得到来自不同发射天线发射信号的信道信息包括:
将经过逆傅里叶变换IFFT后得到的具有两个发射天线数据所经信道的信道时域响应p(n),从p(n)中分离出两个长度分别为K/2的单个信道的信道冲击响应p1(n)和p2(n),K为OFDM符号导频对插并插0后的长度,所述K由OFDM符号长度和导频配置所决定。
6.如权利要求5所述的MIMO-OFDM系统中信道估计的方法,其特征在于,从p(n)中分离出两个长度分别为K/2的单个信道的信道冲击响应p1(n)和p2(n)包括:
根据系统设置的参数L,将p(n)中的{p(K/2-L),p(K/2-L+1),…,p(K/2-1)}和{p(K-L),p(K-L+1),…,p(K-1)}互换位置后,前半部分数据构成发射天线1发射数据经历的信道冲击响应p1(n),后半部分数据构成了发射天线2发射数据经历的信道冲击响应p2(n),其中L<K/2。
7.一种MIMO-OFDM系统中信道估计的装置,其特征在于,包括接收模块,判断模块以及分离模块,
所述接收模块,用于接收双发射天线OFDM系统发送的数据,其中,发射天线1发射信号离散导频携带的信息为序列{Xi},0≤i<C,发射天线2的发射信号在与发射天线1的信号中相同的离散导频位置处发送与{Xi}正交的序列{X′i},使得X′i=Xi·ejiπ,C为离散导频个数;
所述判断模块,用于判断接收到的数据的导频配置模式,根据导频配置模式把相邻符号的离散导频数据进行对插,并将对插后的离散导频数据进行频/时域变换;
所述分离模块,用于将频/时域变换变换后的数据进行分离,得到来自不同发射天线发射信号的信道信息。
8.如权利要求7所述的MIMO-OFDM系统中信道估计的装置,其特征在于,所述判断模块判断的所述导频配置模式包括模式一和模式二:
模式一为将相邻两个符号的离散导频对插后形成离散导频集,所述离散导频集为对插后的离散导频数据;
模式二为将相邻四个符号的离散导频对插后形成离散导频集,所述离散导频集为对插后的离散导频数据。
9.如权利要求8所述的MIMO-OFDM系统中信道估计的装置,其特征在于,所述导频配置模式为模式一时,接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,2)=0时,所述判断模块将相邻两个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+1,0,sn,1,sn+1,1,…,sn,C-1,sn+1,C-1};
当mod(n,2)=1时,所述判断模块将相邻两符号的离散导频对插后形成的离散导频集为
Sn={si}={sn+1,0,sn,0,sn+1,1,sn,1,…,sn+1,C-1,sn,C-1}。
10.如权利要求8所述的MIMO-OFDM系统中信道估计的装置,其特征在于,所述导频配置模式为模式二时,接收到的第n个OFDM符号Sn的离散导频数据为{sn,i},0≤i<C,
当mod(n,4)=0时,所述判断模块将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn,0,sn+2,0,sn+1,0,sn+3,0,…,sn,C-1,sn+2,C-1,sn+1,C-1,sn+3,C-1};
当mod(n,4)=1时,所述判断模块将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+3,0,Sn+1,0,sn,0,sn+2,0,…,sn+3,C-1,sn+1,C-1,sn,C-1,sn+2,C-1};
当mod(n,4)=2时,所述判断模块将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+2,0,sn,0,sn+3,0,sn+1,0,…,sn+2,C-1,sn,C-1,sn+3,C-1,sn+1,C-1};
当mod(n,4)=3时,所述判断模块将相邻4个符号的离散导频对插后形成离散导频集为
Sn={si}={sn+1,0,sn+3,0,sn+2,0,sn,0,…,sn+1,C-1,sn+3,C-1,sn+2,C-1,sn,C-1}。
11.如权利要求7所述的MIMO-OFDM系统中信道估计的装置,其特征在于,所述分离模块得到来自不同发射天线发射信号的信道信息包括:
将经过逆傅里叶变换IFFT后得到的具有两个发射天线数据所经信道的信道时域响应p(n),所述分离模块从p(n)中分离出两个长度分别为K/2的单个信道的信道冲击响应p1(n)和p2(n),K为OFDM符号导频对插并插0后的长度,所述K由OFDM符号长度和导频配置所决定。
12.如权利要求11所述的MIMO-OFDM系统中信道估计的装置,其特征在于,所述分离模块从p(n)中分离出两个长度分别为K/2的单个信道的信道冲击响应p1(n)和p2(n)包括:
根据系统设置的参数L,所述分离模块将p(n)中的{p(K/2-L),p(K/2-L+1),…,p(K/2-1)}和{p(K-L),p(K-L+1),…,p(K-1)}互换位置后,所述分离模块将前半部分数据构成发射天线1发射数据经历的信道冲击响应p1(n),所述分离模块将后半部分数据构成了发射天线2发射数据经历的信道冲击响应p2(n),其中L<K/2。
CN 200910241208 2009-11-25 2009-11-25 Mimo-ofdm系统中信道估计的方法及装置 Expired - Fee Related CN102075482B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN 200910241208 CN102075482B (zh) 2009-11-25 2009-11-25 Mimo-ofdm系统中信道估计的方法及装置
PCT/CN2010/078996 WO2011063734A1 (zh) 2009-11-25 2010-11-23 Mimo-ofdm系统中信道估计的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910241208 CN102075482B (zh) 2009-11-25 2009-11-25 Mimo-ofdm系统中信道估计的方法及装置

Publications (2)

Publication Number Publication Date
CN102075482A true CN102075482A (zh) 2011-05-25
CN102075482B CN102075482B (zh) 2013-02-13

Family

ID=44033830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910241208 Expired - Fee Related CN102075482B (zh) 2009-11-25 2009-11-25 Mimo-ofdm系统中信道估计的方法及装置

Country Status (2)

Country Link
CN (1) CN102075482B (zh)
WO (1) WO2011063734A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108881090A (zh) * 2017-05-08 2018-11-23 上海数字电视国家工程研究中心有限公司 Ofdm-mimo通信系统中离散导频插入方法及装置
CN113381789A (zh) * 2020-03-09 2021-09-10 中国移动通信集团设计院有限公司 一种多输入多输出数据天线的物理层信道处理方法及装置
CN113839899A (zh) * 2021-10-28 2021-12-24 中国电子科技集团公司第五十四研究所 一种mimo-ofdm系统的信道估计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812386A (zh) * 2005-01-27 2006-08-02 松下电器产业株式会社 低复杂度正交频分复用通信系统及多用户接入方法
KR100895049B1 (ko) * 2007-06-12 2009-04-30 포스데이타 주식회사 Ofdm 또는 ofdma를 지원하는 무선통신시스템에서의 채널 추정 장치 및 방법
KR100909570B1 (ko) * 2007-12-17 2009-07-24 한국전자통신연구원 다중 입출력 직교 주파수 분할 시스템을 위한 반복 채널 및잡음 분산 추정 장치 및 방법
CN101222470B (zh) * 2008-01-31 2010-07-14 上海交通大学 双天线离散傅立叶扩频广义多载波系统的信道估计方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108881090A (zh) * 2017-05-08 2018-11-23 上海数字电视国家工程研究中心有限公司 Ofdm-mimo通信系统中离散导频插入方法及装置
CN113381789A (zh) * 2020-03-09 2021-09-10 中国移动通信集团设计院有限公司 一种多输入多输出数据天线的物理层信道处理方法及装置
CN113381789B (zh) * 2020-03-09 2022-11-01 中国移动通信集团设计院有限公司 一种多输入多输出数据天线的物理层信道处理方法及装置
CN113839899A (zh) * 2021-10-28 2021-12-24 中国电子科技集团公司第五十四研究所 一种mimo-ofdm系统的信道估计方法
CN113839899B (zh) * 2021-10-28 2022-08-02 中国电子科技集团公司第五十四研究所 一种mimo-ofdm系统的信道估计方法

Also Published As

Publication number Publication date
CN102075482B (zh) 2013-02-13
WO2011063734A1 (zh) 2011-06-03

Similar Documents

Publication Publication Date Title
CN101494528B (zh) 发射分集块传输系统的训练序列设计及其信道估计方法
EP1832074B1 (en) Method and apparatus for transmitting/receiving a signal in an FFH-OFDM communication system
CN101421943B (zh) Mimo接收装置
CN101278497B (zh) 用于正交频分复用系统和基于正交频分复用的蜂窝系统的虚拟多天线方法
CN100553186C (zh) Ofdm信道估计以及多发射天线跟踪
CN101015155B (zh) 接收方法、装置及利用它们的通信系统
CN101223751B (zh) 用于在移动通信系统中发送/接收具有扩展训练码元的信号的方法
CN101355541B (zh) 快变信道条件下正交频分复用系统中分块均衡方法
CN100385824C (zh) 一种mimo-ofdm系统的自适应信道估计方法
US7801230B2 (en) Channel estimation method and apparatus in an orthogonal frequency division multiplexing (OFDM) wireless communication system
Ehsanfar et al. Interference-free pilots insertion for MIMO-GFDM channel estimation
US8391427B2 (en) Channel estimation methods and apparatus utilizing the same
CN101355543A (zh) 基于正交训练序列的mimo-scfde系统信道估计方法
CN102045285B (zh) 信道估计方法、装置以及通信系统
CN102075481A (zh) Ofdm系统中子载波间干扰消除的方法及装置
CN101340406B (zh) 多输入多输出正交频分复用系统的信道估计方法
CN102075482B (zh) Mimo-ofdm系统中信道估计的方法及装置
KR20090074591A (ko) 사이클릭 프리픽스가 없는 신호를 처리하는 중계기 기반의통신 시스템 및 그 방법
CN101848178B (zh) 一种单载波频域均衡方法和系统、发送和接收装置
CN102244630A (zh) Ofdm系统中子载波间干扰消除的方法及装置
CN104079306A (zh) 一种接收机的操作方法和信号接收设备
CN103095628A (zh) 一种降低带外辐射的发射方法、接收方法及装置
Niranjane et al. Performance analysis of different channel estimation techniques
Ohno Preamble and pilot symbol design for channel estimation in OFDM
Sahu et al. A comparative analysis of LS and MMSE channel estimation techniques for MIMO-OFDM system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1156752

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130213

Termination date: 20131125

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1156752

Country of ref document: HK