CN102069176B - 一种液态金属冷却定向凝固工艺 - Google Patents

一种液态金属冷却定向凝固工艺 Download PDF

Info

Publication number
CN102069176B
CN102069176B CN200910220148A CN200910220148A CN102069176B CN 102069176 B CN102069176 B CN 102069176B CN 200910220148 A CN200910220148 A CN 200910220148A CN 200910220148 A CN200910220148 A CN 200910220148A CN 102069176 B CN102069176 B CN 102069176B
Authority
CN
China
Prior art keywords
melting
low
directional solidification
point metal
thermostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910220148A
Other languages
English (en)
Other versions
CN102069176A (zh
Inventor
申健
张健
楼琅洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN200910220148A priority Critical patent/CN102069176B/zh
Publication of CN102069176A publication Critical patent/CN102069176A/zh
Application granted granted Critical
Publication of CN102069176B publication Critical patent/CN102069176B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供了一种液态金属冷却定向凝固工艺,该工艺采用液态金属冷却定向凝固技术,其特征在于:将铸型直接拉入特有的低熔点金属熔池中,所述低熔点金属熔池由恒温装置(3)和加热器(4)构成,其中恒温装置由内小外大的两个空心筒(3.1,3.2)套装构成,内外两个空心筒相互连通,空心筒壁中充满了液体恒温介质,恒温装置(3)外接加热和冷却系统;加热器(4)由底盘(4.1)及插在其上的加热元件(4.2)组成;恒温装置的外套筒(3.2)和加热器的底盘(4.1)构成熔池,其中充满了低熔点金属(6)。

Description

一种液态金属冷却定向凝固工艺
技术领域
本发明涉及定向凝固技术,特别提供一种液态金属冷却定向凝固工艺。
背景技术
定向凝固技术可以生产消除横向晶界(定向柱晶)或完全消除晶界(单晶)的金属铸件,与传统铸造方法得到的铸件比较,这些铸件具有更好的纵向机械性能。燃气轮机、航空发动机的静动叶片就是定向凝固技术应用的一个例子。
目前广泛使用的定向凝固方法是高速定向凝固技术(HRS)。具体的工艺方法是将熔融的金属浇入保温炉内预热的型壳中,型壳以一定的速率拉出保温炉,形成具有一定方向的温度梯度,最终获得定向铸件。在HRS工艺中,铸件的热量主要是靠铸件底部的激冷盘的热传导和铸件向炉体的辐射传热,但是当铸件的尺寸比较大时,底盘激冷盘的热传导作用已经很小了,主要是靠铸件向炉体的热辐射来进行,这样固液界面前沿的温度梯度就会显著降低,容易产生铸造缺陷。
液态金属冷却定向凝固技术(LMC)是目前国外发达国家大力研究的技术,并且已经形成了一定的生产能力,国内在这方面的研究还刚刚起步。LMC技术与HRS技术相比,主要的不同就是在于对铸件的传热方式的改变,它是将铸型直接拉入低熔点合金熔池,靠低熔点液态金属的热传导代替了HRS技术中的辐射传热。由于热传导的传热效率明显大于热辐射,因此LMC技术可以获得比HRS大的温度梯度,并且可以在相当长的拉伸距离内保持较高的温度梯度,这为制备大尺寸和形状复杂的定向铸件提供了有利的保障。
低熔点金属加热及恒温装置是LMC设备的核心装置。要求此装置能够快速熔化大量的低熔点金属,并且在工作过程中保持低熔点金属的温度稳定。在铸件抽拉过程中由于铸型的热量和保温炉的辐射热会使低熔点金属的温度升高,从而影响铸件固液界面的温度梯度,诱发铸造缺陷。
在国内由于LMC工艺还刚刚起步,因此没有这方面的报道。在国外的一些专利和文献中介绍了一些有关LMC工艺的报道,但是都很少涉及到低熔点金属熔池装置。其中US6308767和US3763926发明中设计到了低熔点金属熔池的装置,他们发明的熔池都是在四周加入了一种加热管和冷却介质,但是这种加热方式还是起不到快速加热融化低熔点金属的目的,而且没有对铸件拉入熔池位置(温度升高最快的位置)周围的低熔点金属进行恒温处理,没有起到快速冷却的作用。
发明内容
本发明目的是提供一种液态金属冷却定向凝固工艺,该工艺采用特有的低熔点金属熔池,能够在工作过程中保持低熔点金属的温度稳定,从而避免铸造缺陷,并且能够快速熔化大量的低熔点金属,提高了生产效率。
本发明具体提供了一种液态金属冷却定向凝固工艺,该工艺采用液态金属冷却定向凝固技术,其特征在于:将铸型直接拉入特有的低熔点金属熔池中,
所述低熔点金属熔池由恒温装置3和加热器4构成,其中恒温装置由内小外大的两个空心筒3.1和3.2套装构成,内外两个空心筒相互连通,空心筒壁中充满了液体恒温介质,恒温装置3外接加热和冷却系统;加热器4由底盘4.1及插在其上的加热元件4.2组成;恒温装置的外套筒3.2和加热器的底盘4.1构成熔池,其中充满了低熔点金属6。
本发明提供的一种液态金属冷却定向凝固工艺,其特征在于:所述恒温装置的内筒上设置温度传感器5。
本发明提供的一种液态金属冷却定向凝固工艺,其具体步骤为:
首先开启快速加热元件4.2,对低熔点金属熔池中的低熔点金属进行熔化,待低熔点金属全部熔化后关闭快速加热元件4.2,采用恒温装置3进行保温。
然后铸型2在保温炉(如图1A所示)内一定温度下进行预热,之后将合金液浇入铸型2中,当合金液全部浇入铸型2中后,铸型2以一定的速率(2mm/min~40mm/min)拉出保温炉A,直接拉入位于保温炉A正下方的低熔点金属熔池B中的低熔点液态金属中,从而完成高温度梯度液态金属冷却定向凝固过程。
本发明提供的一种液态金属冷却定向凝固工艺,其特征在于:提供了一种特有的低熔点金属熔池,在低熔点金属熔池B的入口处临近铸型周围装有恒温装置3.1,这个位置是在定向凝固过程中低熔点液态金属温度急剧升高的位置。在恒温装置3.1中充满了液体恒温介质,外接有加热和冷却系统,可以快速冷却装置中的液体恒温介质;当浇入合金液的铸型2以一定的速率(2mm/min~40mm/min)从保温炉A中拉入熔池B中时,铸型2的热量通过热传导传递给熔池B中的低熔点液态金属,使低熔点液态金属温度升高,同时保温炉A的辐射热也使其温度升高,此时恒温装置3.1中的恒温介质通过外部冷却系统快速降温,使得低熔点液态金属的热量传递给恒温介质,从而使低熔点液态金属的温度保持稳定,保证整个定向凝固过程中铸件固液界面前沿的温度梯度保持在较高的水平。
恒温装置3在外部接有加热和冷却系统,通过温度传感器5获知低熔点金属的温度,以保证恒温装置3在整个定向凝固过程中温度稳定。
本发明提供的一种特有的低熔点金属熔池,其特征在于:在低熔点金属熔池底部装有快速加热元件4,可以使熔池B中的低熔点金属在很短的时间内快速熔化,有利提高工作效率。
为了保持快速加热元件4关闭后低熔点液态金属的温度稳定,在低熔点金属熔池B的四周放置了恒温装置3.2,这个位置的恒温装置主要起保温作用。
本发明提供了一种液态金属冷却定向凝固工艺,并提供了一种特有的低熔点金属熔池,该熔池的特点在于:(1)可以在很短的时间内熔化大量的低熔点金属,提高生产效率;(2)可以有效快速的降低由于保温炉的辐射热和定向凝固过程中高温铸型的热传导造成的低熔点液态金属温度的上升,在整个工作过程中保持低熔点液态金属的温度稳定,这对于铸件的质量起着至关重要的作用。
附图说明
图1低熔点金属熔池加热及恒温装置;
图2采用两种不同低熔点金属熔池装置通过LMC工艺制备的定向铸件,a采用普通低熔点金属熔池装置,b采用本发明装置。
具体实施方式
实施例1:
采用镍基高温合金制备尺寸为20×80×250mm的定向板状铸型。
首先对低熔点金属进行熔化,开启快速加热元件4.2,2吨左右的低熔点金属在1小时之内全部熔化。之后关闭快速加热元件4.2,采用恒温装置3对低熔点金属进行保温。
保温炉A的温度保持在1550℃。合金锭熔化后,浇入板状铸型中,静置1分钟,(浇铸温度1550℃)。铸型随不锈钢底盘以17mm/min的速度向下拉入低熔点金属液中,实现定向凝固。
当铸型刚刚拉入低熔点金属液中时,温度显示仪显示低熔点金属液的温度迅速上高至300℃而且有继续升高的趋势,这时通过温度传感器5将信号传递给外接在恒温装置3的冷却装置,冷却装置启动,通过温度显示仪可以看到低熔点金属液的温度快速(5秒)下降到270℃左右。整个抽拉过程为1个小时,在这1个小时过程中,低熔点金属液的温度可以很好的保持在270℃左右的范围,温度偏差不大于10℃。
本发明工艺可以很好的保证LMC工艺温度梯度的稳定。
比较例1:
为了更好的说明此发明装置的优越性,进行了对比实验。具体的实验方法为分别采用两种低熔点液态金属熔池装置,一种为仿国外常用的熔池装置(没有快速加热和局部恒温装置),另一种采用本发明熔池装置。本实验采用的铸型为一种高温合金定向凝固柱晶叶片(高300mm)。具体的工艺参数同实施例1。通过对比这两种低熔点金属熔池装置在LMC定向凝固过程中的表现,发现第一种普通的低熔点熔池装置熔化全部的低熔点金属大约要4个小时,而本发明装置所用时间为1个小时。同时,当铸型以17mm/min速度拉入低熔点金属熔池时,第一种普通熔池装置中铸型附近低熔点金属的温度急剧升高,虽然这种装置也有冷却功能,但是它们的冷却介质只是在熔池的四周,这使得它的冷却效率大大降低。而本发明装置中,在铸型拉入低熔点金属的周围加入了恒温装置,这使得热量可以很快的被带走,从而起到快速降温的作用。由于在定向凝固过程中,低熔点金属液的温度直接影响了整个工艺的温度梯度,而温度梯度又是所有定向凝固工艺的关键参数,因此低熔点金属液的温度波动会直接影响铸件的质量。图2给出了使用两种不同的低熔点金属熔池装置所得到的定向凝固铸件。从图2中可以看出,采用普通低熔点金属熔池的铸件经过形状突变的位置后晶粒生长发生了紊乱,出现了很多铸造缺陷,比如:断晶、杂晶、疏松等。而采用本发明提供的工艺所制备的定向铸件的质量得到了明显的提升。

Claims (2)

1.一种液态金属冷却定向凝固工艺,采用液态金属冷却定向凝固技术,其特征在于:将铸型直接拉入特有的低熔点金属熔池中,
所述低熔点金属熔池由恒温装置(3)和加热器(4)构成,其中恒温装置由内小外大的两个空心筒(3.1,3.2)套装构成,内外两个空心筒相互连通,空心筒壁中充满了液体恒温介质,恒温装置(3)外接加热和冷却系统;加热器(4)由底盘(4.1)及插在其上的加热元件(4.2)组成;恒温装置的外套筒(3.2)和加热器的底盘(4.1)构成熔池,其中充满了低熔点金属(6)。
2.按照权利要求1所述液态金属冷却定向凝固工艺,其特征在于:所述恒温装置的内筒上设置温度传感器(5)。
CN200910220148A 2009-11-25 2009-11-25 一种液态金属冷却定向凝固工艺 Active CN102069176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910220148A CN102069176B (zh) 2009-11-25 2009-11-25 一种液态金属冷却定向凝固工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910220148A CN102069176B (zh) 2009-11-25 2009-11-25 一种液态金属冷却定向凝固工艺

Publications (2)

Publication Number Publication Date
CN102069176A CN102069176A (zh) 2011-05-25
CN102069176B true CN102069176B (zh) 2012-10-03

Family

ID=44028053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910220148A Active CN102069176B (zh) 2009-11-25 2009-11-25 一种液态金属冷却定向凝固工艺

Country Status (1)

Country Link
CN (1) CN102069176B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396400B (zh) * 2018-11-29 2020-11-13 中国科学院金属研究所 一种大型复杂薄壁细晶铸件一体化成型方法和装置
CN114622281B (zh) * 2020-12-11 2024-04-12 中国科学院金属研究所 液态金属冷却定向凝固法制备单晶叶片过程中的低熔点金属污染控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763926A (en) * 1971-09-15 1973-10-09 United Aircraft Corp Apparatus for casting of directionally solidified articles
CN1169124A (zh) * 1994-08-08 1997-12-31 西门子公司 一种用于熔融液定向凝固的方法与设备
US6308767B1 (en) * 1999-12-21 2001-10-30 General Electric Company Liquid metal bath furnace and casting method
US6354360B1 (en) * 1998-09-22 2002-03-12 Ulrich Betz Device for directional solidification of a fused metal which has been poured into a moulding shell and a process for this purpose
CN1426864A (zh) * 2001-12-21 2003-07-02 三菱重工业株式会社 定向凝固铸造的方法及设备
CN2583113Y (zh) * 2002-12-13 2003-10-29 中国科学院金属研究所 一种单晶高温合金电场定向凝固设备
EP1095721B1 (en) * 1999-10-25 2005-01-26 General Electric Company Liquid metal cooled directional solidification process
CN1597189A (zh) * 2004-08-31 2005-03-23 西北工业大学 一种高梯度双区加热定向凝固装置
CN2808362Y (zh) * 2005-04-29 2006-08-23 中国科学院金属研究所 一种生产定向凝固铸件用的设备
CN1853827A (zh) * 2005-04-29 2006-11-01 中国科学院金属研究所 一种新型定向凝固铸造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763926A (en) * 1971-09-15 1973-10-09 United Aircraft Corp Apparatus for casting of directionally solidified articles
CN1169124A (zh) * 1994-08-08 1997-12-31 西门子公司 一种用于熔融液定向凝固的方法与设备
US6354360B1 (en) * 1998-09-22 2002-03-12 Ulrich Betz Device for directional solidification of a fused metal which has been poured into a moulding shell and a process for this purpose
EP1095721B1 (en) * 1999-10-25 2005-01-26 General Electric Company Liquid metal cooled directional solidification process
US6308767B1 (en) * 1999-12-21 2001-10-30 General Electric Company Liquid metal bath furnace and casting method
CN1426864A (zh) * 2001-12-21 2003-07-02 三菱重工业株式会社 定向凝固铸造的方法及设备
CN2583113Y (zh) * 2002-12-13 2003-10-29 中国科学院金属研究所 一种单晶高温合金电场定向凝固设备
CN1597189A (zh) * 2004-08-31 2005-03-23 西北工业大学 一种高梯度双区加热定向凝固装置
CN2808362Y (zh) * 2005-04-29 2006-08-23 中国科学院金属研究所 一种生产定向凝固铸件用的设备
CN1853827A (zh) * 2005-04-29 2006-11-01 中国科学院金属研究所 一种新型定向凝固铸造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
罗瑞盈,杨彩丽,王献辉,史正兴,傅恒志,杨尊社.高梯度双区加热定向凝固装置的研制.《航空制造技术》.1996,(第04期), *
葛丙明等.液态金属冷却法在高温合金定向凝固中的应用.《铸造》.2009,第58卷(第09期), *

Also Published As

Publication number Publication date
CN102069176A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
CN104164574B (zh) 一种电渣重熔制备大型发电机护环用空心钢锭的方法
CN103147120B (zh) 一种高温合金的定向凝固装置
CN109396400B (zh) 一种大型复杂薄壁细晶铸件一体化成型方法和装置
CN201500776U (zh) 带有热管冷却系统的高温合金定向凝固装置
CN105583366A (zh) 一种薄壁高温合金浮动壁瓦片的精密铸造方法
CN105436478A (zh) 控制变截面处杂晶形成的方法
CN104353795A (zh) 有温度梯度结晶器的连续定向凝固技术
CN101302605A (zh) 强静磁场控制高温合金定向凝固组织枝晶的方法
CN104878443A (zh) 一种制造单晶铸件的熔化浇注方法
CN103008623A (zh) 利用强磁场细化晶粒的方法及其专用金属凝固铸造装置
CN102069176B (zh) 一种液态金属冷却定向凝固工艺
CN102240796B (zh) 半固态合金成型工艺及其所用成型装置
CN101537485B (zh) 用于制造单晶铸件的薄壳上浮方法及其装置
CN100406161C (zh) 一种定向凝固铸造方法
CN105537527A (zh) 一种利用真空快速熔炼制备涡轮叶片的装置
CN102719688A (zh) 一种能提高多元锌铝合金热疲劳性能的工艺方法
CN103726024B (zh) 一种溅射镀膜用金靶材的生产方法
CN203737962U (zh) 一种细化金属凝固组织的装置
CN101456063B (zh) 大型薄壁钛合金铸件型壳预热法铸造工艺
CN205393483U (zh) 钛镍合金连铸用复合结晶器
CN112974740B (zh) 一种gh4151合金的真空感应熔炼浇铸工艺和锭模装置
CN105772658B (zh) 一种大尺寸镁合金铸锭浇注系统及方法
CN109475931A (zh) 定向凝固冷却熔炉及使用这种熔炉的冷却方法
CN102994808A (zh) 一种镍铬合金的制备方法
CN217492625U (zh) 一种电磁加热和水冷双功能浇铸模具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant