CN102033491B - Method for controlling flexible satellite based on feature model - Google Patents

Method for controlling flexible satellite based on feature model Download PDF

Info

Publication number
CN102033491B
CN102033491B CN2010102979615A CN201010297961A CN102033491B CN 102033491 B CN102033491 B CN 102033491B CN 2010102979615 A CN2010102979615 A CN 2010102979615A CN 201010297961 A CN201010297961 A CN 201010297961A CN 102033491 B CN102033491 B CN 102033491B
Authority
CN
China
Prior art keywords
msub
mrow
mover
mtd
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102979615A
Other languages
Chinese (zh)
Other versions
CN102033491A (en
Inventor
孟斌
吴宏鑫
杨孟飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN2010102979615A priority Critical patent/CN102033491B/en
Publication of CN102033491A publication Critical patent/CN102033491A/en
Application granted granted Critical
Publication of CN102033491B publication Critical patent/CN102033491B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention relates to a method for controlling a flexible satellite based on a feature model, which is characterized in that the time dimension, the sampling time and the parameters M and m are determined according to the kinetic equation of the flexible satellite; the coefficient range of the feature model is determined according to each obtained variable; the parameters of the feature model are identified by utilizing a gradient method; and a control law is designed according to the coefficients of the feature model obtained through the identification, and the attitude angle of the flexible satellite is controlled through the kinetic equation that the control law is fed back to the flexible satellite. The method has the advantages that the time dimension and the sampling period of the flexible satellite are introduced; the change rate of the flexible satellite is depicted; the bottleneck problem of the feature modeling of the flexible satellite is solved; the expression of the parameter range of the feature model of the flexible satellite is provided; the parameter property of the feature model is qualitatively researched; the boundary of the parameters of the feature model is relative to the sampling period, the modeling error, the system order and the change rate of the system from the given parameter range; and the theoretical foundation of the self-adaptive control based on the feature model is laid for the flexible satellite. The method is suitable for the feature model of the attitude kinetics of an aircraft so as to lay the foundation for the aircraft based on the attitude control of the feature model.

Description

Flexible satellite control method based on feature model
Technical Field
The invention relates to a satellite control method, in particular to a flexible satellite control method based on a characteristic model, and belongs to the technical field of satellite control.
Background
The full-coefficient self-adaptive control method based on the characteristic model is provided by Wu Hongxin academy, and after more than 20 years of research, important progress is made in theory and application, and a set of self-adaptive control theory and method with strong practicability is formed. The method needs less identification parameters, can ensure the transient performance and the steady-state performance of a closed-loop system, and has strong robustness and adaptivity. Particularly, the theoretical thought and the engineering main points of the method are creatively applied to airship return reentry control, and the parachute opening precision of the method reaches the world advanced level.
The basic idea of the full-coefficient self-adaptive control method based on the characteristic model is that firstly, the characteristic model of the system and the parameter range thereof are established, and then the full-coefficient self-adaptive control law is designed according to the characteristic model parameters. In general, a characteristic model of a system is described by a coefficient-bounded second-order time-varying difference equation. In the adaptive control design based on the feature model, firstly, a coefficient range of a second-order time-varying difference equation is determined, then an initial identification value is selected from the range, and the identification result of each step is projected into the range, so that the determination of the coefficient range is one of the key problems of the control method based on the feature model. The problem of determining the parameter range of the characteristic model of the linear steady system is solved, and for a nonlinear system, the problem is always a bottleneck for restricting the design of full-coefficient adaptive control.
The method for converting nonlinear systems in special forms into a second-order time-varying difference equation set is disclosed in nonlinear golden section adaptive control, Wu hong Xin, Wang Ying Chun Shu, astronavigation newspaper publication (2002, 23 (6): 1-8.2) and multivariate linear time-varying system characteristic models and adaptive fuzzy control methods, and the Udon hong Xin publication (2005, 26 (6): 677 and 681.) have the defects that the method is only suitable for the nonlinear systems in special forms to be considered and modeling errors are not considered. The method for determining the parameter boundary of the flexible satellite characteristic model under any modeling error provided by the invention has no method with complete practical significance.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: the method overcomes the defects of the prior art and provides a flexible satellite control method based on a feature model.
The technical solution of the invention is as follows: a flexible satellite control method based on a feature model is realized by the following steps:
in the first step, the time scale p of the flexible satellite dynamic equation is determined by using the formula (2),
<math> <mrow> <mi>p</mi> <mo>=</mo> <mi>min</mi> <mo>{</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>2</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mi>u</mi> </msub> </msqrt> </mfrac> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein the flexible satellite kinetic equation is a formula set (1),
<math> <mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&psi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>=</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>w</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>+</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>l</mi> </msub> <msub> <mi>w</mi> <mi>l</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>l</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sl</mi> <mi>T</mi> </msubsup> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>r</mi> </msub> <msub> <mi>w</mi> <mi>r</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sr</mi> <mi>T</mi> </msubsup> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&phi;</mi> </mtd> <mtd> <mi>&theta;</mi> </mtd> <mtd> <mi>&psi;</mi> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> w ~ s = 0 - w z w y w z 0 - w x - w y w x 0
phi, theta, psi denote the pitch, yaw and roll attitude angles of the flexible satellite, [ w ]x wy wz]TRepresenting the coordinates of the angular velocity of the satellite relative to the orbital coordinate system in a body coordinate system, wsRespectively representing the angular velocity array and the anti-symmetric array, eta, of the flexible satellite central bodyl、ηrModal coordinate arrays, ξ, of the left and right sun wings of a flexible satellite, respectivelyl、ξrThe modal damping coefficients of the left and right solar wings of the flexible satellite respectively, Fsl、FsrThe coupling coefficients of the left and right solar wings and the central body of the flexible satellite, TsRepresenting an array of external moments acting on a flexible satellite, IsRepresenting the flexible satellite inertia matrix, x1=[φθψ]TY denotes the flexible satellite output, wl、wrThe angular velocities of the left and right solar wings of the flexible satellite respectively,
f1=C(x1)ws <math> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>I</mi> <mi>s</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> g = I s - 1 , u=Ts,f=f2+gu,
<math> <mrow> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mo>|</mo> <mo>,</mo> </mrow> </math> M f 1 = max | f 1 | , M f 2 = max | f 2 | , Mu=max|gu|;
secondly, determining a sampling time scale h by using a formula (3) and the time scale p obtained in the first step,
h = p d , d > 5 - - - ( 3 ) ;
third step, using the formula set (4) and the parameter f determined in the first step1、x1、x2G, obtaining f1iWith respect to x1j、x2jAnd the upper bound M of g and the partial derivative of (c),
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> </mrow> </math>
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> </mrow> </math>
||g(k)||≤M (4)
wherein x2=ws,i,j=1,2,3,k=1,2,…,f1i、x1i、x2iDenotes f1、x1、x2Row i of (1);
step four, determining a parameter M by using the formula (5) and the M obtained in the step three,
<math> <mrow> <mi>m</mi> <mo>></mo> <mfrac> <mrow> <mi>ln</mi> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <mi>&epsiv;</mi> </mrow> <mrow> <mn>6</mn> <mi>M</mi> </mrow> </mfrac> </mrow> <mrow> <mi>ln</mi> <mfrac> <msub> <mi>N</mi> <mi>x</mi> </msub> <mrow> <msubsup> <mi>C</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein N isx> 0 denotes the Flexible satellite output yiI is the upper bound of y, i is 1, 2, 3, epsilon is the modeling error, Cx>0;
Fifthly, obtaining the coefficient range of the flexible satellite characteristic model by using a formula group (6) according to the sampling time scale h determined in the second step, the M determined in the third step and the parameter M determined in the fourth step,
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> </mrow> </math>
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
|bij(k)|≤M2h2
wherein a isi1、ai2、bijCoefficients representing a characteristic model, bij∈R,j=1,2,3,bi=[bi1 bi2 bi3](ii) a Sixthly, utilizing gradient method to make coefficient a of characteristic model obtained from the fifth stepi1、ai2、bijIdentifying to obtain the coefficient of the identified characteristic model
Figure BSA00000291313600041
Seventhly, using the identified coefficient of the characteristic model obtained in the sixth step
Figure BSA00000291313600042
The control rate of the formula (7) is composed,
<math> <mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>1</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mi>T</mi> </msup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mi>T</mi> </mrow> </msup> <mo>&times;</mo> <mi>diag</mi> <mo>[</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein u isi=u0i+uGi+uIi+uDi,u0iFor maintaining/tracking the control law uGiFor golden section control rate, uIiFor the logical integral control rate, uDiIs a logical differential control rate;
and step eight, substituting the control rate determined in the step seven into the flexible satellite dynamics equation of the formula set (1) to control the pitch, yaw and roll attitude angles of the flexible satellite.
In the fourth step CxThe determination of (a) is accomplished by the following steps,
A4.1、h2|hil is a continuous function, and h2|hiLess than or equal to epsilon to obtain | x1iThe range of l is such that,
wherein
Figure BSA00000291313600044
h is a sampling time scale, and epsilon is a modeling error;
a4.2, | x obtained according to A4.11iRange of | according to the formula | x1i|≤CxDetermination of CxThe value of (c).
Compared with the prior art, the invention has the beneficial effects that:
(1) the time scale and the sampling period of the flexible satellite are introduced, the change rate of the flexible satellite is described, and the bottleneck problem of flexible satellite characteristic modeling is solved;
(2) the invention provides an expression of the parameter range of the flexible satellite characteristic model, qualitatively researches the parameter property of the characteristic model, and as can be seen from the given parameter range, the boundary of the characteristic model parameter is related to the sampling period, the modeling error, the system order and the system change rate, thereby laying a theoretical foundation for the flexible satellite adaptive control based on the characteristic model;
(3) the method is suitable for the characteristic modeling of the aircraft attitude dynamics, thereby laying a foundation for the attitude control of the aircraft based on the characteristic model;
(4) the method is simple and clear, and is suitable for engineering design.
Drawings
FIG. 1 is a flow chart of the present invention.
Detailed Description
The invention is realized by the following steps as shown in figure 1:
1. the time scale, the sampling time, and the parameters M and M are determined according to the kinetic equation of the flexible satellite.
The flexible satellite dynamics are:
<math> <mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&psi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>=</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>w</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>+</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>l</mi> </msub> <msub> <mi>w</mi> <mi>l</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>l</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sl</mi> <mi>T</mi> </msubsup> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>r</mi> </msub> <msub> <mi>w</mi> <mi>r</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sr</mi> <mi>T</mi> </msubsup> <mrow> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&phi;</mi> </mtd> <mtd> <mi>&theta;</mi> </mtd> <mtd> <mi>&psi;</mi> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,
<math> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> w ~ s = 0 - w z w y w z 0 - w x - w y w x 0
phi, theta, psi denotes the pitch, yaw, roll attitude angles of the satellitex wy wz]TRepresenting the coordinates of the angular velocity of the satellite relative to the orbital coordinate system in a body coordinate system, wsAnd
Figure BSA00000291313600055
representing the angular velocity array and the anti-symmetric array, eta, respectively, of the satellite central bodyl,ηrThe modal coordinate arrays, xi, of the left and right solar wings respectivelyl,ξrModal damping coefficients, F, of the left and right solar wings, respectivelysl,FsrThe coupling coefficients of the left and right solar wings and the central body, TsRepresenting an array of external moments acting on the satellite, IsRepresenting the satellite inertia matrix, x1=[φθψ]TY denotes satellite output, wl、wrThe angular velocities of the left and right solar wings of the flexible satellite are respectively.
The time scale p is calculated as follows:
<math> <mrow> <mi>p</mi> <mo>=</mo> <mi>min</mi> <mo>{</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>2</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mi>u</mi> </msub> </msqrt> </mfrac> <mo>}</mo> </mrow> </math>
wherein,
f1=C(x1)ws <math> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>I</mi> <mi>s</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> g = I s - 1 , u=Ts,f=f2+gu
<math> <mrow> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mo>|</mo> <mo>,</mo> </mrow> </math> M f 1 = max | f 1 | , M f 2 = max | f 2 | , Mu=max|gu|
the sampling time scale h is calculated as follows:
h = p d , d > 5
m is f1iWith respect to x1j、x2jThe partial derivative of (i, j ═ 1, 2, 3) and the upper bound of g, i.e.
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> <mo>,</mo> </mrow> </math> ||g(k)||≤M,i,j=1,2,3,k=1,2,…
Wherein x is2=ws,f1i,x1i,x2iDenotes f1,x1,x2I is 1, 2, 3.
m is determined according to the following formula:
<math> <mrow> <mi>m</mi> <mo>></mo> <mfrac> <mrow> <mi>ln</mi> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <mi>&epsiv;</mi> </mrow> <mrow> <mn>6</mn> <mi>M</mi> </mrow> </mfrac> </mrow> <mrow> <mi>ln</mi> <mfrac> <msub> <mi>N</mi> <mi>x</mi> </msub> <mrow> <msubsup> <mi>C</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> </math>
wherein N isx> 0 denotes the system output yiUpper bound of |, i ═ 1, 2, 3;
Cx> 0 is determined according to the following formula: note the book
<math> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mn>3</mn> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2,3</mn> </mrow> </math>
h2|hiIf | is a continuous function, thenGiven a modeling error ε, the presence of Cx> 0, for i ═ 1, 2, 3, when | x1i|≤CxWhen h is present2|hi|≤ε。
2. And determining the coefficient range of the characteristic model according to the variables obtained in the step 1.
Designing a set of nonlinear and compressive functions:
s i 1 ( k ) = y i ( k ) y i ( k ) 2 + y i ( k - 1 ) 2 + N x
s i 2 ( k ) = x 1 i ( k - 1 ) y i ( k ) 2 + y i ( k - 1 ) 2 + N x
s i 3 ( k ) = N x y i ( k ) 2 + y i ( k - 1 ) 2 + N x
and
f c , i = S i ( k ) s i 1 y i ( k ) + S i ( k ) s i 2 y i ( k - 1 ) + s i 3 m + 1 , i = 1,2,3
wherein, <math> <mrow> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>m</mi> </munderover> <msub> <mi>s</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>j</mi> </msup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>.</mo> </mrow> </math>
the characteristic model is as follows:
y ~ i ( k + 1 ) = a i 1 ( k ) y ~ i ( k ) + a i 2 ( k ) y ~ i ( k - 1 ) + b i ( k ) u ( k ) , i = 1,2,3
wherein, ai1,ai2∈R,bi=[bi1 bi2 bi3],bije.R, j is 1, 2, 3, representing coefficients of the feature model,
Figure BSA00000291313600074
express characterThe output of the eigenmodel, R, represents the real number set.
Y is given below1=x11The rest states are similar. x is the number of11The following differential equation is satisfied:
<math> <mrow> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>11</mn> </msub> <mo>=</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </math>
by derivation of the above formula, the result is obtained
<math> <mrow> <msub> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mn>11</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>11</mn> </msub> </mrow> </mfrac> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mi>gu</mi> </mrow> </math>
Wherein,
<math> <mrow> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>2</mn> </mrow> <mn>3</mn> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </math>
discretizing the above formula and obtaining easily
<math> <mrow> <msub> <mi>x</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>x</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>h</mi> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>11</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mi>gu</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
Compressing function fc,1Multiplying the last item of the above formula, and sorting to obtain
x11(k+1)=a11(k)x11(k)+a12(k)x11(k-1)+b1(k)u(k)+e1(k)
Wherein,
<math> <mrow> <msub> <mi>a</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mo>+</mo> <mi>h</mi> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>11</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mi>S</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>a</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>h</mi> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>11</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mi>S</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
e 1 ( k ) = h 2 h 1 s 13 m + 1
wherein e1(k) Representing the modeling error of the feature model. The modeling error | e can be known1(k) And | < ε. Due to the fact that
|Si(k)|≤m+1,i=1,2,3,k=1,2,…
From h1Definition of (1), to know
Figure BSA000002913136000713
And is easy to know s11,s12Are all less than 1, therefore
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> </mrow> </math>
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> </mrow> </math>
|bij(k)|≤M2h2,j=1,2,3
3. And (3) identifying parameters of the characteristic model by using a gradient method according to the coefficient range of the characteristic model obtained in the step (2). (the specific identification method is described in Chongzhi, Xiao De cloud article "identification of Process" page 201 and 229.)
θi=[ai1,ai2,bi]T,i=1,2,3
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2,3</mn> </mrow> </math>
Figure BSA00000291313600084
Figure BSA00000291313600085
Wherein λ isi1,λi2And (3) in the identification process, limiting the identification result by using the parameter range given in the step (2) for adjusting the parameters.
And 4, designing a control law according to the coefficient of the characteristic model obtained by identification in the step 3.
The control law is as follows:
<math> <mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>1</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mi>T</mi> </msup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mi>T</mi> </mrow> </msup> <mo>&times;</mo> <mi>diag</mi> <mo>[</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>]</mo> </mrow> </math>
wherein,
ui=u0i+uGi+uIi+uDi,i=1,2,3
<math> <mrow> <msub> <mi>u</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>ri</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mi>ri</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mi>ri</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msub> <mi>&lambda;</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>u</mi> <mi>Gi</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>l</mi> <mn>1</mn> </msub> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msub> <mi>&lambda;</mi> <mi>Gi</mi> </msub> </mfrac> </mrow> </math>
uIi(k)=uIi(k-1)-kIiei(k)
uDi(k)=-kDiei(k)
l1=0.382,l2=0.618,ei(k)=yi(k)-yri(k),
Figure BSA00000291313600089
kIi1>>kIi2>0,
Figure BSA000002913136000810
or,kIi1,kIi2,cDi,lDi,λ0i,λGito adjust the parameters as required, yri(k) To track an objective function. u. of0i,uGi,uIiAnd u andDithe control law is called maintenance/tracking control law, golden section control rate, logic integral control rate and logic differential control rate (the specific resolving method is shown in the fifth chapter of intelligent adaptive control based on feature model published by the scientific and technical publication 2009, wu hongxin, jun and jie yongchun).
5. And (4) feeding the control rate determined in the step (4) back to a flexible satellite dynamic equation recorded in the formula set (1) to control the pitch, yaw and roll attitude angles of the flexible satellite.
The invention is not described in detail and is within the knowledge of a person skilled in the art.

Claims (2)

1. A flexible satellite control method based on a feature model is characterized by comprising the following steps:
in the first step, the time scale p of the flexible satellite dynamic equation is determined by using the formula (2),
<math> <mrow> <mi>p</mi> <mo>=</mo> <mi>min</mi> <mo>{</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>2</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mi>u</mi> </msub> </msqrt> </mfrac> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein the flexible satellite kinetic equation is a formula set (1),
<math> <mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&psi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>=</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>w</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>+</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>l</mi> </msub> <msub> <mi>w</mi> <mi>l</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>l</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sl</mi> <mi>T</mi> </msubsup> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>r</mi> </msub> <msub> <mi>w</mi> <mi>r</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sr</mi> <mi>T</mi> </msubsup> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&phi;</mi> </mtd> <mtd> <mi>&theta;</mi> </mtd> <mtd> <mi>&psi;</mi> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> w ~ s = 0 - w z w y w z 0 - w x - w y w x 0
phi, theta, psi denotes the pitch, yaw and roll attitude angles of the flexure satellite, [ wx wy wz]TRepresenting the coordinates of the angular velocity of the satellite relative to the orbital coordinate system in a body coordinate system, ws
Figure FSB00000788452800016
Respectively representing the angular velocity array and the anti-symmetric array, eta, of the flexible satellite central bodyl、ηrModal coordinate arrays, ξ, of the left and right sun wings of a flexible satellite, respectivelyl、ξrThe modal damping coefficients of the left and right solar wings of the flexible satellite respectively, Fsl、FsrThe coupling coefficients of the left and right solar wings and the central body of the flexible satellite, TsRepresenting an array of external moments acting on a flexible satellite, IsRepresenting the flexible satellite inertia matrix, xl=[φθψ]TY denotes the flexible satellite output, wl、wrThe angular velocities of the left and right solar wings of the flexible satellite respectively,
fl=C(x1)ws <math> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>I</mi> <mi>s</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> g = I s - 1 , u=Ts,f=f2+gu,
<math> <mrow> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>|</mo> <mo>,</mo> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mo>|</mo> <mo>,</mo> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>1</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>,</mo> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>2</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math> Mu=max|gu|;
secondly, determining a sampling time scale h by using a formula (3) and the time scale p obtained in the first step,
h = p d , d > 5 - - - ( 3 ) ;
third step, using the formula set (4) and the parameter f determined in the first step1、x1、x2G, obtaining f1iWith respect to x1j、x2jAnd the upper bound M of g and the partial derivative of (c),
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> </mrow> </math>
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> </mrow> </math>
||g(k)||≤M (4)
wherein x2=ws,i,j=1,2,3,k=1,2,…,f1i、x1i、x2iDenotes f1、x1、x2Row i of (1);
step four, determining a parameter M by using the formula (5) and the M obtained in the step three,
<math> <mrow> <mi>m</mi> <mo>></mo> <mfrac> <mrow> <mi>ln</mi> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <mi>&epsiv;</mi> </mrow> <mrow> <mn>6</mn> <mi>M</mi> </mrow> </mfrac> </mrow> <mrow> <mi>ln</mi> <mfrac> <msub> <mi>N</mi> <mi>x</mi> </msub> <mrow> <msubsup> <mi>C</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein N isx> 0 denotes the Flexible satellite output yiI is the upper bound of y, i is 1, 2, 3, epsilon is the modeling error, Cx>0;
Fifthly, obtaining the coefficient range of the flexible satellite characteristic model by using a formula group (6) according to the sampling time scale h determined in the second step, the M determined in the third step and the parameter M determined in the fourth step,
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> </mrow> </math>
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
|bij(k)|≤M2h2
wherein a isi1、ai2、bijCoefficients representing a characteristic model, bij∈R,j=1,2,3,bi=[bi1 bi2 bi3],d>5;
Sixthly, utilizing gradient method to make coefficient a of characteristic model obtained from the fifth stepi1、ai2、bijIdentifying to obtain the coefficient of the identified characteristic model
Seventhly, using the identified coefficient of the characteristic model obtained in the sixth stepThe control rate of the formula (7) is composed,
<math> <mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>1</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mi>T</mi> </msup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mi>T</mi> </mrow> </msup> <mo>&times;</mo> <mi>diag</mi> <mo>[</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein u isi=u0i+uGi+uIi+uDi,u0iFor maintaining/tracking the control law uGiFor golden section control rate, uIiFor the logical integral control rate, uDiIs a logical differential control rate;
and step eight, substituting the control rate determined in the step seven into the flexible satellite dynamics equation of the formula set (1) to control the pitch, yaw and roll attitude angles of the flexible satellite.
2. The flexible satellite control method based on the feature model according to claim 1, wherein: in the fourth step CxThe determination of (a) is accomplished by the following steps,
A4.1、h2|hil is a continuous function, and h2|hiLess than or equal to epsilon to obtain | x1iThe range of l is such that,
wherein <math> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mn>3</mn> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>,</mo> </mrow> </math> h is a sampling time scale, and epsilon is a modeling error;
a4.2, | x obtained according to A4.11iRange of | according to the formula | x1i|≤CxDetermination of CxThe value of (c).
CN2010102979615A 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model Active CN102033491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102979615A CN102033491B (en) 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102979615A CN102033491B (en) 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model

Publications (2)

Publication Number Publication Date
CN102033491A CN102033491A (en) 2011-04-27
CN102033491B true CN102033491B (en) 2012-08-22

Family

ID=43886507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102979615A Active CN102033491B (en) 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model

Country Status (1)

Country Link
CN (1) CN102033491B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520725B (en) * 2011-12-08 2013-10-16 北京控制工程研究所 Characteristic mass obtaining method based on safety area
CN103336528B (en) * 2012-06-18 2016-02-10 北京控制工程研究所 A kind of underactuated spacecraft three-axis attitude stabilization control method
CN103224023B (en) * 2013-03-29 2015-07-08 北京控制工程研究所 Phase plane self-adaptation control method based on characteristic model
CN103941739B (en) * 2014-04-15 2016-06-01 北京控制工程研究所 A kind of motor-driven method of satellite attitude based on polynomial expression
CN104020778B (en) * 2014-06-18 2017-07-28 哈尔滨工业大学 Flexible Satellite Attitude maneuver autopilot method based on tracking time energy consumption optimal control orbit
CN104090489B (en) * 2014-07-02 2016-12-07 中国科学院长春光学精密机械与物理研究所 A kind of flexible agile satellite attitude maneuvers rolling optimization control method
CN104570734B (en) * 2014-12-18 2016-01-27 北京控制工程研究所 A kind of all-coefficient adaptive control method based on single order characteristic model
CN105607485B (en) * 2016-02-04 2018-08-14 河北科技师范学院 Flexible liquid filled spacecraft attitude-adaptive fault tolerant control method based on fault signature model
CN106295196B (en) * 2016-08-12 2018-10-30 上海卫星工程研究所 A kind of in-orbit modal calculation method with rotational flexibility sun battle array satellite
CN106961122A (en) * 2017-05-08 2017-07-18 河海大学常州校区 A kind of micro-capacitance sensor dynamic equivalent modeling method of feature based model
CN108490785B (en) * 2018-04-26 2021-11-16 北京控制工程研究所 Method for determining control coefficient range of parameter unknown system
CN108803345B (en) * 2018-07-25 2021-09-07 西北工业大学 Coupling characteristic analysis and decoupling method for space non-cooperative target takeover control process
CN112434370B (en) * 2020-11-12 2023-07-14 北京控制工程研究所 Feature modeling method for error-free compression of flexible aircraft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276434A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854905A (en) * 1994-08-09 1996-02-27 Matsushita Electric Ind Co Ltd Adaptive controller
US6618631B1 (en) * 2000-04-25 2003-09-09 Georgia Tech Research Corporation Adaptive control system having hedge unit and related apparatus and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276434A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Control device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴宏鑫等.非线性黄金分割自适应控制.《宇航学报》.2002,第23卷(第6期), *
孟斌等.一类飞行器姿态动力学特征建模研究.《中国科学:技术科学》.2010,第40卷(第8期),第898-903页. *
孟斌等.黄金分割控制的收敛性和稳定性研究.《宇航学报》.2009,第30卷(第5期), *

Also Published As

Publication number Publication date
CN102033491A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
CN102033491B (en) Method for controlling flexible satellite based on feature model
CN102749851B (en) Fine anti-interference tracking controller of flexible hypersonic vehicle
CN102411305B (en) Design method of comprehensive disturbance rejection control system for single-rotor wing helicopter/turboshaft engine
Huang et al. Non-fragile switching tracking control for a flexible air-breathing hypersonic vehicle based on polytopic LPV model
CN107450324A (en) Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint
CN102749852B (en) Fault-tolerant anti-interference control method for multisource interference system
CN104950901B (en) Depopulated helicopter attitude error finite time convergence control nonlinear robust control method
CN102540882B (en) Aircraft track inclination angle control method based on minimum parameter studying method
CN102654772B (en) Track dip angle inversion controlling method of aircraft based on control force limitation situation
CN108153323B (en) A kind of high-altitude unmanned vehicle high-precision reentry guidance method
CN104281155B (en) Three-dimensional flight path tracking method for unmanned airship
De Groot et al. Modelling kite flight dynamics using a multibody reduction approach
CN102183957A (en) Ship course variable universe fuzzy and least square support vector machine compound control method
Liu et al. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range
CN105607473A (en) Self-adaptive control method of rapid attitude error convergence for small unmanned helicopter
CN103592847A (en) Hypersonic aerocraft nonlinear control method based on high-gain observer
CN105629986B (en) A kind of anti-interference filtration method without towing attitude of satellite passage
CN103984237A (en) Design method of three-channel adaptive control system for axisymmetric aircraft based on motion state comprehensive recognition
CN103116706A (en) Configured control optimization method for high-speed aircrafts based on pneumatic nonlinearity and coupling
CN105134482A (en) Gray combined modeling and optimized vibration controlling method of large intelligent draught fan blade system
CN104462810B (en) A kind of SDRE parameter adjusting methods suitable for taking turns guard star attitude maneuver and tracing control
CN103676786B (en) A kind of curve smoothing method based on acceleration principle
Menon et al. Adaptive control for hybrid PDE models inspired from morphing aircraft
CN102139769B (en) Fast and stable control method for flexible satellite based on self-organizing CMAC (cerebellar model articulation controller)
Rongqi et al. Dynamics and control for an in‐plane morphing wing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant