CN107450324A - Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint - Google Patents

Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint Download PDF

Info

Publication number
CN107450324A
CN107450324A CN201710789277.0A CN201710789277A CN107450324A CN 107450324 A CN107450324 A CN 107450324A CN 201710789277 A CN201710789277 A CN 201710789277A CN 107450324 A CN107450324 A CN 107450324A
Authority
CN
China
Prior art keywords
msub
mrow
mover
mtd
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710789277.0A
Other languages
Chinese (zh)
Other versions
CN107450324B (en
Inventor
许斌
郭雨岩
程怡新
张睿
史忠科
凡永华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, Shenzhen Institute of Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710789277.0A priority Critical patent/CN107450324B/en
Publication of CN107450324A publication Critical patent/CN107450324A/en
Application granted granted Critical
Publication of CN107450324B publication Critical patent/CN107450324B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

The invention discloses a kind of hypersonic aircraft adaptive fusion method for considering angle of attack constraint, for solving the technical problem of existing hypersonic aircraft control method poor practicability.Technical scheme is that Aircraft Angle of Attack is limited in given range, ensures the normal work of scramjet engine;For actuator failures situation, robust adaptive adjustment control strategy is given, the influence brought using the effective compensation failure of Redundant Control mechanism is to ensure the security of system.For model uncertainty.The present invention combines amplitude limit design and provides controller with Barrier type liapunov functions, it can be ensured that the angle of attack can be constrained in given range, ensure scramjet engine normal work.Model uncertainty is handled by neural network learning to handle instead of linear parameterization, is simplified model analysis, is easy to practical application.It is good for actuator failures situation, the influence brought using the effective adaptive equalization failure of Redundant Control mechanism, practicality.

Description

Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint
Technical field
The present invention relates to a kind of hypersonic aircraft control method, more particularly to a kind of high ultrasound for considering angle of attack constraint Fast aircraft adaptive fusion method.
Background technology
Hypersonic aircraft refers to the aircraft to be flown in endoatmosphere with more than the five times velocities of sound, due to its protrusion Flight performance make it that the whole world is hit in real time, therefore by extensive concern both domestic and external.Air suction type hypersonic flight Device is more using scramjet engine as power resources, because this kind of engine eliminates the compressor of conventional jet formula engine Component, its intake efficiency is extremely sensitive to Aircraft Angle of Attack, only when Aircraft Angle of Attack is limited in certain limit, super burn Punching engine just can normal work.The current research for hypersonic aircraft considers less, shortage for angle of attack limitation The correlative study of the control law constrained the angle of attack.In addition, hypersonic aircraft is due to flight environment of vehicle harshness, flight course X factor is more, and its actuator is likely to occur the failure such as stuck and further results in flight unstability.
《Fault-tolerant control using command filtered adaptive back-stepping technique:application to hypersonic longitudinal flight dynamics》(Bin Xu, Yuyan Guo, Yuan Yuan, Yonghua Fan, Danwei Wang,《International Journal of Adaptive Control and Signal Processing》,2016,30(4):553-577) text flies for hypersonic Row device vertical passage devises adaptive fusion rule, while is linear parameterization form design adaptive law by model conversation It is estimated, but linear parameterization form is difficult to obtain in practice, and do not consider to attack in the controller design of the paper Angle restricted problem, causes this method to be difficult to engineer applied.
The content of the invention
In order to overcome the shortcomings of existing hypersonic aircraft control method poor practicability, the present invention provides a kind of consideration and attacked The hypersonic aircraft adaptive fusion method of angle constraint.Aircraft Angle of Attack is limited in given range by this method, Ensure the normal work of scramjet engine;For actuator failures situation, robust adaptive adjustment control strategy is given, The influence brought using the failure of Redundant Control mechanism effective compensation is to ensure the security of system.For model uncertainty.This Invention combine amplitude limit design with Barrier type liapunov functions provide controller, it can be ensured that the angle of attack can be constrained on to Determine in scope, ensure scramjet engine normal work.Model uncertainty is handled by neural network learning to replace linearly Parameterized treatment, model analysis is simplified, be easy to practical application.For actuator failures situation, using Redundant Control, mechanism has The influence that brings of effect adaptive equalization failure, ensures the security of system, and practicality is good.
The technical solution adopted for the present invention to solve the technical problems:A kind of hypersonic aircraft for considering angle of attack constraint Adaptive fusion method, it is characterized in comprising the following steps:
Step 1: establish hypersonic aircraft vertical passage kinetic model:
Wherein, Represent Dynamic pressure, ρ represent atmospheric density,It is aerodynamic parameter,Represent mean aerodynamic chord, S Represent pneumatic area of reference;V represents speed, and γ represents flight path angle, and h represents height, and α represents the angle of attack, and q represents angle of pitch speed Degree;Wherein u=[u1,u2,…,un]TFor n control surface deflection angle to be designed,For unknown failure parameter, δ=diag { δ12,…,δn, take δ when i-th of actuator breaks downi =1, otherwise take δi=0, λ=[λ12,…,λn]TFor unknown parameter;β is throttle valve opening;T, D, L and MyyRepresent and push away respectively Power, resistance, lift and pitch rotation torque;m、Iyy, μ and r representation qualities, the rotary inertia of pitch axis, gravitational coefficients and away from The distance in the earth's core.
Step 2: define height tracing error eh=h-hd, design flight-path angle instruction γd
In formula, hdHighly to instruct,For the first differential highly instructed, kh>0, ki>0.Consider that cruise section flight-path angle becomes Change small, the first differential of flight-path angle instructionIt is taken as zero.
Take x1=γ, x2=α, x3=q;Formula (3)-(5) can be written as Strict-feedback form:
Wherein, fi,gi, i=1,2,3 is the unknown nonlinear function obtained according to hypersonic vehicle.g1= ωg1θg1, g2=1, g3g3θg3, whereinFor known terms,For not Know aerodynamic parameter item.
Step 3: define flight path angle tracking error:
e1=x1d (8)
Design angle of attack virtual controlling amount:
In formula, k1>0。For the f obtained by RBF neural1Estimate, whereinFor the optimal power of neutral net The estimate of weight vector, θ1For RBF functional vectors.WhereinFor θg1Estimate.
Define modeling error:
WhereinObtained by following formula:
Wherein η1>0 is provided by designer.DesignAdaptive law is as follows:
Wherein γ1>0、γz1>0、δ1>0.DesignAdaptive law is as follows:
Wherein
In order that the angle of attack meets given constraints, x is made2cX is obtained by following saturation element2cl
Wherein, x2cmFor x2cThe upper bound.
It is as follows to design firstorder filter:
X in formula2dFor x2clThe signal obtained afterwards by wave filter (15), α2>0。
Define angle of attack tracking error:
e2=x2-x2d (16)
Construct Barrier liapunov functionsWherein kbFor error e2The upper bound.Design the angle of pitch Speed virtual controlling amount:
In formula, k2>0,For the f obtained by RBF neural2Estimate, whereinFor the optimal power of neutral net The estimate of weight vector, θ2For RBF functional vectors.
Define modeling error:
WhereinObtained by following formula:
Wherein η2>0.DesignAdaptive law is as follows:
Wherein γ2>0、γz2>0、δ2>0。
It is as follows to design firstorder filter:
X in formula3dFor x3cThe signal obtained afterwards by wave filter (21), α3>0。
Define pitch rate tracking error:
e3=x3-x3d (22)
Design assistant signal u*It is as follows:
In formula, k3>0。For the f obtained by RBF neural3Estimate, whereinFor the optimal power of neutral net The estimate of weight vector, θ3For RBF functional vectors.WhereinFor θg3Estimate.
It is as follows to design each control surface deflection:
WhereinAdaptive law is as follows:
Wherein Γ1i>0 and Γ2i>0, sgn (g3) it is g3Sign function, g herein3Known to symbol.
Define modeling error:
WhereinObtained by following formula:
Wherein η3>0.DesignAdaptive law is as follows:
Wherein γ3>0、γz3>0、δ3>0.DesignAdaptive law is as follows:
Wherein
Step 4: define speed tracing error:
In formula, VdFor speed command.It is as follows to design throttle valve opening:
In formula, kpV>0、kiV>0、kdV>0。
Step 5: according to obtained each angle of rudder reflection uiWith throttle valve opening β, the dynamics of hypersonic aircraft is returned to Model (1)-(5), control is tracked to height and speed.
The beneficial effects of the invention are as follows:Aircraft Angle of Attack is limited in given range by this method, ensures ultra-combustion ramjet hair The normal work of motivation;For actuator failures situation, robust adaptive adjustment control strategy is given, utilizes Redundant Control machine The influence that brings of failure of structure effective compensation is to ensure the security of system.For model uncertainty.The present invention is set with reference to amplitude limit Meter provides controller with Barrier type liapunov functions, it can be ensured that the angle of attack can be constrained in given range, ensured super Burning ramjet normal work.Model uncertainty is handled by neural network learning to handle instead of linear parameterization, is simplified Model analysis, is easy to practical application.For actuator failures situation, the effective adaptive equalization failure of Redundant Control mechanism is utilized The influence brought, ensures the security of system, and practicality is good.
The present invention is elaborated with reference to the accompanying drawings and detailed description.
Brief description of the drawings
Fig. 1 is the flow chart for the hypersonic aircraft adaptive fusion method that the present invention considers angle of attack constraint.
Embodiment
Reference picture 1.The present invention considers the hypersonic aircraft adaptive fusion method specific steps of angle of attack constraint It is as follows:
Step 1: establish hypersonic aircraft vertical passage kinetic model:
Wherein, V represents speed, and γ represents flight path angle, and h represents height, and α represents the angle of attack, and q represents rate of pitch,Wherein u=[u1 u2]TFor each angle of rudder reflection,For unknown failure parameter, δ= diag{δ1 δ2, take δ when i-th of actuator breaks downi=1, otherwise take δi=0, λ=[λ1 λ2]T=[0.8 0.8]T。β For throttle valve opening;T, D, L and MyyThrust, resistance, lift and pitch rotation torque are represented respectively;m、Iyy, μ and r represent matter Amount, the rotary inertia of pitch axis, gravitational coefficients and the distance away from the earth's core.Related torque and parameter definition is as follows:
WhereinDynamic pressure is represented, ρ represents atmospheric density,Mean aerodynamic chord is represented, S represents pneumatic ginseng Examine area.
Step 2: define height tracing error eh=h-hd, design flight-path angle instruction γd
In formula, hdHighly to instruct, provided by designer,For the first differential highly instructed, kh=0.5, ki= 0.05.Consider that the change of cruise section flight-path angle is small, the first differential of flight-path angle instructionIt is taken as zero.
Take x1=γ, x2=α, x3=q;Formula (3)-(5) can be written as Strict-feedback form:
Wherein, fi,gi, i=1,2,3 is the nonlinear function obtained according to hypersonic vehicle.g1g1 θg1, g2=1, g3g3θg3, whereinFor known terms,To be unknown Aerodynamic parameter item.
Step 3: define flight path angle tracking error:
e1=x1d (8)
Design angle of attack virtual controlling amount:
In formula, k1=1.WhereinFor θg1Estimate.Obtained by RBF neural f1Estimate, whereinFor the estimate of neutral net optimal weights vector, θ1For RBF functional vectors.
Define modeling error:
WhereinObtained by following formula:
Wherein η1=2.DesignAdaptive law is as follows:
Wherein γ1=2, γz1=1, δ1=0.1.DesignAdaptive law is as follows:
Wherein
In order that the angle of attack meets given constraints, x is made2cPass through following saturation element:
Wherein, x2cm=0.1.
Make x2clX is obtained by following firstorder filter2d
α in formula2=0.05.
Define angle of attack tracking error:
e2=x2-x2d (16)
Construct Barrier liapunov functionsWherein kb=0.022.It is empty to design pitch rate Intend controlled quentity controlled variable:
K in formula2=1.For the f obtained by RBF neural2Estimate, whereinFor the optimal power of neutral net The estimate of weight vector, θ2For RBF functional vectors.
Define modeling error:
WhereinObtained by following formula:
Wherein η2=2.DesignAdaptive law is as follows:
Wherein γ2=0.2, γz2=0.5, δ2=0.01.
Make x3cX is obtained by following firstorder filter3d
α in formula3=0.05.
Define pitch rate tracking error:
e3=x3-x3d (22)
Design assistant signal u*It is as follows:
K in formula3=5.For the f obtained by RBF neural3Estimate, whereinFor the optimal power of neutral net The estimate of weight vector, θ3For RBF functional vectors.
For double actuator situations, design self-adjusted block rule is as follows:
In formula, adaptive law is as follows:
Wherein Γ1i=3, Γ2i=0.7, i=1,2.
Define modeling error:
WhereinObtained by following formula:
Wherein η3=2.DesignAdaptive law is as follows:
Wherein γ3=0.1, γz3=0.05, δ3=0.01.DesignAdaptive law is as follows:
Wherein
Step 4: given speed instructs Vd, define speed tracing error:
It is as follows to design throttle valve opening:
In formula, kpV=0.5, kiV=0.001, kdV=0.01.
Step 5: according to obtained angle of rudder reflection u1、u2With throttle valve opening β, the dynamics of hypersonic aircraft is returned to Model, control is tracked to height and speed.Designed controller can ensure that the angle of attack is limited in ± 0.122rad in this example In the range of (± 7 °).
Unspecified part of the present invention belongs to art personnel's common knowledge.

Claims (1)

  1. A kind of 1. hypersonic aircraft adaptive fusion method for considering angle of attack constraint, it is characterised in that including following step Suddenly:
    Step 1: establish hypersonic aircraft vertical passage kinetic model:
    <mrow> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mi>D</mi> </mrow> <mi>m</mi> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;mu;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;gamma;</mi> </mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>h</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>V</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;gamma;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>&amp;gamma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>L</mi> <mo>+</mo> <mi>T</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;alpha;</mi> </mrow> <mrow> <mi>m</mi> <mi>V</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;mu;</mi> <mo>-</mo> <msup> <mi>V</mi> <mn>2</mn> </msup> <mi>r</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;gamma;</mi> </mrow> <mrow> <msup> <mi>Vr</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>q</mi> <mo>-</mo> <mover> <mi>&amp;gamma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>M</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, Table Showing dynamic pressure, ρ represents atmospheric density,It is aerodynamic parameter,Represent Average aerodynamic string Long, S represents pneumatic area of reference;V represents speed, and γ represents flight path angle, and h represents height, and α represents the angle of attack, and q represents the angle of pitch Speed;Wherein u=[u1,u2,…,un]TFor n control surface deflection angle to be designed,For unknown failure parameter, δ=diag { δ12,…,δn, take δ when i-th of actuator breaks downi =1, otherwise take δi=0, λ=[λ12,…,λn]TFor unknown parameter;β is throttle valve opening;T, D, L and MyyRepresent and push away respectively Power, resistance, lift and pitch rotation torque;m、Iyy, μ and r representation qualities, the rotary inertia of pitch axis, gravitational coefficients and away from The distance in the earth's core;
    Step 2: define height tracing error eh=h-hd, design flight-path angle instruction γd
    <mrow> <msub> <mi>&amp;gamma;</mi> <mi>d</mi> </msub> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>k</mi> <mi>h</mi> </msub> <msub> <mi>e</mi> <mi>h</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>&amp;Integral;</mo> <msub> <mi>e</mi> <mi>h</mi> </msub> <mi>d</mi> <mi>t</mi> <mo>+</mo> <msub> <mover> <mi>h</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> </mrow> <mi>V</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
    In formula, hdHighly to instruct,For the first differential highly instructed, kh>0, ki>0;Consider that the change of cruise section flight-path angle is small, The first differential of flight-path angle instructionIt is taken as zero;
    Take x1=γ, x2=α, x3=q;Formula (3)-(5) can be written as Strict-feedback form:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>g</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>f</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, fi,gi, i=1,2,3 is the unknown nonlinear function obtained according to hypersonic vehicle;g1g1θg1, g2=1, g3g3θg3, whereinFor known terms,To be unknown pneumatic Parameter item;
    Step 3: define flight path angle tracking error:
    e1=x1d (8)
    Design angle of attack virtual controlling amount:
    <mrow> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mover> <mi>g</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;gamma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
    In formula, k1>0;For the f obtained by RBF neural1Estimate, whereinFor neutral net optimal weights to The estimate of amount, θ1For RBF functional vectors;WhereinFor θg1Estimate;
    Define modeling error:
    <mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
    WhereinObtained by following formula:
    <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mover> <mi>g</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
    Wherein η1>0 is provided by designer;DesignAdaptive law is as follows:
    <mrow> <msub> <mover> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>1</mn> </msub> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>z</mi> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
    Wherein γ1>0、γz1>0、δ1>0;DesignAdaptive law is as follows:
    Wherein
    In order that the angle of attack meets given constraints, x is made2cX is obtained by following saturation element2cl
    <mrow> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>m</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </msub> <mo>&gt;</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>m</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> </mrow> </msub> <mo>&lt;</mo> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, x2cmFor x2cThe upper bound;
    It is as follows to design firstorder filter:
    <mrow> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>2</mn> <mi>d</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mn>2</mn> <mi>c</mi> <mi>l</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
    X in formula2dFor x2clThe signal obtained afterwards by wave filter (15), α2>0;
    Define angle of attack tracking error:
    e2=x2-x2d (16)
    Construct Barrier liapunov functionsWherein kbFor error e2The upper bound;Design pitch rate Virtual controlling amount:
    <mrow> <msub> <mi>x</mi> <mrow> <mn>3</mn> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>g</mi> <mn>2</mn> </msub> </mfrac> <mo>&amp;lsqb;</mo> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>e</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>g</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>e</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>2</mn> <mi>d</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
    In formula, k2>0,For the f obtained by RBF neural2Estimate, whereinFor neutral net optimal weights to The estimate of amount, θ2For RBF functional vectors;
    Define modeling error:
    <mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> 2
    WhereinObtained by following formula:
    <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>g</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>2</mn> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
    Wherein η2>0;DesignAdaptive law is as follows:
    <mrow> <mover> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>2</mn> </msub> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <msubsup> <mi>k</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>e</mi> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>z</mi> <mn>2</mn> </mrow> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;</mi> <mn>2</mn> </msub> <msub> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
    Wherein γ2>0、γz2>0、δ2>0;
    It is as follows to design firstorder filter:
    <mrow> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>3</mn> <mi>d</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mn>3</mn> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mn>3</mn> <mi>c</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
    X in formula3dFor x3cThe signal obtained afterwards by wave filter (21), α3>0;
    Define pitch rate tracking error:
    e3=x3-x3d (22)
    Design assistant signal u*It is as follows:
    <mrow> <msup> <mi>u</mi> <mo>*</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mover> <mi>g</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> </mfrac> <mo>&amp;lsqb;</mo> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <msub> <mi>e</mi> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>g</mi> <mn>2</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> </mrow> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>e</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> </mfrac> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>3</mn> <mi>d</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
    In formula, k3>0;For the f obtained by RBF neural3Estimate, whereinFor neutral net optimal weights to The estimate of amount, θ3For RBF functional vectors;WhereinFor θg3Estimate;
    It is as follows to design each control surface deflection:
    <mrow> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msup> <mi>u</mi> <mo>*</mo> </msup> <mo>+</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
    WhereinAdaptive law is as follows:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;Gamma;</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>e</mi> <mn>3</mn> </msub> <msup> <mi>u</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>g</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;Gamma;</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>e</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
    Wherein Γ1i>0 and Γ2i>0, sgn (g3) it is g3Sign function, g herein3Known to symbol;
    Define modeling error:
    <mrow> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
    WhereinObtained by following formula:
    <mrow> <msub> <mover> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>+</mo> <msub> <mover> <mi>g</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mn>3</mn> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
    Wherein η3>0;DesignAdaptive law is as follows:
    <mrow> <msub> <mover> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mn>3</mn> </msub> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>z</mi> <mn>3</mn> </mrow> </msub> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&amp;delta;</mi> <mn>3</mn> </msub> <msub> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
    Wherein γ3>0、γz3>0、δ3>0;DesignAdaptive law is as follows:
    Wherein
    Step 4: define speed tracing error:
    <mrow> <mover> <mi>V</mi> <mo>~</mo> </mover> <mo>=</mo> <msub> <mi>V</mi> <mi>d</mi> </msub> <mo>-</mo> <mi>V</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>
    In formula, VdFor speed command;It is as follows to design throttle valve opening:
    <mrow> <mi>&amp;beta;</mi> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>p</mi> <mi>V</mi> </mrow> </msub> <mover> <mi>V</mi> <mo>~</mo> </mover> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mi>V</mi> </mrow> </msub> <mo>&amp;Integral;</mo> <mover> <mi>V</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>d</mi> <mi>V</mi> </mrow> </msub> <mfrac> <mrow> <mi>d</mi> <mover> <mi>V</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow>
    In formula, kpV>0、kiV>0、kdV>0;
    Step 5: according to obtained each angle of rudder reflection uiWith throttle valve opening β, the kinetic model of hypersonic aircraft is returned to (1)-(5), control is tracked to height and speed.
CN201710789277.0A 2017-09-05 2017-09-05 Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint Active CN107450324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710789277.0A CN107450324B (en) 2017-09-05 2017-09-05 Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710789277.0A CN107450324B (en) 2017-09-05 2017-09-05 Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint

Publications (2)

Publication Number Publication Date
CN107450324A true CN107450324A (en) 2017-12-08
CN107450324B CN107450324B (en) 2019-10-22

Family

ID=60495150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710789277.0A Active CN107450324B (en) 2017-09-05 2017-09-05 Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint

Country Status (1)

Country Link
CN (1) CN107450324B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107943097A (en) * 2017-12-29 2018-04-20 北京航空航天大学 Control method, device and the aircraft of aircraft
CN108241380A (en) * 2018-01-24 2018-07-03 北京航空航天大学 Control method, device and the high speed unmanned vehicle of high speed unmanned vehicle
CN108303889A (en) * 2018-02-07 2018-07-20 中国航空工业集团公司西安飞机设计研究所 A kind of time-scale separation aircraft elasticity body controlling means based on nonlinear transformations
CN108333939A (en) * 2018-02-07 2018-07-27 中国航空工业集团公司西安飞机设计研究所 A kind of time-scale separation aircraft elastomer intelligent control method based on neural network
CN108415247A (en) * 2018-02-07 2018-08-17 中国航空工业集团公司西安飞机设计研究所 A kind of time-scale separation aircraft elastomer robust control method based on nominal information
CN108663940A (en) * 2018-08-20 2018-10-16 西北工业大学 Aircraft neural network lea rning control method based on the compound estimation of lump
CN108762098A (en) * 2018-08-20 2018-11-06 西北工业大学 Non-minimum phase aircraft neural network control method based on Hybrid Learning
CN108828957A (en) * 2018-08-20 2018-11-16 西北工业大学 Aircraft overall situation finite time neural network control method based on handover mechanism
CN108897227A (en) * 2018-08-20 2018-11-27 西北工业大学 Non-linear strict feedback systems overall situation finite time neural network control method
CN108919651A (en) * 2018-09-26 2018-11-30 北京航空航天大学 A kind of hypersonic aircraft adaptive fusion method considering actuator input constraint
CN109062234A (en) * 2018-08-20 2018-12-21 西北工业大学 A kind of non-minimum phase aircraft Hybrid Learning sliding-mode control
CN109062049A (en) * 2018-08-20 2018-12-21 西北工业大学 Strict feedback systems neural network control method based on the compound estimation of lump
CN109164708A (en) * 2018-10-31 2019-01-08 南京航空航天大学 A kind of hypersonic aircraft neural network adaptive fusion method
CN109176525A (en) * 2018-09-30 2019-01-11 上海神添实业有限公司 A kind of mobile manipulator self-adaptation control method based on RBF
CN109917650A (en) * 2018-03-15 2019-06-21 浙江工业大学 A kind of Spacecraft Attitude Control of asymmetric varying constraint
CN109932902A (en) * 2018-02-11 2019-06-25 浙江工业大学 A kind of quadrotor output constrained control method
CN110362110A (en) * 2019-07-12 2019-10-22 西北工业大学 Adaptive neural network unmanned aerial vehicle flight path angle control method when a kind of fixed
CN110515392A (en) * 2019-08-26 2019-11-29 哈尔滨工业大学 A kind of hypersonic aircraft Trajectory Tracking Control method that performance oriented restores
CN110568765A (en) * 2019-10-16 2019-12-13 西北工业大学 Asymmetric output limited control method for hypersonic aircraft facing attack angle tracking
CN110597068A (en) * 2019-10-16 2019-12-20 西北工业大学 Hypersonic aircraft robust control method considering asymmetric constraint of attack angle
CN110727198A (en) * 2019-11-11 2020-01-24 中国人民解放军军事科学院国防科技创新研究院 Fault-tolerant control method for missile multi-drive-state actuating mechanism faults
CN111007720A (en) * 2019-12-11 2020-04-14 南京航空航天大学 Nonlinear self-healing control method for hypersonic aircraft multi-sensor fault
CN111158398A (en) * 2020-01-15 2020-05-15 哈尔滨工业大学 Adaptive control method of hypersonic aircraft considering attack angle constraint
CN111273681A (en) * 2020-04-09 2020-06-12 中北大学 Hypersonic aircraft high-safety anti-interference control method considering limited attack angle
CN112558484A (en) * 2020-12-29 2021-03-26 彩虹无人机科技有限公司 Design method of controller for displaying and considering dynamic characteristics of aircraft actuating mechanism
CN112947498A (en) * 2021-02-04 2021-06-11 深圳信息职业技术学院 Aircraft track angle control method, system and storage medium
CN114200828A (en) * 2021-11-09 2022-03-18 西北工业大学 Supersonic speed large maneuvering target continuous large overload stall prevention method
CN114237050A (en) * 2021-12-16 2022-03-25 西北工业大学 Method for stably controlling rope system assembly under full-state constraint
CN114397819A (en) * 2022-01-13 2022-04-26 大连理工大学 Event trigger self-adaptive control method for aircraft engine actuating mechanism
CN114779636A (en) * 2022-04-17 2022-07-22 西北工业大学 Aircraft robust adaptive control method considering pneumatic servo elasticity
CN116009594A (en) * 2023-03-27 2023-04-25 合肥工业大学 Hypersonic aircraft state constraint fault tolerance control method based on zero and game
CN116594414A (en) * 2023-03-28 2023-08-15 西北工业大学 Longitudinal control method of hypersonic aircraft
CN116819976A (en) * 2023-08-31 2023-09-29 中国人民解放军空军工程大学 Predetermined time fault-tolerant control design method for control input constrained dynamics system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137724A1 (en) * 2003-10-10 2005-06-23 Georgia Tech Research Corporation Adaptive observer and related method
GB2423377A (en) * 2002-12-09 2006-08-23 Georgia Tech Res Inst Adaptive output feedback apparatuses and methods capable of controlling a non-minimum phase system.
US8285659B1 (en) * 2009-08-18 2012-10-09 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Aircraft system modeling error and control error
CN102880055A (en) * 2012-09-29 2013-01-16 西北工业大学 Method for controlling neural network of hypersonic aerocraft on basis of prediction model
CN102880052A (en) * 2012-09-29 2013-01-16 西北工业大学 Time scale function decomposition based hypersonic aircraft actuator saturation control method
CN102929141A (en) * 2012-10-10 2013-02-13 西北工业大学 Aircraft time lag varying model approximation and controller designing method
CN103365296A (en) * 2013-06-29 2013-10-23 天津大学 Nonlinear output feedback flight control method for quad-rotor unmanned aerial vehicle
CN104022742A (en) * 2014-06-19 2014-09-03 金陵科技学院 Aircraft posture robust inversion fault tolerant control method based on neural network observer
CN104765272A (en) * 2014-03-05 2015-07-08 北京航空航天大学 Four-rotor aircraft control method based on PID neural network (PIDNN) control
US9146557B1 (en) * 2014-04-23 2015-09-29 King Fahd University Of Petroleum And Minerals Adaptive control method for unmanned vehicle with slung load

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423377A (en) * 2002-12-09 2006-08-23 Georgia Tech Res Inst Adaptive output feedback apparatuses and methods capable of controlling a non-minimum phase system.
US20050137724A1 (en) * 2003-10-10 2005-06-23 Georgia Tech Research Corporation Adaptive observer and related method
US8285659B1 (en) * 2009-08-18 2012-10-09 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Aircraft system modeling error and control error
CN102880055A (en) * 2012-09-29 2013-01-16 西北工业大学 Method for controlling neural network of hypersonic aerocraft on basis of prediction model
CN102880052A (en) * 2012-09-29 2013-01-16 西北工业大学 Time scale function decomposition based hypersonic aircraft actuator saturation control method
CN102929141A (en) * 2012-10-10 2013-02-13 西北工业大学 Aircraft time lag varying model approximation and controller designing method
CN103365296A (en) * 2013-06-29 2013-10-23 天津大学 Nonlinear output feedback flight control method for quad-rotor unmanned aerial vehicle
CN104765272A (en) * 2014-03-05 2015-07-08 北京航空航天大学 Four-rotor aircraft control method based on PID neural network (PIDNN) control
US9146557B1 (en) * 2014-04-23 2015-09-29 King Fahd University Of Petroleum And Minerals Adaptive control method for unmanned vehicle with slung load
CN104022742A (en) * 2014-06-19 2014-09-03 金陵科技学院 Aircraft posture robust inversion fault tolerant control method based on neural network observer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIN XU: "《Neural Control for Longitudinal Dynamics of Hypersonic Aircraft》", 《2013 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS)》 *
JIANMIN WANG: "《RBF Neural Network based Adaptive Sliding Mode Control forHypersonic Flight Vehicles》", 《PROCEEDINGS OF 2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE》 *
李砚浓: "《基于RBF 神经网络自适应PID四旋翼飞行器控制》", 《控制工程》 *
王丽: "《基于混合神经网络的鲁棒自适应飞行控制器的设计》", 《电光与控制》 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107943097A (en) * 2017-12-29 2018-04-20 北京航空航天大学 Control method, device and the aircraft of aircraft
CN107943097B (en) * 2017-12-29 2020-07-17 北京航空航天大学 Aircraft control method and device and aircraft
CN108241380A (en) * 2018-01-24 2018-07-03 北京航空航天大学 Control method, device and the high speed unmanned vehicle of high speed unmanned vehicle
CN108303889A (en) * 2018-02-07 2018-07-20 中国航空工业集团公司西安飞机设计研究所 A kind of time-scale separation aircraft elasticity body controlling means based on nonlinear transformations
CN108333939A (en) * 2018-02-07 2018-07-27 中国航空工业集团公司西安飞机设计研究所 A kind of time-scale separation aircraft elastomer intelligent control method based on neural network
CN108415247A (en) * 2018-02-07 2018-08-17 中国航空工业集团公司西安飞机设计研究所 A kind of time-scale separation aircraft elastomer robust control method based on nominal information
CN108415247B (en) * 2018-02-07 2019-12-20 中国航空工业集团公司西安飞机设计研究所 Time scale separation aircraft elastomer robust control method based on nominal information
CN109932902A (en) * 2018-02-11 2019-06-25 浙江工业大学 A kind of quadrotor output constrained control method
CN109917650A (en) * 2018-03-15 2019-06-21 浙江工业大学 A kind of Spacecraft Attitude Control of asymmetric varying constraint
CN108828957A (en) * 2018-08-20 2018-11-16 西北工业大学 Aircraft overall situation finite time neural network control method based on handover mechanism
CN108828957B (en) * 2018-08-20 2019-11-05 西北工业大学 Aircraft overall situation finite time neural network control method based on handover mechanism
CN109062049A (en) * 2018-08-20 2018-12-21 西北工业大学 Strict feedback systems neural network control method based on the compound estimation of lump
CN108663940A (en) * 2018-08-20 2018-10-16 西北工业大学 Aircraft neural network lea rning control method based on the compound estimation of lump
CN108762098A (en) * 2018-08-20 2018-11-06 西北工业大学 Non-minimum phase aircraft neural network control method based on Hybrid Learning
CN109062234A (en) * 2018-08-20 2018-12-21 西北工业大学 A kind of non-minimum phase aircraft Hybrid Learning sliding-mode control
CN108897227A (en) * 2018-08-20 2018-11-27 西北工业大学 Non-linear strict feedback systems overall situation finite time neural network control method
CN108897227B (en) * 2018-08-20 2019-09-24 西北工业大学 Non-linear strict feedback systems overall situation finite time neural network control method
CN109062049B (en) * 2018-08-20 2019-09-24 西北工业大学 Strict feedback systems neural network control method based on the compound estimation of lump
CN108663940B (en) * 2018-08-20 2019-09-24 西北工业大学 Aircraft neural network lea rning control method based on the compound estimation of lump
CN109062234B (en) * 2018-08-20 2019-11-05 西北工业大学 A kind of non-minimum phase aircraft Hybrid Learning sliding-mode control
CN108762098B (en) * 2018-08-20 2019-11-01 西北工业大学 Non-minimum phase aircraft neural network control method based on Hybrid Learning
CN108919651A (en) * 2018-09-26 2018-11-30 北京航空航天大学 A kind of hypersonic aircraft adaptive fusion method considering actuator input constraint
CN109176525A (en) * 2018-09-30 2019-01-11 上海神添实业有限公司 A kind of mobile manipulator self-adaptation control method based on RBF
CN109164708A (en) * 2018-10-31 2019-01-08 南京航空航天大学 A kind of hypersonic aircraft neural network adaptive fusion method
CN109164708B (en) * 2018-10-31 2020-08-04 南京航空航天大学 Neural network self-adaptive fault-tolerant control method for hypersonic aircraft
CN110362110A (en) * 2019-07-12 2019-10-22 西北工业大学 Adaptive neural network unmanned aerial vehicle flight path angle control method when a kind of fixed
CN110362110B (en) * 2019-07-12 2022-09-23 西北工业大学 Fixed self-adaptive neural network unmanned aerial vehicle track angle control method
CN110515392A (en) * 2019-08-26 2019-11-29 哈尔滨工业大学 A kind of hypersonic aircraft Trajectory Tracking Control method that performance oriented restores
CN110568765A (en) * 2019-10-16 2019-12-13 西北工业大学 Asymmetric output limited control method for hypersonic aircraft facing attack angle tracking
CN110597068A (en) * 2019-10-16 2019-12-20 西北工业大学 Hypersonic aircraft robust control method considering asymmetric constraint of attack angle
CN110727198B (en) * 2019-11-11 2022-06-14 中国人民解放军军事科学院国防科技创新研究院 Fault-tolerant control method for missile multi-drive-state actuating mechanism faults
CN110727198A (en) * 2019-11-11 2020-01-24 中国人民解放军军事科学院国防科技创新研究院 Fault-tolerant control method for missile multi-drive-state actuating mechanism faults
CN111007720A (en) * 2019-12-11 2020-04-14 南京航空航天大学 Nonlinear self-healing control method for hypersonic aircraft multi-sensor fault
CN111158398A (en) * 2020-01-15 2020-05-15 哈尔滨工业大学 Adaptive control method of hypersonic aircraft considering attack angle constraint
CN111273681A (en) * 2020-04-09 2020-06-12 中北大学 Hypersonic aircraft high-safety anti-interference control method considering limited attack angle
CN111273681B (en) * 2020-04-09 2023-03-31 中北大学 Hypersonic aircraft high-safety anti-interference control method considering limited attack angle
CN112558484A (en) * 2020-12-29 2021-03-26 彩虹无人机科技有限公司 Design method of controller for displaying and considering dynamic characteristics of aircraft actuating mechanism
CN112947498A (en) * 2021-02-04 2021-06-11 深圳信息职业技术学院 Aircraft track angle control method, system and storage medium
CN112947498B (en) * 2021-02-04 2021-11-23 深圳信息职业技术学院 Aircraft track angle control method, system and storage medium
CN114200828A (en) * 2021-11-09 2022-03-18 西北工业大学 Supersonic speed large maneuvering target continuous large overload stall prevention method
CN114237050A (en) * 2021-12-16 2022-03-25 西北工业大学 Method for stably controlling rope system assembly under full-state constraint
CN114237050B (en) * 2021-12-16 2022-12-23 西北工业大学 Method for stably controlling rope system assembly under full-state constraint
CN114397819B (en) * 2022-01-13 2023-10-13 大连理工大学 Event triggering self-adaptive control method of aero-engine actuating mechanism
CN114397819A (en) * 2022-01-13 2022-04-26 大连理工大学 Event trigger self-adaptive control method for aircraft engine actuating mechanism
CN114779636A (en) * 2022-04-17 2022-07-22 西北工业大学 Aircraft robust adaptive control method considering pneumatic servo elasticity
CN116009594A (en) * 2023-03-27 2023-04-25 合肥工业大学 Hypersonic aircraft state constraint fault tolerance control method based on zero and game
CN116009594B (en) * 2023-03-27 2023-06-02 合肥工业大学 Hypersonic aircraft state constraint fault tolerance control method based on zero and game
CN116594414A (en) * 2023-03-28 2023-08-15 西北工业大学 Longitudinal control method of hypersonic aircraft
CN116594414B (en) * 2023-03-28 2024-03-15 西北工业大学 Longitudinal control method of hypersonic aircraft
CN116819976A (en) * 2023-08-31 2023-09-29 中国人民解放军空军工程大学 Predetermined time fault-tolerant control design method for control input constrained dynamics system
CN116819976B (en) * 2023-08-31 2023-11-10 中国人民解放军空军工程大学 Predetermined time fault-tolerant control design method for control input constrained dynamics system

Also Published As

Publication number Publication date
CN107450324B (en) 2019-10-22

Similar Documents

Publication Publication Date Title
CN107450324B (en) Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint
CN107390531B (en) The hypersonic aircraft control method of parameter learning finite time convergence control
CN102880052B (en) Time scale function decomposition based hypersonic aircraft actuator saturation control method
CN108828957B (en) Aircraft overall situation finite time neural network control method based on handover mechanism
CN104022742B (en) Attitude of flight vehicle robust inverting fault tolerant control method based on Neural Network Observer
CN102880055B (en) Method for controlling neural network of hypersonic aerocraft on basis of prediction model
CN102880053B (en) Based on the hypersonic aircraft sliding-mode control of forecast model
CN108776434B (en) Rapid self-adaptive sliding mode fault-tolerant control method for hypersonic aircraft
CN111665857B (en) Variant aircraft control method based on composite intelligent learning
CN109426146A (en) The high-order Non-Singular Terminal Sliding Mode control method of hypersonic aircraft
CN104216417B (en) A kind of dynamic control allocation method of the stratospheric airship based on four-vector propeller
CN105138003B (en) Many control surface unmanned plane direct lift force control methods
CN107065539A (en) A kind of control surface fault self-adapting fault tolerant control method of Flying-wing&#39;s aircraft
CN102749851A (en) Fine anti-interference tracking controller of flexible hypersonic vehicle
CN104898682B (en) A kind of hypersonic aircraft reenters posture fault tolerant control method
CN107491081A (en) A kind of anti-interference four rotor wing unmanned aerial vehicles attitude control method
CN111679583B (en) Adaptive control method of variant aircraft based on aerodynamic parameter estimation
CN103853050A (en) PID optimization control method of four-rotor aircraft
CN110568765A (en) Asymmetric output limited control method for hypersonic aircraft facing attack angle tracking
CN109164708B (en) Neural network self-adaptive fault-tolerant control method for hypersonic aircraft
CN105629734A (en) Trajectory tracking control method for NSV (Near Space Vehicle)
CN108762098B (en) Non-minimum phase aircraft neural network control method based on Hybrid Learning
CN113741188B (en) Self-adaptive fault-tolerant control method for fixed-wing unmanned aerial vehicle backstepping under fault of actuator
CN108459505A (en) A kind of unconventional layout aircraft fast modeling method of suitable control Iterative Design
CN105488295A (en) Unmanned aerial vehicle modeling system taking wind field disturbances into consideration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant