CN102065749B - Monitoring a vital parameter of a patient with ''in-situ'' modulation scheme to avoid interference - Google Patents

Monitoring a vital parameter of a patient with ''in-situ'' modulation scheme to avoid interference Download PDF

Info

Publication number
CN102065749B
CN102065749B CN 200980122685 CN200980122685A CN102065749B CN 102065749 B CN102065749 B CN 102065749B CN 200980122685 CN200980122685 CN 200980122685 CN 200980122685 A CN200980122685 A CN 200980122685A CN 102065749 B CN102065749 B CN 102065749B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
monitoring
vital
parameter
avoid
patient
Prior art date
Application number
CN 200980122685
Other languages
Chinese (zh)
Other versions
CN102065749A (en )
Inventor
J·维恩
T·P·H·G·扬森
H·R·M·韦伯恩
T·C·W·申克
L·费里
Original Assignee
皇家飞利浦电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0059Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Abstract

本发明涉及一种通过测量发射到患者组织上的光的衰减来监测所述患者生命参数的方法,包括以下步骤:利用调制频率或/和调制编码来调制所述光;将经调制光发射到所述患者的组织上;收集透射通过所述组织的光或/和从所述组织反射的光;对所收集的光进行解调;关于所述环境光的干扰对已解调的所收集的光进行分析;确定使得环境光的干扰最小化或降到预定阈值以下的调制频率或/和调制编码;以及根据所确定的使得环境光的干扰最小化或降到预定阈值以下的调制频率或/和调制编码设置用于调制所述光的调制频率或/和调制编码。 The present invention relates to a method of transmitting by measuring the attenuation of light on the tissue of the patient to monitor patient vital parameter the method comprising the steps of: using a modulation frequency or / and to modulate the optical modulation coding; transmitted to the modulated light on the tissue of the patient; and collecting transmitted light or reflected light from the tissue in the tissue / through; of demodulating the collected light; collected-interference of the ambient light of the demodulated light analysis; determining that the disturbance of the ambient light is minimized or falls below a predetermined threshold modulation frequency or / and modulation coding; and so that ambient light interference in accordance with the determined minimum or falls below a predetermined threshold modulation frequency or / provided for the coding and modulation frequency or the modulation / coding and modulation of the modulated light. 通过这种方式,提供了一种可能,即通用而可靠地以高的信号干扰比监测患者的生命参数。 In this manner, a possibility that GM and reliably with high signal to interference ratio to monitor the patient's vital parameters.

Description

利用“就地”调制方案监测患者的生命参数以避免干扰 Use "in situ" modulation scheme to monitor the vital parameters of the patient to avoid interference

技术领域 FIELD

[0001] 本发明涉及光衰减测量的领域,并且具体涉及通过测量发射到患者的组织上的光的衰减来监测患者生命参数的方法和装置。 [0001] The present invention relates to the field of light attenuation measurements, and in particular to a method and apparatus for monitoring vital parameters of the patient attenuation of the light transmitted to the tissue by measuring a patient.

背景技术 Background technique

[0002] 在传播通过特定介质或从特定介质反射时测量光的吸收和/或散射构成了各种医疗领域的基础,例如病人监护仪中广泛应用的很多光学分光镜分析法的基础。 [0002] In certain propagation media or by measuring light reflected from a specific media absorb and / or scatter forms the basis of various medical fields, and the basis for many optical spectroscopic analysis of the patient monitor, for example, is widely used. 一个说明性的示例是透射脉冲血氧定量法。 An illustrative example is transmissive pulse oximetry.

[0003] 脉冲血氧定量法是用于非侵入性监测患者动脉氧饱和度的光学方法,并且已经成为临床实践中最常使用的技术之一。 [0003] Pulse oximetry is an optical method for arterial oxygen saturation non-invasively monitoring a patient and has become one of the techniques most commonly used in clinical practice. 在红血球中蛋白质血红蛋白(Hb)与氧气结合以通过身体传输,其具有在被氧化时颜色从暗红变为鲜红的性质。 Protein in red blood cells hemoglobin (Hb) combines with oxygen to transmit through the body, which has a dark when oxidized color changes from red properties. 通过在两个或更多波长发射和检测光,脉冲血氧定量计确定周边血管床中的光吸收,以获得对氧饱和度的间接估计,即,氧络血红蛋白(HbO2)的浓度分数。 By emitting and detecting light, a pulse oximeter to determine the peripheral vascular bed light absorption to obtain an indirect estimate of oxygen saturation, i.e., oxygenated hemoglobin (HbO2) at a fractional concentration of two or more wavelengths. 脉冲血氧定量计依赖心脏收缩和舒张导致的动脉血容积变化来确定仅由脉动的动脉血吸收的光量,由此很大程度上排除了组织和静脉血的贡献。 Pulse oximeters rely on systolic and diastolic arterial blood volume change leads only to determine the amount of light absorbed by the pulsatile arterial blood, and thereby eliminates much blood tissue contributions.

[0004] 在很多应用中,包括血氧定量法中,需要同时或准同时测量不同波长,即不同颜色的光路的衰减。 [0004] In many applications, including oximetry, it is necessary simultaneously or quasi-simultaneous measurements at different wavelengths, i.e. of different colors of light path attenuation. 为此目的,通常利用多个光源,它们通常与单个光探测器组合。 For this purpose, typically utilize a plurality of light sources, they are typically combined with a single light detector. 为了能够在光探测器处区分来自每个发射器的信号,通常采用电复用方法,例如时分复用(TDM)、频分复用(FDM)或码分复用(CDM)。 To be able to distinguish the signal from each transmitter at the light at the detector, usually electrical multiplexing method, for example, time division multiplexing (TDM), frequency division multiplexing (FDM), or code division multiplexed (CDM).

[0005] 在医疗实践中,在例如病人监护中应用的光衰减测量受到电磁干扰的影响。 [0005] In medical practice, affected by electromagnetic interference in the measurement of light attenuation in applications such as patient monitoring. 通常,这样的干扰由各种光波长且具有不同调制频率的环境光构成。 Typically, such interference light formed of various optical wavelengths and with different modulation frequencies of the environment. 常见的示例包括自然光,其通常未经调制,以及来自白炽灯和来自荧光灯的人造光,白炽灯的光以双倍市电频率(IOOHz或120Hz)以及50Hz或60Hz谐波被调制,荧光灯的光闪烁率取决于具体的电子镇流器而从几十到几百千赫变化。 Common examples include light natural light, which is typically not modulated, as well as incandescent light at double mains frequency (IOOHz or 120Hz) and 50Hz or 60Hz harmonics from artificial light from incandescent lamps and fluorescent lamps is modulated fluorescent blink rate depending on the specific electronic ballasts from tens to hundreds of kilohertz change.

[0006] 通常,在光谱测定装置中,采取措施来减轻外部干扰对测量的影响。 [0006] Generally, the spectrum measuring apparatus, measures are taken to mitigate the effects of external disturbances on the measurement. 例如,在脉冲血氧定量计中,调制光源,使得在光探测器处,能够通过滤波或解调将发射的光与环境光区分开。 For example, in a pulse oximeter, the modulated light source, such that the light at the detector, can be separated by filtering or demodulation region light emitted from ambient light. 不论应用什么调制技术,常规方法都依赖于对环境光的频谱调制的认知,并假设所用的光源调制频率或频带在装置使用寿命内都维持固定。 Whatever modulation technique, a conventional method of application depend on the cognitive spectrum modulated ambient light, assuming the light source modulation frequency or frequency band used in the apparatus life maintained constant. 然而,如果事前仅部分知道或不知道环境光调制频谱,例如,在光谱测定装置工作在光通信系统附近时就是这种情况,那么在装置工作频率处探测到的光的调制频谱中可能存在干扰。 However, if only partially advance or without the knowledge of the ambient light modulation spectrum, for example, there may be interference spectrometer work is the case, then the device detected in the operating frequency in the vicinity of the optical communication system in the light modulation spectrum . 类似地,高强度放电(HID)灯的新操作方案可能会导致具有宽频率范围的干扰信号。 Similarly, high intensity discharge (HID) lamps might result in new operational interference signal having a wide frequency range. 此外,预计新兴的发光二极管(LED)光源会使用宽范围的调制频率,从而产生新的干扰源。 Moreover, emerging light emitting expected diode (LED) light source uses a wide range of modulation frequencies, creating new sources of interference. 如果干扰信号损害了工作频带,信号干扰比(SIR)可能下降很大程度,由此使测量质量降低。 If the damage to the operating frequency band interfering signals, signal to interference ratio (SIR) may decrease to a large extent, thereby reducing the quality of the measurement.

[0007] EP1655881A1公开了一种系统,其用于诸如患者血氧饱和度参数的患者医学参数监测系统中,用于减小调制信号通信中的信号干扰,其包括测量处理器,在解调之前测量处理器测量所接收幅度调制信号的噪声分量幅度。 [0007] EP1655881A1 discloses a system for monitoring medical parameters such as a system of the patient blood oxygen saturation parameter in a patient, for reducing signal interference in a communication modulated signal, which includes a measurement processor, prior to demodulation measurement processor measures the amplitude of the noise component of the received amplitude modulated signal. 测量处理器还识别幅度大于另一噪声分量幅度的噪声分量的频率。 The processor also identifies the measurement frequency is greater than the amplitude of the noise component to another component amplitude noise. 基本在所识别噪声分量的谐波频率处产生载波频率并将载波频率用于产生幅度调制信号并进行解调。 Generating the carrier frequency in the fundamental noise component identified carrier frequency and harmonic frequencies for generating amplitude modulated signal and demodulated.

[0008] 发明内容 [0008] SUMMARY OF THE INVENTION

[0009] 本发明的目的在于提供这样一种方法和对应的装置,该方法通过测量发射到患者组织上的光的衰减来监测患者的生命参数,该装置以通用且可靠的方式实现高的信号干扰比。 [0009] The object of the present invention to provide a method and a corresponding apparatus, the method of the attenuation of light transmitted to the tissue of the patient to monitor the vital parameter of a patient by measuring the apparatus versatile and reliable manner to achieve a high signal interference ratio.

[0010] 这个目标是通过一种通过测量发射到患者组织上的光的衰减来监测所述患者生命参数的方法实现的,该方法包括以下步骤: [0010] This object is achieved by a transmitting method by measuring the attenuation of light on the monitor patient tissue to achieve the vital parameters of the patient, the method comprising the steps of:

[0011] 根据调制模式调制所述光; [0011] The light modulation according to a modulation mode;

[0012] 将经调制光发射到所述患者的组织上; [0012] The modulated light emitted onto tissue of the patient;

[0013] 收集环境光和/或透射通过所述组织的光和/或从所述组织反射的光; [0013] collecting ambient light and / or transmitted and / or reflected light from the tissue by the tissue;

[0014] 根据所述调制模式对所收集的光进行解调; [0014] demodulating the collected light according to the modulation mode;

[0015] 关于所述环境光的贡献对已解调的所收集的光进行分析; [0015] The contribution of the ambient light to analyze the light collected demodulated;

[0016] 确定使得环境光的贡献最小化或降到预定阈值以下的调制模式;以及 [0016] determined that the contribution of the ambient light is minimized or falls below a predetermined threshold modulation mode; and

[0017] 根据所确定的使得环境光的贡献最小化或降到预定阈值以下的调制模式设置用于调制光的调制模式。 [0017] The contribution of the ambient light such that the determined minimum or falls below a predetermined threshold value setting modulation mode for modulating the light modulation mode.

[0018] 根据本发明,收集透射通过组织的光或/和从组织反射的光,这是衰减测量所必需的,以便监测患者的生命参数。 [0018] According to the present invention, tissue collected light transmitted through and / or reflected light from the tissue, which is required for attenuation measurement, in order to monitor the vital parameter of the patient. 然而,在收集这样的光时,不可能完全避免也收集到至少一些环境光。 However, when collecting this light, it is impossible to completely avoid also collect at least some ambient light. 于是,“收集环境光”的步骤并非意味着必须要采取专门措施来收集这种环境光。 So, step "collect environmental light" does not mean that special measures must be taken to collect this kind of ambient light. 可是,当然,采取这样的措施落在本发明的范围之内,在收集透射和/或反射光时始终将收集到环境光。 But, of course, to take such measures fall within the scope of the present invention, to always collect ambient light or the collection and transmission / reflection light. 此外,如果因为没发射光而没有任何透射和/或反射光,也可能收集到环境光。 Furthermore, because no light is emitted if without any transmitted and / or reflected light, ambient light may also be collected. 这意味着根据本发明的方法的上述步骤不必同时执行。 This means that while not necessary to perform the above-described steps of the method according to the present invention. 具体而言,这意味着,可以在发射经调制光期间和/或在不发射经调制光从而仅收集环境光的时间段内执行“收集环境光和/或透射通过组织的光和/或从组织反射的光”的步骤。 Specifically, this means may be and / or non-emission period of the modulated light so as to perform only collects ambient light is modulated during transmission light "collecting ambient light and / or light transmitted through the tissue and / or from light reflected tissue "step.

[0019] 因此,本发明的重要理念是在工作期间,即“就地(in-situ)”针对环境光的调制频谱调整调制方案。 [0019] Thus, an important idea of ​​the invention during work, i.e., "in situ (in-situ)" to adjust the modulation scheme for modulation spectrum of the ambient light. 由于根据环境光的干扰(这是基于环境光的贡献“就地”确定的)“就地”设置调制方案,即调制频率或调制编码,所以大大减小了环境光对信号干扰比的负面影响。 Since the interference of ambient light (which is the contribution of ambient light "in situ" determination based) "in situ" set the modulation scheme, i.e. the modulation frequency or the modulation coding, thus greatly reducing the negative effects of ambient light on the signal to interference ratio .

[0020] 应当强调的是,术语“患者”不仅仅指患病的人,而是指所有的人和动物,无论是否健康。 [0020] It should be emphasized that the term "patient" refers not only to sick people, but to all the people and animals, regardless of whether or not health.

[0021] 通常,有几种执行本发明的不同方式。 [0021] Generally, there are several different ways of carrying out the invention. 不过,根据本发明的优选实施例,调制模式为调制频率或/和调制编码。 However, for example, the modulation mode is a modulation frequency or / and modulation coding according to a preferred embodiment of the present invention.

[0022] 此外,根据本发明的优选实施例,使将光发射到所述患者的组织上的步骤中断预定的中断时间段,在这一中断时间段期间,依次利用不同的调制频率对所收集的光进行解调,以及将使得解调所收集的光的输出最小化或降到预定阈值以下的调制频率确定为所述预定中断时间段之后用于发射到所述患者的组织上的光的调制频率。 [0022] According to a preferred embodiment of the present invention, the step of emitting light on the tissue to the patient is interrupted for a predetermined interrupt period, during this interruption time period the collected sequentially using different modulation frequencies demodulating light, and the light so that the output of demodulating the collected minimized or falls below a predetermined threshold modulation frequency is determined as the predetermined period of time after the interruption of light on the tissue of the patient for transmission to the modulation frequency. 于是,根据本发明的这一优选实施例,利用了该方法可以操作在不同频率,即不同FDM模式的事实。 Thus, according to this preferred embodiment of the present invention, utilizing the method may operate at different frequencies, i.e. different FDM modes fact. 优选地,这些不同FDM模式在频域中大致,最优选精确地,彼此正交。 Preferably, these different FDM modes substantially, most preferably exactly, orthogonal to each other in the frequency domain.

[0023] 对于本发明的这一优选实施例而言,更优选地,不同调制频率是频率的离散集或在预定范围内是连续的。 [0023] For this preferred embodiment of the present invention, more preferably, different modulation frequencies are a discrete set of frequencies or are continuous within a predetermined range. 优选使将光发射到所述患者的组织上的步骤周期性地中断。 Preferably the step of emitting light onto the tissue of the patient is periodically interrupted. 此外,除了在衰减测量和频率调整之间交替改变之外,优选基于对解调器输出的分析而启动调整阶段。 Further, in addition to alternately change between attenuation measurements and frequency adjustment, preferably based on an analysis of the demodulator output phase adjustment is initiated.

[0024] 根据本发明的另一优选实施例,使将光发射到所述患者的组织上的步骤中断预定的中断时间段,在这一中断时间段期间,依次利用不同的调制编码对所收集的光进行解调,以及将使得解调所收集的光的输出最小化或降到预定阈值以下的调制编码确定为所述预定中断时间段之后用于发射到所述患者的组织上的光的调制编码。 [0024] According to another preferred embodiment of the present invention, the step of emitting light on the tissue to the patient is interrupted for a predetermined interrupt period, during this interruption time period, using a different modulation coding sequence of the collected demodulating light, and the light so that the output of demodulating the collected minimized or falls below a predetermined threshold value is determined as the predetermined modulation encoding period after the interruption of light on the tissue of the patient for transmission to the modulation and coding.

[0025] 此外,类似于前述本发明的优选实施例,优选使将光发射到所述患者的组织上的步骤周期性地中断。 [0025] Further, similarly to the foregoing preferred embodiments of the present invention, it is preferable that the step of emitting light into tissue of the patient is periodically interrupted. 此外,除了在衰减测量和编码调整之间交替改变之外,优选基于对解调器输出的分析而启动调整阶段。 Further, in addition to alternately change between attenuation measurements and the coding adjustment is preferably based on analysis of the demodulator output phase adjustment is initiated.

[0026] 此外,对于使用调制编码代替调制频率的情况,在关于环境光的贡献分析已解调的所收集的光的步骤得到低水平贡献的情况下,使用较短的调制编码;在关于环境光的贡献分析已解调的所收集的光的步骤得到高水平贡献的情况下,使用较长的调制编码。 In the case [0026] Further, in the case instead of using the modulation and coding modulation frequency, the light in the step of the ambient light contribution analysis on the demodulated collected to give a low level of contribution, a shorter modulation code used; about the environment the case where the analysis of contribution light light demodulated collected to obtain a high level of contribution, a longer modulation code used.

[0027] 此外,根据本发明的优选实施例,使将光发射到所述患者的组织上的步骤中断预定的中断时间段,在这一中断时间段期间,使用傅里叶变换确定所收集的光的功率谱,以及将这样的频率确定为所述预定中断时间段之后用于发射到所述患者组织的光的调制频率,该频率的功率谱具有其最小值或其功率谱下降到预定阈值。 [0027] According to a preferred embodiment of the present invention, the step of emitting light on the tissue to the patient is interrupted for a predetermined interrupt period, during this interruption time period, is determined using a Fourier transform of the collected the power spectrum of light, and thus determines the frequency of the predetermined period of time after the interruption of the light modulation frequency for transmission to the patient's tissue, the frequency of the power spectrum or power spectrum has a minimum value drops to a predetermined threshold value . 于是,本发明的这一优选实施例涉及直接,即在解调之前,评估所收集光的频谱。 Thus, this preferred embodiment relates to the embodiment of the present invention directly, i.e. prior to demodulation, the spectral evaluation of the collected light. 还是对于该优选实施例,进一步优选地,使将光发射到所述患者的组织上的步骤周期性地中断。 For the preferred embodiment or embodiments, it is further preferred that the step of emitting light into tissue of the patient is periodically interrupted.

[0028] 根据本发明的另一优选实施例,通过在至少两个频率模式或频带的预定集合内循环来连续改变发射到所述组织上的光的调制频率;并且将使得解调所收集的光的输出最大化或超过预定阈值的调制频率确定为用于发射到所述患者组织的光的有效(active)调制频率。 [0028] According to another preferred embodiment of the present invention, light emitted to the continuously changing the modulation frequency of the tissue in a predetermined cycle by the set of at least two frequency modes or frequency bands; and of demodulating the collected the output light is maximized or exceeds a predetermined threshold value for determining the modulation frequency of the light emitted to the tissue of the patient an effective (active) modulation frequency. 这种优选方法也称为跳频。 This preferred method is also referred to as frequency hopping.

[0029] 在这种情况下,优选调整频率集以避免被调制的环境光干扰。 [0029] In this case, it is preferable to adjust the set of frequencies to avoid ambient light being modulated. 通常,能够预期,环境光调制频谱不覆盖整个频率集,并且能够假定调制频率中的至少一个不受干扰。 Typically, it can be expected, ambient light modulation spectrum does not cover the entire frequency set, and is capable of assuming at least one of the modulation frequency without interference. 为此,优选选择频率集,使得能够确保高频谱多样性。 To this end, the frequency set is preferably chosen such that a high spectral diversity can be secured. 因此,针对该集合中频率中的至少一个,即无干扰的那个频率而探测到的光得到最大衰减测量值。 Thus, the frequency for the set of at least one frequency, i.e., without the interference of the detected light to obtain maximum attenuation measurement. 对于给定颜色的光,衰减测量值与调制频率无关。 The measurement is the modulation frequency for a given color of light, attenuation. 如果该集合中的另一个频率获得了更低的衰减测量值,这是该调制频带中干扰的结果,并且优选替换对应的频率。 If another frequency in the set to obtain a lower attenuation measurement, this is the result of interference in the modulation frequency band, and the corresponding frequency is preferably replaced.

[0030] 原则上,能够任意地选择或基于一些选择标准选择该集合中的新频率。 [0030] In principle, it can be arbitrarily selected, or based on some selection criteria to select a new frequency in the set. 优选地,如前所述,应用频谱感测来选择用于跳频的初始集合并替换该集合中的频率。 Preferably, as described above, using spectrum sensing to select the initial set for frequency hopping and the set of alternative frequencies. 本发明的这一优选实施例的情况下,优选不中断光到患者组织上的发射。 In the case of this preferred embodiment of the present invention, preferably without interrupting the emission of light to the patient's tissue. 优选地,在使用另一调制频率的同时选择新的调制频率或频率集。 Preferably, while another modulation frequency is used to select a new modulation frequency or set of frequencies. 此外,尤其优选的是,使用仅有两个频率的集合,其中第二个调制频率是在利用第一频率测量衰减时从频谱中选择的,反之亦然,由此连续寻找最佳的调制频率。 Further, particularly preferred is the use of a set of only two frequencies, wherein the second modulation frequency is chosen from the spectrum when the attenuation measurements using the first frequency, and vice versa, thereby continuously seeking the optimal modulation frequency .

[0031]自适应调制跳频的优点在于,该方法基于对所接收的多个频率的信号的准同时评估,由此允许连续测量而不会被调整阶段打断。 [0031] The advantage of adaptive modulation frequency hopping is that the method is based on registration of a plurality of frequencies of the received signals simultaneously assessed, thereby allowing continuous measurement without being interrupted by the adjustment phase. [0032] 上述目的还通过一种通过测量发射到患者组织上的光的衰减来监测患者生命参数的装置来实现,该装置具有 [0032] The above object is also achieved by means of a device to the attenuation of light on the tissue of the patient to monitor the vital parameter of the patient by measuring the emission, the apparatus having

[0033] 光调制器,其适于根据调制模式调制所述光;[0034] 光发射器,其适于发射经调制光到所述患者的组织上; [0033] The optical modulator is adapted to modulate the light according to a modulation mode; [0034] The light emitter adapted to emit a modulated light onto the tissue of the patient;

[0035] 光探测器,其适于透射通过所述组织的光或/和从所述组织反射的光,并不可避免地适于收集环境光; [0035] The light detector is adapted to transmit light and / or light reflected from the tissue by the tissue, and inevitably adapted to collect ambient light;

[0036] 光解调器,其适于根据所述调制模式对所收集的光解调; [0036] The optical demodulator which is adapted according to the modulation mode of the demodulation of the collected light;

[0037] 干扰分析器,其适于关于所述环境光的贡献分析已解调的所收集的光;以及 [0037] interference analyzer adapted for analysis of the contribution of the ambient light demodulated collected light; and

[0038] 处理单元,其适于确定使得所述环境光的贡献最小化或降到预定阈值以下的调制模式,并根据所确定的使得环境光的贡献最小化或降到预定阈值以下的调制模式设置用于调制所述光的调制模式。 [0038] a processing unit, adapted to determine that the contribution of the ambient light is minimized or falls below a predetermined threshold value modulation mode, and minimized or falls below a predetermined threshold value such that the ambient light modulation mode according to the determined contribution setting a modulation mode for modulating the light.

[0039] 对于根据本发明的优选实施例的装置而言,这种装置适于以至少两种不同波长发射光。 [0039] For the apparatus according to a preferred embodiment of the present invention, such a device adapted to emit at least two different wavelengths of light. 此外,尤其优选的是该装置为脉冲血氧定量计。 Further, particularly it preferred that the apparatus is a pulse oximeter.

附图说明 BRIEF DESCRIPTION

[0040] 参考下文描述的实施例,本发明的这些和其他方面将显而易见并得到阐述。 [0040] with reference to the embodiments described hereinafter, the present invention These and other aspects will be apparent and elucidated.

[0041] 在附图中: [0041] In the drawings:

[0042] 图1示出了用于透射脉冲血氧定量法的典型布置; [0042] FIG. 1 shows a typical arrangement for transmitting the pulse oximetry;

[0043] 图2示出了根据本发明实施例的透射脉冲血氧定量法的一般化方框图; [0043] FIG. 2 shows a generalized block diagram of a transmission pulse oximetry embodiment of the present invention;

[0044] 图3示出了具有周期性方波基准信号的解调器; [0044] FIG. 3 shows a demodulator with a periodic square wave reference signal;

[0045] 图4示出了根据本发明实施例的不同FDM模式的频谱;以及 [0045] FIG. 4 shows the frequency spectrum an embodiment of the present invention is different FDM modes; and

[0046] 图5示出了来自WH256码本的不同代码频谱。 [0046] FIG. 5 shows a different code from WH256 spectral codebook.

具体实施方式 detailed description

[0047] 根据本发明的实施例,不是在制造衰减测量装置时固定光调制频带,而是“就地”调整调制方案以适应环境光的调制频谱。 [0047], it is not fixed in accordance with embodiments of the present invention in manufacturing a light modulation band attenuation measurement means, but "in situ" to adapt the modulation scheme to adjust the ambient light modulation spectrum. 这种调制方案是通过主动监测环境光或其对检测性能的影响并改变透射和/或检测参数使得能够避免或抑制调制环境光的干扰而实现的。 This modulation scheme by actively monitoring the ambient light is the influence on the detection performance thereof and changing transmission and / or detection parameters makes it possible to avoid or suppress the modulated ambient light interference achieved.

[0048] 图1示出了用于透射脉冲血氧定量法的典型布置:红光源I和红外(IR)光源2用于向患者的组织,即手指3上辐照660nm的红光和940nm的IR光。 [0048] FIG. 1 shows a typical arrangement for transmitting the pulse oximetry: I red light and infrared (IR) light source 2 to a patient for tissue, i.e., finger 3 on the irradiation of 940nm and 660nm red IR light. 然后利用公共光探测器4收集透射通过手指3的光的部分。 Using a common light detector 4 is then collected by the light transmissive portions 3 of the finger.

[0049] 图2示出了根据本发明实施例的透射脉冲血氧测量计的一般方框图。 [0049] FIG. 2 shows a general block diagram of the meter embodiment according to the transmitted pulse oximetry embodiment of the present invention. 该系统包括处理单元5,处理单元5调节光调制器6的参数,光调制器充当脉冲控制器并调制光源1、2。 The system comprises a processing unit 5, the processing unit 5 parameters modulating light modulator, an optical modulator 6 and modulated pulse controller serves as the light source 1. 光调制器6的配置取决于所应用的具体复用方案,例如,对于TDM而言,交替激活光源1、2,而对于FDM而言,光源1,2同时发光,但具有不同的调制频率。 The configuration of the optical modulator 6 depends on the specific multiplexing scheme applied, e.g., for the TDM, alternately activate the light source 2, whereas for FDM, the light source 2 emit light simultaneously but with different modulation frequencies. 复用方案的理由是,通过这种方式,能够将同一光探测器4用于估计来自光源1,2两者的光衰减。 Reason for the multiplexing scheme is that in this way, the same light detector 4 can be used for the light from the light source 1, both the attenuation estimate.

[0050] 光探测器4探测传播通过手指3的介质的光并将其转换成电信号。 [0050] The optical detector 4 to detect light propagating through the medium of the finger 3 and converts it into an electrical signal. 该信号然后由信号调节块8预处理,信号调节块包括模拟放大器和带通滤波器,其使得信号适于被模数转换器(ADC)9转换到数字域。 The signal is then conditioned by signal pre-processing block 8, an analog signal conditioning block comprising an amplifier and a bandpass filter, which is adapted such that the signal analog to digital converter (ADC) 9 into the digital domain. 每个相关器10都包括解调器11和解复用器12,用于对所探测的光同时进行解调和解复用,并将结果提供给处理单元5,处理单元5通过评估所透射和已解调信号来确定关心的参数。 Each correlator 10 comprises a demodulator 11 and a demultiplexer 12, for demodulating the detected light demultiplexing same time, supplies the result to the processing unit 5, the processing unit 5 is transmitted and by evaluating demodulated signal to determine the parameters of interest. 为此,处理单元包括干扰分析器14。 For this purpose, the processing unit comprises an interference analyzer 14.

[0051]根据本发明实施例的方案与所应用的具体复用技术无关,因为所有衰减测量方法都结合了某种调制方法。 [0051] The independent solutions of the embodiments of the present invention and the specific multiplexing technique applied, since all attenuation measurement methods are incorporated a certain modulation method. 为了使问题简化,以下实施例的描述限于单个光源,由此忽略了具体的解复用方法。 In order to simplify the problem, the following description of the embodiments is limited to a single light source, thereby ignoring the specific demultiplexing method. 对于单个光源而言,仅需要一个相关器10。 For a single light source, only one correlator 10. 那么,该相关器10简单地等于解调器11,例如如图3所示。 Then, the correlator 10 is simply equal to the demodulator 11, as shown in FIG 3. 在这里,通过将所接收信号乘以相同基频的局部基准(fm =1/Tm)使关于光衰减的信息存在于基带中。 Here, the received signal is multiplied by the same group of local reference frequency (fm = 1 / Tm) so that information on the optical attenuation present in the baseband. 接下来,通过低通滤波器13传递信号,仅保留基带信号,由此对带外干扰不予考虑。 Next, the low-pass filter 13 transmits a signal, leaving only the baseband signal, whereby out of band interference will not be considered.

[0052] 应当指出,图3中的方波仅是说明性的,因为只要基频和/或谐波重合,就可以应用任何周期信号来既调制光源1,2,又解调所接收信号。 [0052] It should be noted that square wave in Figure 3 are illustrative only, as long as the fundamental frequency and / or harmonics coincide, any periodic signal can be applied to both modulate the light sources 1, 2, and demodulates the received signal.

[0053] 根据本发明的第一实施例,应用了这样的事实:系统能够工作在不同频率或FDM模式。 [0053] According to a first embodiment of the present invention, use of the fact that: the system can operate at different frequencies or FDM modes. 如图4所示,这些FDM模式在频域中大致正交。 4, which is substantially orthogonal FDM modes in the frequency domain. 在经历的干扰具有频谱色时,存在一种使所经历干扰最小化的模式。 Color having spectral interference experienced, so that there is a mode of experiencing interference is minimized. 此外,应当指出,可以将TDM系统解释为还工作在单一或多个FDM模式下。 Further, it should be noted, the TDM system can be interpreted as also operating in a single or multiple FDM modes.

[0054] 通过评估解调器输出(y)针对干扰低的频带调整系统工作频率(fm)。 [0054] by evaluating the demodulator output (y) for low interference band adjustment system operating frequency (fm). 为此,首先关闭光源,然后调整系统的解调频率,使得解调器的输出最小化或变得低于预定阈值,接下来相应地改变调制频率。 For this purpose, first light source turned off, then the demodulation frequency adjustment system, such that the demodulator output is minimized or becomes lower than a predetermined threshold value, then the modulation frequency changed accordingly.

[0055] 该方法能够在衰减测量和频率调整之间周期性交替,或能够基于对解调器输出信号的分析启动调整阶段。 [0055] The method can alternate periodically between attenuation measurements and frequency adjustment, or can be adjusted based on the start phase of the demodulator output signal of the analysis. 要考虑的频率能够是离散集或在一定范围内连续的。 Frequencies to be considered can be a discrete set or continuous within a certain range. 处理单元能够调整解调频率直到满足一些选择标准,例如获得了某一最小SIR ;或者评估整个范围或频率集,然后选择最佳的;或者通过搜索算法评估预定的频率空间。 The processing unit can be adjusted to meet the demodulation frequency until some of the selection criteria, for example the SIR obtained a certain minimum; or evaluate the entire range or set of frequencies and then select the optimum; or evaluate a predetermined spatial frequency search algorithm.

[0056] 根据本发明的另一实施例,通过直接评估所接收信号的频谱(即,在对信号解调之前),并选择干扰低的频率或频率集,也能够实现相应的表现。 [0056] According to another embodiment of the present invention, the spectrum of the received signal by direct assessment (i.e., the signal prior to demodulation), and select the low interference frequency or set of frequencies, it is possible to achieve the appropriate performance. 为此,首先关闭光,然后利用离散傅里叶变换确定所接收信号(X)的功率谱。 For this purpose, first light is turned off, and then power is determined using a discrete Fourier transform of the received signal (X) spectrum. 接下来,根据功率谱的最小值或者向功率谱施加阈值来选择调制和对应的解调频率(fm)。 Next, the power spectrum minimum value or threshold value is applied to the power spectrum to select a modulation and corresponding demodulation frequency (fm).

[0057] 同样,该方法能够在衰减测量和频率调整之间周期性交替,或能够基于对所接收信号或解调器输出信号的分析(例如通过瞬时功率变化)启动调整阶段。 [0057] Also, the method can alternate periodically between attenuation measurements and frequency adjustment, or can be based on analysis of the demodulator output signal or received (e.g. by a transient power change) starts adjustment phase.

[0058] 或者,能够通过在至少两个频率模式或频带构成的某一离散集内循环,即通过跳频来连续改变调制频率(fm)。 [0058] Alternatively, it is possible by circulating in at least two frequency modes or frequency bands constitute a discrete set, i.e., continuously changing the modulation frequency (FM) by hopping. 在这种情况下,调整频率集以便避免被调制的环境光所干扰。 In this case, adjustment of the set of frequencies to avoid ambient light to be modulated by interference. 通常,环境光调制频谱不覆盖整个频率集,并且能够假定调制频率中的至少一个不受干扰。 Typically, the ambient light modulation spectrum does not cover the entire frequency set, and is capable of assuming at least one of the modulation frequency without interference. 为此,一开始应当选择频率集,从而确保充分的频谱多样性。 To this end, a start should be chosen frequency set to ensure sufficient spectrum diversity. 因此,针对该集合中的频率中的至少一个,即无干扰的那个频率而探测到的光得到最大衰减测量值。 Thus, the frequency for the set at least one of a frequency, i.e., without the interference of the detected light to obtain maximum attenuation measurement. 显然,对于给定颜色的光,衰减测量与调制频率无关。 Obviously, for a given color of light, attenuation measurement is independent of the modulation frequency. 现在,如果该集合中的另一个频率得到更低的衰减测量值,这是该调制频带中干扰的结果,则应当替换对应的频率。 Now, if another frequency in the set to give lower attenuation measurement, this is the result of the modulation band interference, it should be substituted for the corresponding frequency.

[0059] 原则上,能够任意地选择或基于一些选择标准来选择该集合中的新频率。 [0059] In principle, it can be arbitrarily selected, or based on some selection criteria to select a new frequency in the set. 如先前实施例中所述,可以应用频谱感测来选择用于跳频的初始集合并且还替换该集合中的频率。 As described in the previous embodiment, spectrum sensing may be applied to select the initial set for frequency hopping and also to replace frequencies in the set. 为了实现这种功能性,无须关闭光源,并且能够在正使用另一调制频率的同时选择新的调制频率或频率集。 To achieve such functionality, without shutting down the light source, and can select a new modulation frequency or set of frequencies while another modulation frequency is being used. 应当指出,尤其优选地是,仅使用两个频率,其中第二个调制频率是在利用第一频率测量衰减时从频谱中选择的,反之亦然,由此连续寻找最佳的调制频率。 It should be noted, in particular preferred that only two frequencies, wherein the second modulation frequency attenuation is measured using a first frequency selected from the frequency spectrum, and vice versa, thereby continuously seeking the optimal modulation frequency.

[0060] 这种自适应调制跳频的优点在于,该方法是基于对所接收的多个频率处信号的准同时评估,由此允许连续测量而不会被调整阶段打断。 [0060] The advantage of such adaptive modulation frequency hopping is that the method is based on registration of the plurality of frequency signals simultaneously received assessment, thereby allowing continuous measurement without being interrupted by the adjustment phase.

[0061] 根据本发明的另一实施例,使用CDM,其中不同光源使用唯一的,优选正交的编码,以使得光探测器能够区分它们的光贡献。 [0061] According to another embodiment of the present invention, the use of the CDM, wherein the different light sources use unique, preferably orthogonal encoding, so that the light detector is able to distinguish their light contributions. 适当的正交码例如是Walsh-Hadamard(WH)编码,其中能够容纳的光源数目大致等于编码的长度。 Orthogonal code, for example, an appropriate Walsh-Hadamard (WH) code, which can be accommodated in the number of light sources is substantially equal to the length encoding. 除了允许识别不同光源的光贡献之外,这些编码还对光信号的频谱进行整形。 In addition to allowing identification of the light contributions of the different sources outside, these codes also shape the spectrum of the signal light. 作为示例,除了一个编码之外的所有WH编码实现无DC频谱,并且它们的频谱是相互不同的。 As an example, all except one WH encoding encoded DC-free spectrum and their spectra are mutually different.

[0062] 在图5中针对长度256的WH码示出了这种情况。 [0062] In FIG. 5 for WH codes of length 256 illustrates this situation. 其中,描绘了码本中256个编码中的4个的频谱。 Wherein depicted codebook 256 encoding four spectrum. 从图5可以得到结论,这些编码具有显著不同的频谱。 Can be concluded from FIG. 5, these codes have significantly different spectra. 类似地,在接收端与扩展码的相关实现了对与所发射编码无关的频率的抑制。 Similarly, at the receiving end associated with the spreading code to achieve the suppression of a frequency unrelated to the transmitted code. 应当指出,与图3所示的频率复用相反,由这些编码实现的频谱一般将是交迭的。 It should be noted that the frequency reuse shown in FIG. 3 Instead, spectral coding to achieve these will generally be overlapping.

[0063] 然后由自适应选码实现调制方案。 [0063] The modulation scheme is then implemented by the adaptive code selection. 将由系统使用的扩展或调制码调整到受干扰影响最小的一个编码,即与干扰最正交的编码。 Or by the system using the spreading modulation code is adjusted to a minimum of interference by a code, i.e. most orthogonal code interference. 这是通过评估解调器输出实现的。 This is done by evaluating the demodulator output. 为此,可以应用上述第一实施例的技术,其中,首先关闭光,然后调整系统的解调编码,使得解调器输出最小化或变得低于特定阈值,接下来相应地改变发射器扩展码。 For this purpose, the above-described techniques may be applied to the first embodiment, wherein the first light is turned off, then the demodulation coding adjustment system, so that the demodulator output is minimized or becomes lower than a certain threshold, then changed accordingly extended transmitter code.

[0064] 应当指出,在这样的解决方案中,通过应用具有不同码长度的编码,S卩,在干扰水平低时使用短码,在干扰水平高时使用较高码长,还可以增减衰减测量的精确度/可靠性。 [0064] It should be noted that in such a solution, the encoding by applying a different code lengths, S Jie, short codes are used at a low level of interference, a higher code length is used at a high interference level may also be increased or decreased attenuation measurement accuracy / reliability. 较长编码的优点是它们实现更好的频谱整形,从而在接收端产生更好的噪声和干扰抑制。 Longer coding the advantage that they achieve better spectral shaping so that the receiving end produces better noise and interference suppression. 短码的优点是它们减少了测量时间。 Advantage of short codes is that they reduce the measurement time.

[0065] 已经针对单个光源描述了以上实施例。 [0065] have been described above for the embodiment of a single light source. 在这些解决方案中,系统搜索最佳调制频率/编码。 In these solutions, the system searches for the optimal modulation frequency / code. 然而,对于具有N个光源的系统而言,系统找到N个编码/频率的集合,干扰和噪声对这些编码/频率的影响被最小化/低于特定阈值。 However, for a system with N light sources, the system finds the N number of encoding / Afecting, interference and noise frequencies of these codes / frequencies is minimized / below a certain threshold. 在这里,根据工作模式,可以选择使光源之一的最坏情况误差最小化或所有光源的平均误差最小化。 Here, according to the operating mode, one can choose to make the worst-case error minimizing light of all light sources or the average error is minimized.

[0066] 尽管已经在附图和上述说明中详细图示和描述了本发明,但是应当将这样的图示和描述看作是示范性或示例性的,而不是限定性的;本发明不限于所公开的实施例。 [0066] While there has been illustrated and described in detail the present invention in the drawings and foregoing description, it should be such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the embodiment of the disclosed embodiments.

[0067] 通过研究附图、说明书和所附权利要求,本领域技术人员能够在实践所要求保护的本发明的过程当中理解并实现针对所公开的实施例的其他变型。 [0067] The study of the drawings, the specification and the appended claims, those skilled in the art can be understood and other variations to the disclosed embodiments in the process for practicing the claimed invention. 在权利要求中,“包括”一词不排除其他元件或步骤,不定冠词“一”或“一个”不排除多个。 In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. 在互不相同的从属权利要求中陈述某些措施不表示不能有利地采用这些措施的组合。 In certain measures are recited in mutually different dependent claims does not indicate that a combination of these can not be used to advantage measures. 权利要求中的任何附图标记不应被示为具有限制范围的作用。 Any reference numerals in the claims should not be construed as limiting the scope shown in.

Claims (15)

  1. 1.一种通过测量发射到患者的组织上的光的衰减来监测所述患者的生命参数的方法,包括以下步骤: 根据调制模式调制所述光; 将经调制的光发射到所述患者的所述组织上; 收集环境光和/或透射通过所述组织的光和/或从所述组织反射的光; 根据所述调制模式对所收集的光进行解调; 关于所述环境光的贡献对已解调的所收集的光进行分析; 确定使得所述环境光的贡献最小化或降到预定阈值以下的调制模式;以及根据所确定的使得所述环境光的贡献最小化或降到预定阈值以下的调制模式设置用于调制所述光的所述调制模式。 A method of measuring the attenuation by the emission life parameters of the patient to monitor the light on the tissue of a patient, comprising the steps of: modulating the light according to a modulation mode; transmit light to the patient modulated via the tissue; collecting ambient light and / or transmitted light and / or light reflected from the tissue by the tissue; demodulating the collected light according to the modulation mode; contribution of the ambient light analysis of the collected light demodulated; determining that the contribution of the ambient light is minimized or falls below a predetermined threshold modulation mode; and reduced or minimized such that the predetermined ambient light according to the determined contribution threshold value modulation mode for modulating the light provided the modulation mode.
  2. 2.根据权利要求1所述的方法,其中,所述调制模式为调制频率或/和调制编码。 2. The method according to claim 1, wherein the modulation mode is a modulation frequency or / and a modulation code.
  3. 3.根据权利要求2所述的方法,其中,使将光发射到所述患者的所述组织上的步骤中断预定的中断时间段, 在这一中断时间段期间,依次利用不同的调制频率对所收集的光进行解调,并且将使得解调所收集的光的输出最小化或降到预定阈值以下的调制频率确定为所述预定的中断时间段之后用于发射到所述患者组织上的光的调制频率。 3. The method according to claim 2, wherein the step of emitting light into the tissue of the patient is interrupted for a predefined interruption time period, during this interruption time period, successively using different modulation frequency demodulating the collected light and the output light so that the demodulated collected minimized or falls below a predetermined threshold modulation frequency is determined as the interruption after the predetermined period of time for transmission to the tissue of the patient modulation frequency of the light.
  4. 4.根据权利要求3所述的方法,其中,所述不同的调制频率是频率的离散集或在预定范围内是连续的。 4. The method according to claim 3, wherein the different modulation frequencies are a discrete set of frequencies or are continuous within a predetermined range.
  5. 5.根据权利要求2所述的方法,其中,使将光发射到所述患者的所述组织上的步骤中断预定的中断时间段, 在这一中断时间段期间,依次利用不同的调制编码对所收集的光进行解调,并且将使得解调所收集的光的输出最小化或降到预定阈值以下的调制编码确定为所述预定的中断时间段之后用于发射到所述患者的组织上的光的调制编码。 5. The method according to claim 2, wherein the step of emitting light into the tissue of the patient is interrupted for a predefined interruption time period, during this interruption time period, using a different modulation coding sequence of demodulating the collected light and the output light so that the demodulated collected minimized or falls below a predetermined threshold value is determined as the modulation coding is interrupted after the predetermined period of time for transmission to the tissue of the patient modulation coded light.
  6. 6.根据权利要求5所述的方法,其中,在关于所述环境光的贡献分析已解调的所收集的光的步骤得到较低水平贡献的情况下,应用较短的调制编码;且在关于所述环境光的贡献分析已解调的所收集的光的步骤得到较高水平贡献的情况下,应用较长的调制编码。 6. The method according to claim 5, wherein the step of the collected light analysis of the contribution of the ambient light has been demodulated with lower level of contribution, a shorter modulation code applied; and in in the case of contribution of the ambient light analysis on the demodulated light is collected to obtain a higher level of contribution, a longer modulation code applied.
  7. 7.根据权利要求2所述的方法,其中,使将光发射到所述患者的所述组织上的步骤中断预定的中断时间段, 在这一中断时间段期间,使用傅里叶变换确定所收集的光的功率谱,并且将这样的频率确定为所述预定的中断时间段之后用于发射到所述患者的组织上的光的调制频率:该频率的功率谱被确定为具有其最小值或其功率谱下降到预定阈值以下。 7. The method according to claim 2, wherein the step of emitting light into the tissue of the patient is interrupted for a predefined interruption time period, during this interruption time period, determining the Fourier transform the power spectrum of the collected light, and thus determines the frequency of the predetermined modulation frequency of the light on the tissue of the patient after the interrupt period for transmission to the: power spectrum of the frequency is determined to have a minimum value of or a power spectrum falls below a predetermined threshold.
  8. 8.根据权利要求3-7中的任一项所述的方法,其中,使将光发射到所述患者的所述组织上的步骤周期性地中断。 8. The method of any one of claims 3-7, wherein the step of emitting light into the tissue of the patient is periodically interrupted.
  9. 9.根据权利要求2所述的方法,其中,通过在至少两个频率模式或频带的预定集合中循环来连续改变发射到所述组织上的光的调制频率;并且将使得解调所收集的光的输出最大化或超过预定阈值的调制频率确定为用于发射到所述患者的所述组织上的光的有效调制频率。 9. The method according to claim 2, wherein the light emitted to the continuously changing the modulation frequency of the tissue at a predetermined cycle by the set of at least two frequency modes or frequency bands; and of demodulating the collected the output light is maximized or exceeds a predetermined threshold value to determine the effective modulation frequency on the modulation frequency of the light for transmission to the tissue of the patient.
  10. 10.根据权利要求9所述的方法,其中,在利用第一调制频率将光发射到所述患者的所述组织上期间,从预定频谱中选择第二调制频率,反之亦然。 10. The method according to claim 9, wherein, using a first modulation frequency to emit light during the tissue of the patient, selected from the predetermined second modulation frequency spectrum, and vice versa.
  11. 11.根据权利要求1-7和9-10中的任一项所述的方法,其中,发射到所述患者的组织上的光至少包括第一光和第二光,其中,所述第一光的波长与所述第二光的波长不同,且其中所述第一光和所述第二光是复用的。 11. The method of claims 1-7 and 9-10 according to any one of claims, wherein the light transmitted to the tissue of the patient comprises at least a first and second light, wherein the first and the second optical wavelength of light different, and wherein the first light and second light is multiplexed.
  12. 12.根据权利要求11所述的方法,其中,应用时分复用、频率复用或/和码分复用。 12. The method of claim 11, wherein the time division multiplexing, frequency multiplexing or / and code division multiplexing.
  13. 13.根据权利要求11所述的方法,其中,仅针对所述第一光和所述第二光之一,或针对所述第一光和所述第二光的平均来执行确定使得所述环境光的贡献最小化或降到预定阈值以下的调制频率或/和调制编码的步骤。 13. The method of claim 11, wherein, only for one of the first light and second light, or performed for the average of the first and second light such that said determining the contribution of the ambient light is minimized or falls below a predetermined threshold step modulation frequency or / and modulation coding.
  14. 14.一种通过测量发射到患者的组织上的光的衰减来监测所述患者的生命参数的装置,具有光调制器(6),其适于根据调制模式调制所述光; 光发射器(1,2),其适于将经调制的光发射到所述患者的所述组织上; 光探测器(4),其适于透射通过所述组织的光或/和从所述组织反射的光,并不可避免地适于收集环境光; 光解调器(11 ),其适于根据所述调制模式对所收集的光进行解调; 干扰分析器(14),其适于关于所述环境光的贡献分析已解调的所收集的光;以及处理单元(5),其适于确定使得所述环境光的贡献最小化或降到预定阈值以下的调制模式,并适于根据所确定的使得所述环境光的贡献最小化或降到预定阈值以下的调制模式来设置用于调制所述光的所述调制模式。 14. A transmitter by measuring the attenuation of light on the tissue of the patient's vital parameters of the device to monitor the patient, with a light modulator (6), which is adapted to modulate the light according to a modulation mode; light emitter ( 2), adapted to emit light modulated by the tissue onto the patient; light detector (4), which is adapted to light transmitted through the tissue and / or reflected from the tissue light, and inevitably adapted to collect ambient light; demodulator (11), which is adapted for demodulating the collected light according to the modulation mode; interference analyzer (14), which is adapted with respect to the analysis of the contribution of the ambient light demodulated collected light; and processing means (5), adapted to determine that the contribution of the ambient light is minimized or falls below a predetermined threshold value modulation mode, and adapted according to the determined such that the contribution of the ambient light is minimized or falls below a predetermined threshold value modulation mode setting the modulation mode for modulating the light.
  15. 15.根据权利要求14所述的装置,其中,提供了用于发射具有两种不同波长的光的至少两个光源(1,2)。 15. The apparatus according to claim 14, wherein there is provided a light source for emitting at least two (2) light having two different wavelengths.
CN 200980122685 2008-06-16 2009-06-09 Monitoring a vital parameter of a patient with ''in-situ'' modulation scheme to avoid interference CN102065749B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08104427 2008-06-16
EP08104427.3 2008-06-16
PCT/IB2009/052435 WO2009153700A1 (en) 2008-06-16 2009-06-09 Monitoring a vital parameter of a patient with "in-situ" modulation scheme to avoid interference

Publications (2)

Publication Number Publication Date
CN102065749A true CN102065749A (en) 2011-05-18
CN102065749B true CN102065749B (en) 2013-06-19

Family

ID=41010230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200980122685 CN102065749B (en) 2008-06-16 2009-06-09 Monitoring a vital parameter of a patient with ''in-situ'' modulation scheme to avoid interference

Country Status (6)

Country Link
US (1) US8447372B2 (en)
EP (1) EP2285271B1 (en)
JP (1) JP5559776B2 (en)
CN (1) CN102065749B (en)
RU (1) RU2497438C2 (en)
WO (1) WO2009153700A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201005919D0 (en) * 2010-04-09 2010-05-26 Univ St Andrews Optical backscattering diagnostics
EP2699146A2 (en) * 2011-04-21 2014-02-26 Koninklijke Philips N.V. Device and method for vital sign measurement of a person
CN102319075B (en) * 2011-08-17 2014-07-09 天津大学 Blood oxygen saturation measuring device and measuring method
US20130303921A1 (en) * 2012-05-11 2013-11-14 Hong Kong Applied Science and Technology Research Institute Company Limited System and Method for Measurement of Physiological Data with Light Modulation
JP6054543B2 (en) * 2012-12-04 2016-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device and method for obtaining vital signs information of a living body
EP3106086A4 (en) * 2014-12-31 2017-07-26 Goertek Inc Photoelectric-type pulse signal measurement method and measurement device
WO2018029127A1 (en) 2016-08-12 2018-02-15 Koninklijke Philips N.V. Sensor device and method, device and method for communication with the sensor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1655881A1 (en) 2004-11-03 2006-05-10 Draeger Medical Systems, Inc. A system for reducing signal interference in modulated signal communication
CN1985764A (en) 2005-12-23 2007-06-27 深圳迈瑞生物医疗电子股份有限公司 Blood oxygen measuring method and device capable of eliminating moving inteference
US7328053B1 (en) 1993-10-06 2008-02-05 Masimo Corporation Signal processing apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69229994D1 (en) * 1991-03-07 1999-10-21 Masimo Corp Device and method for signal processing
US6229856B1 (en) * 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US5995858A (en) 1997-11-07 1999-11-30 Datascope Investment Corp. Pulse oximeter
JP2000145294A (en) * 1998-11-17 2000-05-26 Harness Syst Tech Res Ltd Nipping preventing device
US7006676B1 (en) * 2000-01-21 2006-02-28 Medical Optical Imaging, Inc. Method and apparatus for detecting an abnormality within a host medium utilizing frequency-swept modulation diffusion tomography
US6505133B1 (en) 2000-11-15 2003-01-07 Datex-Ohmeda, Inc. Simultaneous signal attenuation measurements utilizing code division multiplexing
JP3623743B2 (en) * 2001-02-26 2005-02-23 株式会社スペクトラテック The biological information measuring device
US20020136264A1 (en) * 2001-03-20 2002-09-26 Herleikson Earl C. Spread spectrum measurement device
US6701170B2 (en) 2001-11-02 2004-03-02 Nellcor Puritan Bennett Incorporated Blind source separation of pulse oximetry signals
JP4071506B2 (en) * 2002-02-14 2008-04-02 株式会社日立メディコ Biological light measuring device
EP1485015A1 (en) * 2002-02-22 2004-12-15 Datex-Ohmeda, Inc. Cepstral domain pulse oximetry
US7194292B2 (en) * 2004-02-25 2007-03-20 General Electric Company Simultaneous signal attenuation measurements utilizing frequency orthogonal random codes
US7190985B2 (en) * 2004-02-25 2007-03-13 Nellcor Puritan Bennett Inc. Oximeter ambient light cancellation
JP2005260752A (en) * 2004-03-12 2005-09-22 Sharp Corp Pulse generating circuit and photo-detection instrument using it
JP4546274B2 (en) * 2005-02-09 2010-09-15 株式会社スペクトラテック Biological information measuring apparatus and control method thereof
DE102006022120A1 (en) 2006-02-20 2007-09-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Spread spectrum for determination of vital signs
GB0607270D0 (en) * 2006-04-11 2006-05-17 Univ Nottingham The pulsing blood supply
US20090247846A1 (en) * 2008-04-01 2009-10-01 General Electric Company Pulse oximeter with reduced cross talk effects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328053B1 (en) 1993-10-06 2008-02-05 Masimo Corporation Signal processing apparatus
EP1655881A1 (en) 2004-11-03 2006-05-10 Draeger Medical Systems, Inc. A system for reducing signal interference in modulated signal communication
CN1985764A (en) 2005-12-23 2007-06-27 深圳迈瑞生物医疗电子股份有限公司 Blood oxygen measuring method and device capable of eliminating moving inteference

Also Published As

Publication number Publication date Type
EP2285271A1 (en) 2011-02-23 application
WO2009153700A1 (en) 2009-12-23 application
RU2011101377A (en) 2012-07-27 application
CN102065749A (en) 2011-05-18 application
RU2497438C2 (en) 2013-11-10 grant
EP2285271B1 (en) 2011-09-07 grant
JP2011524196A (en) 2011-09-01 application
US20110092824A1 (en) 2011-04-21 application
US8447372B2 (en) 2013-05-21 grant
JP5559776B2 (en) 2014-07-23 grant

Similar Documents

Publication Publication Date Title
US7489958B2 (en) Signal processing apparatus and method
US7277741B2 (en) Pulse oximetry motion artifact rejection using near infrared absorption by water
US6654624B2 (en) Pulse oximeter probe-off detector
US8385995B2 (en) Physiological parameter tracking system
US6839582B2 (en) Pulse oximetry method and system with improved motion correction
US6990426B2 (en) Diagnostic method and apparatus using light
US20060211925A1 (en) Physiological parameter confidence measure
US7343186B2 (en) Multi-wavelength physiological monitor
US8430817B1 (en) System for determining confidence in respiratory rate measurements
US6997879B1 (en) Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
Coetzee et al. Noise-resistant pulse oximetry using a synthetic reference signal
US5285784A (en) Sensor, apparatus and method for non-invasive measurement of oxygen saturation
US5891024A (en) Two stage calibration and analyte measurement scheme for spectrophotomeric analysis
US9341565B2 (en) Multiple-wavelength physiological monitor
US4846183A (en) Blood parameter monitoring apparatus and methods
US5983122A (en) Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
US20150366472A1 (en) Patient monitor for monitoring microcirculation
US8228181B2 (en) Physiological trend monitor
US8471713B2 (en) Interference detector for patient monitor
US20160113527A1 (en) Patient monitor for determining microcirculation state
US6005658A (en) Intermittent measuring of arterial oxygen saturation of hemoglobin
US20130324855A1 (en) Methods and systems for power optimization in a medical device
US20090247849A1 (en) Pulse Oximeter With Adaptive Power Conservation
US20020038078A1 (en) Apparatus for measuring/determining concentrations of light absorbing materials in blood
US7190261B2 (en) Arrhythmia alarm processor

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted