CN102033491B - Method for controlling flexible satellite based on feature model - Google Patents

Method for controlling flexible satellite based on feature model Download PDF

Info

Publication number
CN102033491B
CN102033491B CN2010102979615A CN201010297961A CN102033491B CN 102033491 B CN102033491 B CN 102033491B CN 2010102979615 A CN2010102979615 A CN 2010102979615A CN 201010297961 A CN201010297961 A CN 201010297961A CN 102033491 B CN102033491 B CN 102033491B
Authority
CN
China
Prior art keywords
msub
mrow
mover
mtd
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102979615A
Other languages
Chinese (zh)
Other versions
CN102033491A (en
Inventor
孟斌
吴宏鑫
杨孟飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN2010102979615A priority Critical patent/CN102033491B/en
Publication of CN102033491A publication Critical patent/CN102033491A/en
Application granted granted Critical
Publication of CN102033491B publication Critical patent/CN102033491B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种基于特征模型的挠性卫星控制方法,按照挠性卫星的动力学方程,确定其时间尺度、采样时间,以及参数M和m;根据得到的各个变量确定特征模型的系数范围;利用梯度法辨识特征模型的参数;根据辨识得到的特征模型的系数设计控制律,通过控制律反馈到挠性卫星的动力学方程,控制挠性卫星姿态角。本发明引入了挠性卫星的时间尺度和采样周期,刻画了挠性卫星的变化率,解决了挠性卫星特征建模的瓶颈问题;本发明给出了挠性卫星特征模型参数范围的表达式,定性研究了特征模型的参数性质,从所给出的参数范围可以看出,特征模型参数的界与采样周期、建模误差、系统阶数、系统变化率有关,为挠性卫星基于特征模型的自适应控制奠定了理论基础;本发明适用于飞行器姿态动力学的特征建模,从而为飞行器基于特征模型的姿态控制奠定了基础。

Figure 201010297961

A characteristic model-based flexible satellite control method, according to the dynamic equation of the flexible satellite, determine its time scale, sampling time, and parameters M and m; determine the coefficient range of the characteristic model according to the obtained variables; use the gradient method Identify the parameters of the characteristic model; design the control law according to the coefficients of the characteristic model obtained from the identification, and feed back the control law to the dynamic equation of the flexible satellite to control the attitude angle of the flexible satellite. The present invention introduces the time scale and sampling period of the flexible satellite, describes the change rate of the flexible satellite, and solves the bottleneck problem of the flexible satellite characteristic modeling; the present invention provides the expression of the parameter range of the flexible satellite characteristic model , qualitatively studied the parameter properties of the characteristic model. From the given parameter range, it can be seen that the boundary of the characteristic model parameters is related to the sampling period, modeling error, system order, and system change rate. It is a flexible satellite based on the characteristic model. The adaptive control of the aircraft has laid a theoretical foundation; the invention is suitable for the characteristic modeling of the dynamics of the attitude of the aircraft, thus laying the foundation for the attitude control of the aircraft based on the characteristic model.

Figure 201010297961

Description

一种基于特征模型的挠性卫星控制方法A Characteristic Model-Based Control Method for Flexible Satellites

技术领域 technical field

本发明涉及一种卫星控制方法,特别是涉及一种基于特征模型的挠性卫星控制方法,属于卫星控制技术领域。The invention relates to a satellite control method, in particular to a characteristic model-based flexible satellite control method, which belongs to the technical field of satellite control.

背景技术 Background technique

基于特征模型的全系数自适应控制方法是吴宏鑫院士提出的,经过20多年的研究,在理论和应用上均取得了重要进展,形成了一套实用性很强的自适应控制理论和方法。该方法需要辨识参数少,可以保证闭环系统的暂态性能和稳态性能,具有强鲁棒性和自适应性。特别是该方法的理论思想和工程要点被创造性地应用于飞船返回再入控制,其开伞精度达到世界先进水平。The full-coefficient adaptive control method based on the characteristic model was proposed by Academician Wu Hongxin. After more than 20 years of research, important progress has been made in theory and application, and a set of highly practical adaptive control theory and method has been formed. This method requires fewer identification parameters, can guarantee the transient performance and steady-state performance of the closed-loop system, and has strong robustness and adaptability. In particular, the theoretical ideas and engineering points of this method have been creatively applied to the control of spacecraft return and reentry, and its parachute opening accuracy has reached the world's advanced level.

基于特征模型的全系数自适应控制方法的基本思想是,首先建立系统的特征模型及其参数范围,然后按照特征模型参数设计全系数自适应控制律。一般来说,系统的特征模型用系数有界的二阶时变差分方程描述。在基于特征模型的自适应控制设计中,首先要确定二阶时变差分方程的系数范围,然后在该范围内选取辨识初值,并把每一步辨识的结果投影到该范围内,因此系数范围的确定是基于特征模型控制方法的关键问题之一。线性定常系统特征模型参数范围确定问题已经解决,而对于非线性系统,该问题一直是制约全系数自适应控制设计的瓶颈。The basic idea of the full-coefficient adaptive control method based on the characteristic model is to first establish the characteristic model of the system and its parameter range, and then design the full-coefficient adaptive control law according to the characteristic model parameters. In general, the characteristic model of the system is described by second-order time-varying difference equations with bounded coefficients. In the adaptive control design based on the characteristic model, the coefficient range of the second-order time-varying difference equation must first be determined, and then the identification initial value is selected within this range, and the identification results of each step are projected into this range, so the coefficient range The determination of is one of the key issues in the characteristic model-based control method. The problem of determining the parameter range of the characteristic model of the linear steady system has been solved, but for the nonlinear system, this problem has always been the bottleneck restricting the design of the full coefficient adaptive control.

非线性黄金分割自适应控制、吴宏鑫、王颖、解永春著,宇航学报出版(2002,23(6):1-8.2)和多变量线性时变系统的特征模型及自适应模糊控制方法,孙多青、吴宏鑫著,宇航学报出版(2005,26(6):677-681.)中公开了几类特殊形式的非线性系统转化成二阶时变差分方程组的方法,不足之处是所给出的方法只适用于所考虑的特殊形式的非线性系统,并且未考虑建模误差。对于本发明所给出的任意建模误差下挠性卫星特征模型参数界的确定方法,没有公开的具有完整实用意义的方法。Nonlinear Golden Section Adaptive Control, Wu Hongxin, Wang Ying, Xie Yongchun, Acta Astronautics Publishing (2002, 23(6): 1-8.2) and the characteristic model and adaptive fuzzy control method of multivariable linear time-varying systems, Sun Duo Qing, Wu Hongxin, Acta Astronautics Publishing (2005, 26(6): 677-681.) discloses the method of transforming several types of nonlinear systems into second-order time-varying difference equations. The presented method is only applicable to the particular form of nonlinear system considered and does not take into account modeling errors. As for the method for determining the parameter boundary of the flexible satellite characteristic model under any modeling error given by the present invention, there is no disclosed method with complete practical significance.

发明内容 Contents of the invention

本发明的技术解决问题是:克服现有技术的不足,提供一种基于特征模型的挠性卫星控制方法。The technical problem of the present invention is: to overcome the deficiencies of the prior art, and provide a flexible satellite control method based on a feature model.

本发明的技术解决方案是:一种基于特征模型的挠性卫星控制方法,通过以下步骤实现:The technical solution of the present invention is: a kind of flexible satellite control method based on characteristic model, realizes by following steps:

第一步,利用公式(2)确定挠性卫星动力学方程的时间尺度p,In the first step, use formula (2) to determine the time scale p of the dynamic equation of the flexible satellite,

pp == minmin {{ 11 Mm ff ·· 11 ,, 11 Mm ff ·&Center Dot; ,, 11 Mm ff 11 ,, 11 Mm ff 22 ,, 11 Mm uu }} -- -- -- (( 22 ))

其中挠性卫星动力学方程为公式组(1),Among them, the dynamic equation of the flexible satellite is the formula group (1),

φφ ·&Center Dot; θθ ·&Center Dot; ψψ ·&Center Dot; TT == CC (( xx 11 )) ww xx ww ythe y ww zz TT

II sthe s ww ·&Center Dot; sthe s ++ ww ~~ sthe s II sthe s ww sthe s ++ Ff slsl ηη ·&Center Dot; ·&Center Dot; ll ++ Ff srsr ηη ·&Center Dot; ·&Center Dot; rr == TT sthe s ηη ·&Center Dot; ·&Center Dot; ll ++ 22 ξξ ll ww ll ηη ·&Center Dot; ll ++ ww ll 22 ηη ·&Center Dot; ll ++ Ff slsl TT ww ·· sthe s == 00 ηη ·· ·· rr ++ 22 ξξ rr ww rr ηη ·&Center Dot; rr ++ ww rr 22 ηη ·· rr ++ Ff srsr TT ww ·&Center Dot; sthe s == 00 ythe y == φφ θθ ψψ -- -- -- (( 11 ))

CC (( xx 11 )) == coscos θθ coscos ψψ 00 sinsin θθ coscos ψψ tanthe tan ψψ coscos θθ 11 tanthe tan ψψ sinsin θθ -- sinsin θθ 00 coscos θθ ,, ww ~~ sthe s == 00 -- ww zz ww ythe y ww zz 00 -- ww xx -- ww ythe y ww xx 00

φ,θ,ψ表示挠性卫星的俯仰、偏航和滚动姿态角,[wx wy wz]T表示卫星相对轨道坐标系的角速度在体坐标系中的坐标,ws分别表示挠性卫星中心体的角速度列阵和反对称阵,ηl、ηr分别为挠性卫星左、右太阳翼的模态坐标阵,ξl、ξr分别为挠性卫星左、右太阳翼的模态阻尼系数,Fsl、Fsr分别为挠性卫星左、右太阳翼与中心体的耦合系数,Ts表示作用在挠性卫星上的外力矩列阵,Is表示挠性卫星惯量阵,x1=[φθψ]T,y表示挠性卫星输出,wl、wr分别为挠性卫星左、右太阳翼的角速度,φ, θ, ψ represent the pitch, yaw and roll attitude angles of the flexible satellite, [w x w y w z ] T represents the coordinates of the satellite’s angular velocity relative to the orbital coordinate system in the body coordinate system, w s , represent the angular velocity array and antisymmetric array of the flexible satellite center body respectively, η l and η r are the modal coordinate arrays of the left and right solar wings of the flexible satellite respectively, and ξ l and ξ r are the left and right The modal damping coefficient of the solar wing, F sl and F sr are the coupling coefficients between the left and right solar wings of the flexible satellite and the central body, respectively, T s represents the external force matrix acting on the flexible satellite, and I s represents the flexible Satellite inertia array, x 1 =[φθψ] T , y represents the output of the flexible satellite, w l and w r are the angular velocities of the left and right solar wings of the flexible satellite, respectively,

f1=C(x1)ws f 2 = - I s - 1 ( w ~ s I s w s + F sl η · · l + F sr η · · r ) , g = I s - 1 , u=Ts,f=f2+gu,f 1 =C(x 1 )w s , f 2 = - I the s - 1 ( w ~ the s I the s w the s + f sl η &Center Dot; &Center Dot; l + f sr η &Center Dot; &Center Dot; r ) , g = I the s - 1 , u=T s , f=f 2 +gu,

M f · 1 = max | f · 1 | , M f · = max | f · | , M f 1 = max | f 1 | , M f 2 = max | f 2 | , Mu=max|gu|; m f &Center Dot; 1 = max | f · 1 | , m f &Center Dot; = max | f &Center Dot; | , m f 1 = max | f 1 | , m f 2 = max | f 2 | , M u =max|gu|;

第二步,利用公式(3)和第一步得到的时间尺度p确定采样时间尺度h,In the second step, use the formula (3) and the time scale p obtained in the first step to determine the sampling time scale h,

hh == pp dd ,, dd >> 55 -- -- -- (( 33 )) ;;

第三步,利用公式组(4)和第一步中确定的参数f1、x1、x2、g,得到f1i关于x1j、x2j的偏导数和g的上界M,The third step is to use the formula group (4) and the parameters f 1 , x 1 , x 2 , g determined in the first step to obtain the partial derivative of f 1i with respect to x 1j , x 2j and the upper bound M of g,

|| ∂∂ ff 11 ii ∂∂ xx 11 jj || ≤≤ Mm

|| ∂∂ ff 11 ii ∂∂ xx 22 jj || ≤≤ Mm

||g(k)||≤M        (4)||g(k)||≤M (4)

其中x2=ws,i,j=1,2,3,k=1,2,…,f1i、x1i、x2i表示f1、x1、x2的第i行;Where x 2 =w s , i, j=1, 2, 3, k=1, 2, ..., f 1i , x 1i , x 2i represent the ith row of f 1 , x 1 , x 2 ;

第四步,利用公式(5)和第三步得到的M确定参数m,In the fourth step, use formula (5) and M obtained in the third step to determine the parameter m,

mm >> lnln dd 22 ϵϵ 66 Mm lnln NN xx CC xx 22 ++ NN xx -- 11 -- -- -- (( 55 ))

其中,Nx>0表示挠性卫星输出|yi|即y的上界,i=1,2,3,ε为建模误差,Cx>0;Among them, N x >0 means the flexible satellite output |y i | is the upper bound of y, i=1, 2, 3, ε is the modeling error, C x >0;

第五步,根据第二步确定的采样时间尺度h、第三步确定的M和第四步确定的参数m,利用公式组(6)得到挠性卫星特征模型的系数范围,In the fifth step, according to the sampling time scale h determined in the second step, the M determined in the third step and the parameter m determined in the fourth step, the coefficient range of the flexible satellite characteristic model is obtained by using the formula group (6),

|| aa ii 11 (( kk )) -- 22 || ≤≤ Mhmh ++ 66 Mm (( mm ++ 11 )) dd 22

|| aa ii 22 (( kk )) ++ 11 || ≤≤ Mhmh ++ 66 Mm (( mm ++ 11 )) dd 22 -- -- -- (( 66 ))

|bij(k)|≤M2h2 |b ij (k)|≤M 2 h 2

其中ai1、ai2、bij表示特征模型的系数,bij∈R,j=1,2,3,bi=[bi1 bi2 bi3];第六步,利用梯度法对由第五步得到的特征模型的系数ai1、ai2、bij进行辨识得到辨识后的特征模型的系数

Figure BSA00000291313600041
Where a i1 , a i2 , and b ij represent the coefficients of the feature model, b ij ∈ R, j=1, 2, 3, b i =[b i1 b i2 b i3 ]; the sixth step, use the gradient method to The coefficients a i1 , a i2 , and b ij of the characteristic model obtained in five steps are identified to obtain the coefficients of the characteristic model after identification
Figure BSA00000291313600041

第七步,利用第六步得到的辨识后的特征模型的系数

Figure BSA00000291313600042
组成公式(7)的控制率,The seventh step is to use the coefficients of the identified feature model obtained in the sixth step
Figure BSA00000291313600042
Constituting the control rate of equation (7),

uu == bb ^^ 11 TT bb ^^ 22 TT bb ^^ 33 TT -- TT ×× diagdiag [[ uu 11 ,, uu 22 ,, uu 33 ]] -- -- -- (( 77 ))

其中,ui=u0i+uGi+uIi+uDi,u0i为维持/跟踪控制律,uGi为黄金分割控制率,uIi为逻辑积分控制率,uDi为逻辑微分控制率;Among them, u i =u 0i +u Gi +u Ii +u Di , u 0i is the maintenance/tracking control law, u Gi is the golden section control rate, u Ii is the logic integral control rate, u Di is the logic differential control rate;

第八步,将第七步确定的控制率代入公式组(1)的挠性卫星动力学方程中,控制挠性卫星的俯仰、偏航和滚动姿态角。In the eighth step, the control rate determined in the seventh step is substituted into the dynamic equation of the flexible satellite in formula group (1) to control the pitch, yaw and roll attitude angles of the flexible satellite.

所述第四步中Cx的确定通过以下步骤完成,The determination of Cx in the fourth step is accomplished through the following steps,

A4.1、h2|hi|为连续函数,且h2|hi|≤ε,得到|x1i|的范围,A4.1, h 2 |h i | is a continuous function, and h 2 |h i |≤ε, the range of |x 1i | is obtained,

其中

Figure BSA00000291313600044
h为采样时间尺度,ε为建模误差;in
Figure BSA00000291313600044
h is the sampling time scale, ε is the modeling error;

A4.2、根据A4.1得到的|x1i|的范围,根据公式|x1i|≤Cx确定Cx的值。A4.2. According to the range of |x 1i | obtained in A4.1, determine the value of C x according to the formula |x 1i |≤C x .

本发明与现有技术相比有益效果为:Compared with the prior art, the present invention has beneficial effects as follows:

(1)本发明引入了挠性卫星的时间尺度和采样周期,刻画了挠性卫星的变化率,解决了挠性卫星特征建模的瓶颈问题;(1) The present invention introduces the time scale and sampling period of the flexible satellite, describes the rate of change of the flexible satellite, and solves the bottleneck problem of flexible satellite feature modeling;

(2)本发明给出了挠性卫星特征模型参数范围的表达式,定性研究了特征模型的参数性质,从所给出的参数范围可以看出,特征模型参数的界与采样周期、建模误差、系统阶数、系统变化率有关,为挠性卫星基于特征模型的自适应控制奠定了理论基础;(2) The present invention has provided the expression of flexible satellite characteristic model parameter scope, has studied the parameter property of characteristic model qualitatively, can find out from the parameter scope provided, the boundary of characteristic model parameter and sampling period, modeling Error, system order, and system change rate are related, laying a theoretical foundation for the adaptive control of flexible satellites based on characteristic models;

(3)本发明适用于飞行器姿态动力学的特征建模,从而为飞行器基于特征模型的姿态控制奠定了基础;(3) The present invention is applicable to the characteristic modeling of aircraft attitude dynamics, thereby laid the foundation for the attitude control of aircraft based on the characteristic model;

(4)本发明的方法简单、明确,适于工程设计。(4) The method of the present invention is simple and clear, and is suitable for engineering design.

附图说明 Description of drawings

图1为本发明流程图。Fig. 1 is the flow chart of the present invention.

具体实施方式 Detailed ways

本发明如图1所示,通过以下步骤实现:As shown in Figure 1, the present invention is realized through the following steps:

1、按照挠性卫星的动力学方程,确定其时间尺度、采样时间,以及参数M和m。1. According to the dynamic equation of the flexible satellite, determine its time scale, sampling time, and parameters M and m.

挠性卫星动力学为:The flexible satellite dynamics are:

φφ ·&Center Dot; θθ ·&Center Dot; ψψ ·&Center Dot; TT == CC (( xx 11 )) ww xx ww ythe y ww zz TT

II sthe s ww ·&Center Dot; sthe s ++ ww ~~ sthe s II sthe s ww sthe s ++ Ff slsl ηη ·&Center Dot; ·&Center Dot; ll ++ Ff srsr ηη ·&Center Dot; ·&Center Dot; rr == TT sthe s ηη ·&Center Dot; ·&Center Dot; ll ++ 22 ξξ ll ww ll ηη ·&Center Dot; ll ++ ww ll 22 ηη ·&Center Dot; ll ++ Ff slsl TT ww ·&Center Dot; sthe s == 00 ηη ·&Center Dot; ·&Center Dot; rr ++ 22 ξξ rr ww rr ηη ·· rr ++ ww rr 22 ηη ·&Center Dot; rr ++ Ff srsr TT ww ·· sthe s == 00 ythe y == φφ θθ ψψ

其中,in,

CC (( xx 11 )) == coscos θθ coscos ψψ 00 sinsin θθ coscos ψψ tanthe tan ψψ coscos θθ 11 tanthe tan ψψ sinsin θθ -- sinsin θθ 00 coscos θθ ,, ww ~~ sthe s == 00 -- ww zz ww ythe y ww zz 00 -- ww xx -- ww ythe y ww xx 00

φ,θ,ψ表示挠性卫星的俯仰、偏航、滚动姿态角,[wx wy wz]T表示卫星相对轨道坐标系的角速度在体坐标系中的坐标,ws

Figure BSA00000291313600055
分别表示卫星中心体的角速度列阵和反对称阵,ηl,ηr分别为左右太阳翼的模态坐标阵,ξl,ξr分别为左右太阳翼的模态阻尼系数,Fsl,Fsr分别为左右太阳翼与中心体的耦合系数,Ts表示作用在卫星上的外力矩列阵,Is表示卫星惯量阵,x1=[φθψ]T,y表示卫星输出,wl、wr分别为挠性卫星左、右太阳翼的角速度。φ, θ, ψ represent the pitch, yaw and roll attitude angles of the flexible satellite, [w x w y w z ] T represents the coordinates of the satellite’s angular velocity relative to the orbital coordinate system in the body coordinate system, w s and
Figure BSA00000291313600055
denote the angular velocity array and the antisymmetric array of the satellite center body respectively, η l , η r are the modal coordinate arrays of the left and right solar wings respectively, ξ l , ξ r are the modal damping coefficients of the left and right solar wings respectively, F sl , F sr is the coupling coefficient between the left and right solar wings and the central body, T s represents the external force matrix array acting on the satellite, I s represents the satellite inertia array, x 1 =[φθψ] T , y represents the satellite output, w l , w r are the angular velocities of the left and right solar wings of the flexible satellite, respectively.

时间尺度p按照下式计算:The time scale p is calculated according to the following formula:

pp == minmin {{ 11 Mm ff ·&Center Dot; 11 ,, 11 Mm ff ·&Center Dot; ,, 11 Mm ff 11 ,, 11 Mm ff 22 ,, 11 Mm uu }}

其中,in,

f1=C(x1)ws f 2 = - I s - 1 ( w ~ s I s w s + F sl η · · l + F sr η · · r ) , g = I s - 1 , u=Ts,f=f2+guf 1 =C(x 1 )w s , f 2 = - I the s - 1 ( w ~ the s I the s w the s + f sl η &Center Dot; &Center Dot; l + f sr η &Center Dot; &Center Dot; r ) , g = I the s - 1 , u=T s , f=f 2 +gu

M f · 1 = max | f · 1 | , M f · = max | f · | , M f 1 = max | f 1 | , M f 2 = max | f 2 | , Mu=max|gu| m f &Center Dot; 1 = max | f &Center Dot; 1 | , m f · = max | f &Center Dot; | , m f 1 = max | f 1 | , m f 2 = max | f 2 | , M u =max|gu|

采样时间尺度h按照下式计算:The sampling time scale h is calculated according to the following formula:

hh == pp dd ,, dd >> 55

M为f1i关于x1j、x2j(i,j=1,2,3)的偏导数和g的上界,即M is the partial derivative of f 1i with respect to x 1j , x 2j (i, j=1, 2, 3) and the upper bound of g, namely

| ∂ f 1 i ∂ x 1 j | ≤ M , | ∂ f 1 i ∂ x 2 j | ≤ M , ||g(k)||≤M,i,j=1,2,3,k=1,2,… | ∂ f 1 i ∂ x 1 j | ≤ m , | ∂ f 1 i ∂ x 2 j | ≤ m , ||g(k)||≤M, i, j=1, 2, 3, k=1, 2, ...

其中,x2=ws,f1i,x1i,x2i表示f1,x1,x2,的第i行,i=1,2,3。Wherein, x 2 =w s , f 1i , x 1i , x 2i represent the ith row of f 1 , x 1 , x 2 , i=1, 2, 3.

m按照下式确定:m is determined according to the following formula:

mm >> lnln dd 22 ϵϵ 66 Mm lnln NN xx CC xx 22 ++ NN xx -- 11

其中,Nx>0表示系统输出|yi|的上界,i=1,2,3;Among them, N x >0 means the upper bound of the system output |y i |, i=1, 2, 3;

Cx>0按照下式确定:记C x > 0 is determined according to the following formula:

hh ii (( xx 11 ,, xx 22 )) == ΣΣ jj == 11 ,, jj ≠≠ ii 33 ∂∂ ff 11 ii ∂∂ xx 11 jj xx ·· 11 jj ++ ∂∂ ff 11 ii ∂∂ xx 22 ff 22 (( xx 11 ,, xx 22 )) ,, ii == 1,2,31,2,3

h2|hi|为连续函数,则对于给定的建模误差ε,存在Cx>0,对于i=1,2,3,当|x1i|≤Cx时,h2|hi|≤ε。h 2 |h i | is a continuous function, then for a given modeling error ε, there exists C x >0, for i=1, 2, 3, when |x 1i |≤C x , h 2 |h i |≤ε.

2、根据步骤1中得到的各个变量确定特征模型的系数范围。2. Determine the coefficient range of the characteristic model according to each variable obtained in step 1.

设计一组非线性函数和压缩函数:Design a set of nonlinear and compressive functions:

sthe s ii 11 (( kk )) == ythe y ii (( kk )) ythe y ii (( kk )) 22 ++ ythe y ii (( kk -- 11 )) 22 ++ NN xx

sthe s ii 22 (( kk )) == xx 11 ii (( kk -- 11 )) ythe y ii (( kk )) 22 ++ ythe y ii (( kk -- 11 )) 22 ++ NN xx

sthe s ii 33 (( kk )) == NN xx ythe y ii (( kk )) 22 ++ ythe y ii (( kk -- 11 )) 22 ++ NN xx

and

ff cc ,, ii == SS ii (( kk )) sthe s ii 11 ythe y ii (( kk )) ++ SS ii (( kk )) sthe s ii 22 ythe y ii (( kk -- 11 )) ++ sthe s ii 33 mm ++ 11 ,, ii == 1,2,31,2,3

其中, S i ( k ) = Σ j = 0 m s i 3 ( k ) j , i = 1,2,3 . in, S i ( k ) = Σ j = 0 m the s i 3 ( k ) j , i = 1,2,3 .

特征模型为:The feature model is:

ythe y ~~ ii (( kk ++ 11 )) == aa ii 11 (( kk )) ythe y ~~ ii (( kk )) ++ aa ii 22 (( kk )) ythe y ~~ ii (( kk -- 11 )) ++ bb ii (( kk )) uu (( kk )) ,, ii == 1,2,31,2,3

其中,ai1,ai2∈R,bi=[bi1 bi2 bi3],bij∈R,j=1,2,3,表示特征模型的系数,

Figure BSA00000291313600074
表示特征模型的输出,R表示实数集。Among them, a i1 , a i2 ∈ R, b i = [b i1 b i2 b i3 ], b ij ∈ R, j=1, 2, 3, representing the coefficients of the feature model,
Figure BSA00000291313600074
Represents the output of the feature model, and R represents the set of real numbers.

下面给出y1=x11的特征模型,其余状态类同。x11满足如下微分方程:The characteristic model of y 1 =x 11 is given below, and the rest of the states are similar. x 11 satisfies the following differential equation:

xx ·· 1111 == ff 1111 (( xx 11 ,, xx 22 ))

对上式求导,可得Deriving the above formula, we can get

xx ·&Center Dot; ·&Center Dot; 1111 == ∂∂ ff 1111 ∂∂ xx 1111 xx ·&Center Dot; 1111 ++ hh 11 (( xx 11 ,, xx 22 )) ++ ∂∂ ff 1111 ∂∂ xx 22 gugu

其中,in,

hh 11 (( xx 11 ,, xx 22 )) == ΣΣ jj == 22 33 ∂∂ ff 1111 ∂∂ xx 11 jj xx ·· 11 jj ++ ∂∂ ff 1111 ∂∂ xx 22 ff 22 (( xx 11 ,, xx 22 ))

对上式进行离散化,易得Discretizing the above formula, it is easy to get

xx 1111 (( kk ++ 11 )) == 22 xx 1111 (( kk )) -- xx 1111 (( kk -- 11 )) ++ hh ∂∂ ff 1111 ∂∂ xx 1111 (( xx 1111 (( kk )) -- xx 1111 (( kk -- 11 )) )) ++ hh 22 ∂∂ ff 1111 ∂∂ xx 22 gugu (( kk )) ++ hh 22 hh 11 (( kk ))

将压缩函数fc,1乘以上式的最后一项,经整理可得Multiply the compression function f c, 1 by the last term of the above formula, and get

x11(k+1)=a11(k)x11(k)+a12(k)x11(k-1)+b1(k)u(k)+e1(k)x 11 (k+1)=a 11 (k)x 11 (k)+a 12 (k)x 11 (k-1)+b 1 (k)u(k)+e 1 (k)

其中,in,

aa 1111 (( kk )) == 22 ++ hh ∂∂ ff 1111 ∂∂ xx 1111 (( kk )) ++ hh 22 SS 11 (( kk )) hh 11 (( kk )) sthe s 1111 (( kk ))

aa 1212 (( kk )) == -- 11 -- hh ∂∂ ff 1111 ∂∂ xx 1111 (( kk )) ++ hh 22 SS 11 (( kk )) hh 11 (( kk )) sthe s 1212 (( kk ))

bb 11 (( kk )) == hh 22 ∂∂ ff 1111 ∂∂ xx 22 (( kk )) gg (( kk ))

ee 11 (( kk )) == hh 22 hh 11 sthe s 1313 mm ++ 11

其中e1(k)表示特征模型的建模误差。可知建模误差|e1(k)|<ε。由于where e 1 (k) represents the modeling error of the feature model. It can be seen that the modeling error |e 1 (k)|<ε. because

|Si(k)|≤m+1,i=1,2,3,k=1,2,…|S i (k)|≤m+1, i=1, 2, 3, k=1, 2, ...

由h1的定义,可知

Figure BSA000002913136000713
并且易知s11,s12均小于1,因此From the definition of h 1 , we know
Figure BSA000002913136000713
And it is easy to know that s 11 and s 12 are both less than 1, so

|| aa ii 11 (( kk )) -- 22 || &le;&le; Mhmh ++ 66 Mm (( mm ++ 11 )) dd 22

|| aa ii 22 (( kk )) ++ 11 || &le;&le; Mhmh ++ 66 Mm (( mm ++ 11 )) dd 22

|bij(k)|≤M2h2,j=1,2,3|b ij (k)|≤M 2 h 2 , j=1, 2, 3

3、根据步骤2中得到的特征模型系数范围,利用梯度法辨识特征模型的参数。(具体辨识方法见方崇智、萧德云著《过程辨识》第201-229页内容)3. According to the characteristic model coefficient range obtained in step 2, use the gradient method to identify the parameters of the characteristic model. (For specific identification methods, see pages 201-229 of "Process Identification" by Fang Chongzhi and Xiao Deyun)

θi=[ai1,ai2,bi]T,i=1,2,3θ i =[a i1 , a i2 , b i ] T , i=1, 2, 3

&theta;&theta; ^^ ii == [[ aa ^^ ii 11 ,, aa ^^ ii 22 ,, bb ^^ ii ]] TT ,, ii == 1,2,31,2,3

Figure BSA00000291313600084
Figure BSA00000291313600084

Figure BSA00000291313600085
Figure BSA00000291313600085

其中,λi1,λi2为可调参数,在辨识过程中,利用步骤2给定的参数范围对辨识结果进行限制。Among them, λ i1 and λ i2 are adjustable parameters. During the identification process, the identification result is limited by the parameter range given in step 2.

4根据步骤3中辨识得到的特征模型的系数设计控制律。4 Design the control law according to the coefficients of the characteristic model identified in step 3.

控制律为:The control law is:

uu == bb ^^ 11 TT bb ^^ 22 TT bb ^^ 33 TT -- TT &times;&times; diagdiag [[ uu 11 ,, uu 22 ,, uu 33 ]]

其中,in,

ui=u0i+uGi+uIi+uDi,i=1,2,3u i =u 0i +u Gi +u Ii +u Di , i=1, 2, 3

uu 00 ii (( kk )) == ythe y rithe ri (( kk )) -- aa ^^ ii 11 (( kk )) ythe y rithe ri (( kk )) -- aa ^^ ii 22 (( kk )) ythe y rithe ri (( kk -- 11 )) &lambda;&lambda; 00 ii

uu GiGi (( kk )) == -- ll 11 aa ^^ ii 11 ee (( kk )) ++ ll 22 aa ^^ ii 22 (( kk )) ee (( kk -- 11 )) &lambda;&lambda; GiGi

uIi(k)=uIi(k-1)-kIiei(k)u Ii (k)=u Ii (k-1)-k Ii e i (k)

uDi(k)=-kDiei(k)u Di (k)=-k Di e i (k)

l1=0.382,l2=0.618,ei(k)=yi(k)-yri(k),

Figure BSA00000291313600089
kIi1>>kIi2>0,
Figure BSA000002913136000810
或者,kIi1,kIi2,cDi,lDi,λ0i,λGi为所需调整参数,yri(k)为跟踪目标函数。u0i,uGi,uIi,和uDi分别称为维持/跟踪控制律,黄金分割控制率,逻辑积分控制率和逻辑微分控制率(具体的解算方法见科学技术出版社2009出版的吴宏鑫、胡军、解永春著的《基于特征模型的智能自适应控制》,第五章)。l 1 =0.382, l 2 =0.618, e i (k)=y i (k)-y ri (k),
Figure BSA00000291313600089
k Ii1 >> k Ii2 > 0,
Figure BSA000002913136000810
or, k Ii1 , k Ii2 , c Di , l Di , λ 0i , λ Gi are the required adjustment parameters, and y ri (k) is the tracking objective function. u 0i , u Gi , u Ii , and u Di are respectively called the maintenance/tracking control law, the golden section control rate, the logic integral control rate and the logic differential control rate (for specific solution methods, see Wu Hongxin published by Science and Technology Press in 2009 , Hu Jun, Xie Yongchun "Intelligent Adaptive Control Based on Feature Model", Chapter V).

5、将步骤4确定的控制率反馈到公式组(1)记载的挠性卫星动力学方程中,用来控制挠性卫星的俯仰、偏航和滚动姿态角。5. Feedback the control rate determined in step 4 to the dynamic equation of the flexible satellite recorded in formula group (1) to control the pitch, yaw and roll attitude angles of the flexible satellite.

本发明未详细说明部分属本领域技术人员公知常识。Parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.

Claims (2)

1. A flexible satellite control method based on a feature model is characterized by comprising the following steps:
in the first step, the time scale p of the flexible satellite dynamic equation is determined by using the formula (2),
<math> <mrow> <mi>p</mi> <mo>=</mo> <mi>min</mi> <mo>{</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>1</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>2</mn> </msub> </msub> </msqrt> </mfrac> <mo>,</mo> <mfrac> <mn>1</mn> <msqrt> <msub> <mi>M</mi> <mi>u</mi> </msub> </msqrt> </mfrac> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein the flexible satellite kinetic equation is a formula set (1),
<math> <mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&theta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>&psi;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>=</mo> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>w</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>w</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>+</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>l</mi> </msub> <msub> <mi>w</mi> <mi>l</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>l</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>l</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sl</mi> <mi>T</mi> </msubsup> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&xi;</mi> <mi>r</mi> </msub> <msub> <mi>w</mi> <mi>r</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>w</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msub> <mover> <mi>&eta;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>+</mo> <msubsup> <mi>F</mi> <mi>sr</mi> <mi>T</mi> </msubsup> <msub> <mover> <mi>w</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&phi;</mi> </mtd> <mtd> <mi>&theta;</mi> </mtd> <mtd> <mi>&psi;</mi> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>tan</mi> <mi></mi> <mi>&psi;</mi> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> w ~ s = 0 - w z w y w z 0 - w x - w y w x 0
phi, theta, psi denotes the pitch, yaw and roll attitude angles of the flexure satellite, [ wx wy wz]TRepresenting the coordinates of the angular velocity of the satellite relative to the orbital coordinate system in a body coordinate system, ws
Figure FSB00000788452800016
Respectively representing the angular velocity array and the anti-symmetric array, eta, of the flexible satellite central bodyl、ηrModal coordinate arrays, ξ, of the left and right sun wings of a flexible satellite, respectivelyl、ξrThe modal damping coefficients of the left and right solar wings of the flexible satellite respectively, Fsl、FsrThe coupling coefficients of the left and right solar wings and the central body of the flexible satellite, TsRepresenting an array of external moments acting on a flexible satellite, IsRepresenting the flexible satellite inertia matrix, xl=[φθψ]TY denotes the flexible satellite output, wl、wrThe angular velocities of the left and right solar wings of the flexible satellite respectively,
fl=C(x1)ws <math> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>I</mi> <mi>s</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mover> <mi>w</mi> <mo>~</mo> </mover> <mi>s</mi> </msub> <msub> <mi>I</mi> <mi>s</mi> </msub> <msub> <mi>w</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sl</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>sr</mi> </msub> <msub> <mover> <mi>&eta;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> g = I s - 1 , u=Ts,f=f2+gu,
<math> <mrow> <msub> <mi>M</mi> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>|</mo> <mo>,</mo> <msub> <mi>M</mi> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <mover> <mi>f</mi> <mo>&CenterDot;</mo> </mover> <mo>|</mo> <mo>,</mo> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>1</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>,</mo> <msub> <mi>M</mi> <msub> <mi>f</mi> <mn>2</mn> </msub> </msub> <mo>=</mo> <mi>max</mi> <mo>|</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math> Mu=max|gu|;
secondly, determining a sampling time scale h by using a formula (3) and the time scale p obtained in the first step,
h = p d , d > 5 - - - ( 3 ) ;
third step, using the formula set (4) and the parameter f determined in the first step1、x1、x2G, obtaining f1iWith respect to x1j、x2jAnd the upper bound M of g and the partial derivative of (c),
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> </mrow> </math>
<math> <mrow> <mo>|</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>|</mo> <mo>&le;</mo> <mi>M</mi> </mrow> </math>
||g(k)||≤M (4)
wherein x2=ws,i,j=1,2,3,k=1,2,…,f1i、x1i、x2iDenotes f1、x1、x2Row i of (1);
step four, determining a parameter M by using the formula (5) and the M obtained in the step three,
<math> <mrow> <mi>m</mi> <mo>></mo> <mfrac> <mrow> <mi>ln</mi> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <mi>&epsiv;</mi> </mrow> <mrow> <mn>6</mn> <mi>M</mi> </mrow> </mfrac> </mrow> <mrow> <mi>ln</mi> <mfrac> <msub> <mi>N</mi> <mi>x</mi> </msub> <mrow> <msubsup> <mi>C</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>N</mi> <mi>x</mi> </msub> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein N isx> 0 denotes the Flexible satellite output yiI is the upper bound of y, i is 1, 2, 3, epsilon is the modeling error, Cx>0;
Fifthly, obtaining the coefficient range of the flexible satellite characteristic model by using a formula group (6) according to the sampling time scale h determined in the second step, the M determined in the third step and the parameter M determined in the fourth step,
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> </mrow> </math>
<math> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mo>&le;</mo> <mi>Mh</mi> <mo>+</mo> <mfrac> <mrow> <mn>6</mn> <mi>M</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
|bij(k)|≤M2h2
wherein a isi1、ai2、bijCoefficients representing a characteristic model, bij∈R,j=1,2,3,bi=[bi1 bi2 bi3],d>5;
Sixthly, utilizing gradient method to make coefficient a of characteristic model obtained from the fifth stepi1、ai2、bijIdentifying to obtain the coefficient of the identified characteristic model
Seventhly, using the identified coefficient of the characteristic model obtained in the sixth stepThe control rate of the formula (7) is composed,
<math> <mrow> <mi>u</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>1</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mi>T</mi> </msup> </mtd> <mtd> <msup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mi>T</mi> </mrow> </msup> <mo>&times;</mo> <mi>diag</mi> <mo>[</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein u isi=u0i+uGi+uIi+uDi,u0iFor maintaining/tracking the control law uGiFor golden section control rate, uIiFor the logical integral control rate, uDiIs a logical differential control rate;
and step eight, substituting the control rate determined in the step seven into the flexible satellite dynamics equation of the formula set (1) to control the pitch, yaw and roll attitude angles of the flexible satellite.
2. The flexible satellite control method based on the feature model according to claim 1, wherein: in the fourth step CxThe determination of (a) is accomplished by the following steps,
A4.1、h2|hil is a continuous function, and h2|hiLess than or equal to epsilon to obtain | x1iThe range of l is such that,
wherein <math> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&NotEqual;</mo> <mi>i</mi> </mrow> <mn>3</mn> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>f</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2,3</mn> <mo>,</mo> </mrow> </math> h is a sampling time scale, and epsilon is a modeling error;
a4.2, | x obtained according to A4.11iRange of | according to the formula | x1i|≤CxDetermination of CxThe value of (c).
CN2010102979615A 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model Active CN102033491B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102979615A CN102033491B (en) 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102979615A CN102033491B (en) 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model

Publications (2)

Publication Number Publication Date
CN102033491A CN102033491A (en) 2011-04-27
CN102033491B true CN102033491B (en) 2012-08-22

Family

ID=43886507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102979615A Active CN102033491B (en) 2010-09-29 2010-09-29 Method for controlling flexible satellite based on feature model

Country Status (1)

Country Link
CN (1) CN102033491B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520725B (en) * 2011-12-08 2013-10-16 北京控制工程研究所 Characteristic mass obtaining method based on safety area
CN103336528B (en) * 2012-06-18 2016-02-10 北京控制工程研究所 A kind of underactuated spacecraft three-axis attitude stabilization control method
CN103224023B (en) * 2013-03-29 2015-07-08 北京控制工程研究所 Phase plane self-adaptation control method based on characteristic model
CN103941739B (en) * 2014-04-15 2016-06-01 北京控制工程研究所 A kind of motor-driven method of satellite attitude based on polynomial expression
CN104020778B (en) * 2014-06-18 2017-07-28 哈尔滨工业大学 Flexible Satellite Attitude maneuver autopilot method based on tracking time energy consumption optimal control orbit
CN104090489B (en) * 2014-07-02 2016-12-07 中国科学院长春光学精密机械与物理研究所 A kind of flexible agile satellite attitude maneuvers rolling optimization control method
CN104570734B (en) * 2014-12-18 2016-01-27 北京控制工程研究所 A full-coefficient adaptive control method based on first-order characteristic model
CN105607485B (en) * 2016-02-04 2018-08-14 河北科技师范学院 Flexible liquid filled spacecraft attitude-adaptive fault tolerant control method based on fault signature model
CN106295196B (en) * 2016-08-12 2018-10-30 上海卫星工程研究所 A kind of in-orbit modal calculation method with rotational flexibility sun battle array satellite
CN106961122A (en) * 2017-05-08 2017-07-18 河海大学常州校区 A kind of micro-capacitance sensor dynamic equivalent modeling method of feature based model
CN108490785B (en) * 2018-04-26 2021-11-16 北京控制工程研究所 Method for determining control coefficient range of parameter unknown system
CN108803345B (en) * 2018-07-25 2021-09-07 西北工业大学 Coupling characteristics analysis and decoupling method of space non-cooperative target takeover control process
CN112434370B (en) * 2020-11-12 2023-07-14 北京控制工程研究所 A Feature Modeling Method for Error-Free Compression of Flexible Vehicles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276434A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854905A (en) * 1994-08-09 1996-02-27 Matsushita Electric Ind Co Ltd Adaptive controller
US6618631B1 (en) * 2000-04-25 2003-09-09 Georgia Tech Research Corporation Adaptive control system having hedge unit and related apparatus and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276434A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Control device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴宏鑫等.非线性黄金分割自适应控制.《宇航学报》.2002,第23卷(第6期), *
孟斌等.一类飞行器姿态动力学特征建模研究.《中国科学:技术科学》.2010,第40卷(第8期),第898-903页. *
孟斌等.黄金分割控制的收敛性和稳定性研究.《宇航学报》.2009,第30卷(第5期), *

Also Published As

Publication number Publication date
CN102033491A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
CN102033491B (en) Method for controlling flexible satellite based on feature model
CN102411304B (en) Optimization method of spacecraft small-angle attitude maneuver control parameters
CN102749851B (en) Fine anti-interference tracking controller of flexible hypersonic vehicle
CN102411305B (en) Design method of integrated anti-disturbance control system for single-rotor helicopter/turboshaft engine
CN109144084B (en) An Attitude Tracking Control Method for Vertical Takeoff and Landing Reusable Vehicle Based on Fixed Time Convergence Observer
CN104020774B (en) The attitude of flight vehicle fault tolerant control method redistributed based on dynamic control
CN107450324A (en) Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint
CN102880052B (en) Time scale function decomposition based hypersonic aircraft actuator saturation control method
CN107085435A (en) Attitude coordination control method for hypersonic vehicle based on coupling analysis
CN102540882B (en) Aircraft track inclination angle control method based on minimum parameter studying method
CN106292681A (en) A kind of satellite Active Fault-tolerant Control Method distributed based on observer and On-line Control
CN103217899B (en) Q function self adaptation dynamic programming method based on data
CN104443427A (en) Aircraft flutter prediction system and method
CN113886967B (en) Aerodynamic elasticity optimization method for large aircraft wing under multi-cruise working condition
CN102880053A (en) Prediction model based hypersonic aircraft sliding-mode control method
CN105629734A (en) Trajectory tracking control method for NSV (Near Space Vehicle)
CN106444813A (en) A quadrotor attitude control method based on a T-S fuzzy model
CN109683624A (en) Nonlinear robust control method for small-sized depopulated helicopter gesture stability
CN103116706A (en) Configured control optimization method for high-speed aircrafts based on pneumatic nonlinearity and coupling
CN107515530A (en) A Nonlinear Control Assignment Method Based on Deep Autoencoder Network
Fasel et al. Aeroservoelastic optimization of morphing airborne wind energy wings
Fasel et al. Concurrent design and flight mission optimization of morphing airborne wind energy wings
Deodhar et al. Experimentally infused plant and controller optimization using iterative design of experiments—theoretical framework and airborne wind energy case study
Menon et al. Adaptive control for hybrid PDE models inspired from morphing aircraft
CN102139769A (en) Fast and stable control method for flexible satellite based on self-organizing CMAC (cerebellar model articulation controller)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant