CN109932902A - A kind of output limited control method of quadrotor aircraft - Google Patents
A kind of output limited control method of quadrotor aircraft Download PDFInfo
- Publication number
- CN109932902A CN109932902A CN201910099075.2A CN201910099075A CN109932902A CN 109932902 A CN109932902 A CN 109932902A CN 201910099075 A CN201910099075 A CN 201910099075A CN 109932902 A CN109932902 A CN 109932902A
- Authority
- CN
- China
- Prior art keywords
- formula
- indicate
- quadrotor
- derivative
- follows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 12
- 230000001133 acceleration Effects 0.000 claims description 12
- 230000014509 gene expression Effects 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims 2
- 241000208340 Araliaceae Species 0.000 claims 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 claims 1
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 235000008434 ginseng Nutrition 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 7
- 230000001052 transient effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种四旋翼飞行器输出受限控制方法,针对四旋翼飞行器的动力学系统,选择一种对称时不变正切型约束李雅普诺夫函数,设计一种基于对称时不变正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法。对称时不变正切型约束李雅普诺夫函数的设计是为了保证系统的输出能够限制在一定的范围内,避免过大的超调,同时还能减少到达时间。从而改善四旋翼飞行器系统的动态响应性能。本发明提供一种基于对称时不变正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法,使系统具有较好的动态响应过程。
An output-limited control method for a quadrotor aircraft. Aiming at the dynamic system of the quadrotor aircraft, a symmetric time-invariant tangent constrained Lyapunov function is selected, and a symmetric time-invariant tangent constrained Lyapunov function is designed. The output limited control method of the quadrotor aircraft. The design of the symmetric time-invariant tangent-constrained Lyapunov function is to ensure that the output of the system can be limited to a certain range, avoid excessive overshoot, and at the same time reduce the arrival time. Thereby, the dynamic response performance of the quadrotor aircraft system is improved. The invention provides an output-limited control method for a quadrotor aircraft based on a symmetrical time-invariant tangent constraint Lyapunov function, so that the system has a better dynamic response process.
Description
技术领域technical field
本发明涉及一种四旋翼飞行器输出受限控制方法,使四旋翼飞行器系统有较 好的动态响应过程。The invention relates to an output-limited control method for a quadrotor aircraft, which enables the quadrotor aircraft system to have a better dynamic response process.
背景技术Background technique
四旋翼飞行器作为旋翼式飞行器的一种,以其体积小、机动性能好、设计简单、 制造成本低廉等优点,吸引了国内外大学、研究机构、公司的广泛关注。然而, 由于四旋翼飞行器体积小且重量轻,飞行中易受到外部干扰,如何实现对四旋翼 飞行器的高性能运动控制已经成为一个热点问题。针对四旋翼飞行器的控制问题, 存在很多控制方法,例如PID控制、自抗扰控制、滑模控制、反步控制等。As a kind of rotary-wing aircraft, quadrotor aircraft has attracted extensive attention from universities, research institutions and companies at home and abroad due to its advantages of small size, good maneuverability, simple design and low manufacturing cost. However, due to the small size and light weight of the quadrotor aircraft, it is vulnerable to external interference during flight, and how to achieve high-performance motion control for the quadrotor aircraft has become a hot issue. For the control problem of quadrotor aircraft, there are many control methods, such as PID control, active disturbance rejection control, sliding mode control, backstepping control and so on.
其中反步控制已经广泛应用于非线性系统,其优点包括响应速度快、实施方 便、对系统不确定和外部干扰的鲁棒性等。传统的反步控制,只是考虑了四旋翼 飞行器的稳态性能,并没有过多地关注其瞬态响应性能。因此,传统的反步控制 方法使得四旋翼飞行器系统在实际情况中的应用有很大阻碍。为解决这一问题, 基于约束李雅普诺夫函数的反步控制方法被提出,这种方法在实际情况中能够有 效地改善四旋翼飞行器系统的瞬态性能。Among them, backstepping control has been widely used in nonlinear systems, and its advantages include fast response speed, convenient implementation, robustness to system uncertainties and external disturbances, etc. The traditional backstepping control only considers the steady-state performance of the quadrotor, and does not pay too much attention to its transient response performance. Therefore, the traditional backstepping control method makes the application of the quadrotor aircraft system in practical situations greatly hindered. To solve this problem, a backstepping control method based on constrained Lyapunov function is proposed, which can effectively improve the transient performance of quadrotor aircraft systems in practical situations.
发明内容SUMMARY OF THE INVENTION
为了克服现有四旋翼飞行器系统的瞬态性能较差的不足,本发明提供了一种 基于对称时不变正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法, 减少了超调量和超调时间,使四旋翼飞行器系统具有一个良好的动态响应性能。In order to overcome the shortcoming of the poor transient performance of the existing quadrotor aircraft system, the present invention provides an output limited control method of the quadrotor aircraft based on the symmetric time-invariant tangent constraint Lyapunov function, which reduces the overshoot. and overshoot time, so that the quadrotor aircraft system has a good dynamic response performance.
为了解决上述技术问题提出的技术方案如下:The technical solutions proposed to solve the above technical problems are as follows:
一种四旋翼飞行器输出受限控制方法,包括以下步骤:A method for limiting the output of a quadrotor aircraft, comprising the following steps:
步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间 以及控制参数,过程如下:Step 1, establish the dynamic model of the quadrotor aircraft system, set the initial value, sampling time and control parameters of the system, the process is as follows:
1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的 转移矩阵T:1.1 Determine the transition matrix T from the quadrotor system-based body coordinate system to the Earth-based inertial coordinate system:
其中,φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示飞行器依次 绕惯性坐标系的各坐标轴旋转的角度;Among them, φ, θ, ψ are the roll angle, pitch angle, and yaw angle of the quadrotor aircraft, respectively, indicating the rotation angle of the aircraft around each coordinate axis of the inertial coordinate system in turn;
1.2四旋翼飞行器平动过程中的动态模型如下:1.2 The dynamic model of the quadrotor during translation is as follows:
其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度,Among them, x, y, z respectively represent the three positions of the quadrotor in the inertial coordinate system, U f represents the input torque of the quadrotor, m is the mass of the quadrotor, g represents the acceleration of gravity,
将式(1)代入式(2)得:Substitute equation (1) into equation (2) to get:
1.3四旋翼飞行器转动过程中的动态模型为:1.3 The dynamic model during the rotation of the quadrotor is:
其中,τx,τy,τz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表 示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加 速度,表示偏航角加速度;Among them, τ x , τ y , τ z respectively represent the moment components of each axis on the body coordinate system, I xx , I yy , I zz respectively represent the components of the moment of inertia of each axis in the body coordinate system, × represents the cross product, ω p represents the roll angular velocity, ω q represents the pitch angular velocity, ω r represents the yaw angular velocity, is the roll angular acceleration, represents the pitch angle acceleration, represents the yaw angular acceleration;
考虑到飞行器处于低速飞行或者悬停状态,姿态角变化较小,认为因此式(4)改写为:Considering that the aircraft is in a low-speed flight or hovering state, the attitude angle changes little, it is considered that So formula (4) is rewritten as:
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:Combining Equation (3) and Equation (5), the dynamic model of the quadrotor aircraft is obtained as:
其中ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ; where u x =cosφsinθcosψ+sinφsinψ,u y =cosφsinθsinψ-sinφcosψ;
1.4根据式(6),定义φ,θ的期望值为:1.4 According to formula (6), the expected values of φ and θ are defined as:
其中,φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;Among them, φ d is the expected signal value of φ, θ d is the expected signal value of θ, and arcsin is the inverse sine function;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角 跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:Step 2, at each sampling moment, calculate the position tracking error and its first derivative; calculate the attitude angle tracking error and its first derivative; design the position and attitude angle controller, the process is as follows:
2.1定义z跟踪误差及其一阶导数:2.1 Define the z tracking error and its first derivative:
其中zd表示z的期望信号; where z d represents the desired signal of z;
2.2设计约束李雅普诺夫函数并求解其一阶导数:2.2 Design Constrained Lyapunov Functions and solve for its first derivative:
其中,Kb1为e1的边界,满足Kb1>|e1|max,|e1|max为|e1|的最大值,α1为虚拟控制量,其表达式为:Among them, K b1 is the boundary of e 1 , satisfying K b1 >|e 1 | max , |e 1 | max is the maximum value of |e 1 |, α 1 is a virtual control quantity, and its expression is:
其中,k11为正常数;Among them, k 11 is a positive number;
将式(10)代入式(9),得:Substituting equation (10) into equation (9), we get:
2.3设计李雅普诺夫函数V12为:2.3 Design the Lyapunov function V 12 as:
求解式(12)的一阶导数,得:Solving the first derivative of equation (12), we get:
其中in
将式(14)和式(6)代入式(13),得:Substituting equations (14) and (6) into equation (13), we get:
2.4设计Uf:2.4 Design U f :
其中,k12为正常数;Among them, k 12 is a positive number;
2.5定义x,y跟踪误差分别为e2,e3,则有:2.5 Define the x and y tracking errors as e 2 , e 3 respectively, then there are:
e2=x-xd,e3=y-yd,其中,xd,yd分别表示x,y的期望信号;e 2 =xx d , e 3 =yy d , Among them, x d , y d represent the desired signals of x and y, respectively;
2.6设计约束李雅普诺夫函数分 别求解其一阶导数,得:2.6 Design Constrained Lyapunov Functions Solving its first derivative separately, we get:
其中,Kb2为e2的边界,满足Kb2>|e2|max,|e2|max为|e2|的最大值;Kb3为e3的 边界,满足Kb3>|e3|max,|e3|max为|e3|的最大值;α2,α3为虚拟控制量,其表达式为:Among them, K b2 is the boundary of e 2 , satisfying K b2 >|e 2 | max , |e 2 | max is the maximum value of |e 2 |; K b3 is the boundary of e 3 , satisfying K b3 >|e 3 | max , |e 3 | max is the maximum value of |e 3 |; α 2 , α 3 are virtual control variables, and their expressions are:
其中,k21,k31为正常数;Among them, k 21 , k 31 are positive numbers;
将式(19)代入式(18),得:Substituting equation (19) into equation (18), we get:
2.7设计李雅普诺夫函数V22,V32 2.7 Designing Lyapunov functions V 22 , V 32
求解式(21)的一阶导数,得:Solving the first derivative of equation (21), we get:
其中in
将式(23),(6)代入式(22),分别得:Substituting equations (23) and (6) into equation (22), we get:
2.8通过式(24),(25)分别设计ux,uy:2.8 Design u x , u y respectively by formulas (24) and (25):
其中,k22,k32为正常数;Among them, k 22 , k 32 are positive numbers;
2.9定义姿态角跟踪误差及其一阶导数:2.9 Define the attitude angle tracking error and its first derivative:
其中,j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望 值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的 跟踪误差; Among them, j=4, 5, 6, x 4 = φ, x 5 = θ, x 6 = ψ, x 4d represents the expected value of φ, x 5d represents the expected value of θ, x 6d represents the expected value of ψ, and e 4 represents φ The tracking error of , e 5 represents the tracking error of θ, and e 6 represents the tracking error of ψ;
2.10设计约束李雅普诺夫函数并求解其一阶导数:2.10 Design Constrained Lyapunov Functions and solve for its first derivative:
其中,kj为正常数,Kbj为ej的边界,满足Kbj>|ej|max,|ej|max为|ej|的最大值;αj为姿态角的虚拟控制量,其表达式为:Among them, k j is a positive number, K bj is the boundary of e j , satisfy K bj >|e j | max , and |e j | max is the maximum value of |e j |; α j is the virtual control amount of the attitude angle, and its expression is:
其中,kj1为正常数;Among them, k j1 is a positive number;
将式(29)代入式(28),得:Substituting equation (29) into equation (28), we get:
2.11设计约束李雅普诺夫函数:2.11 Design constraint Lyapunov function:
求解式(31)的一阶导数,得:Solving the first derivative of equation (31), we get:
其中 in
将式(33)和式(6)代入式(32),分别得:Substituting equations (33) and (6) into equations (32), we get:
2.12通过式(34),(35),(36)分别设计τx,τy,τz:2.12 Design τ x , τ y , τ z by formulas (34), (35), (36) respectively:
其中,k42,k52,k62为正常数;Among them, k 42 , k 52 , and k 62 are positive numbers;
步骤3,验证四旋翼飞行器系统的稳定性,过程如下:Step 3, verify the stability of the quadrotor aircraft system, the process is as follows:
3.1将式(16)代入式(15),得:3.1 Substitute equation (16) into equation (15), we get:
3.2将式(26)代入式(24)、(25),得:3.2 Substitute equation (26) into equations (24) and (25) to get:
3.3把式(37)代入式(34)、(35)、(36),得3.3 Substituting equation (37) into equations (34), (35), (36), we get
3.4通过(38),(39),(40)知四旋翼飞行器系统是稳定的。3.4 The quadrotor system is known to be stable through (38), (39), (40).
本发明基于对称时不变正切型约束李雅普诺夫函数的四旋翼飞行器输出受 限控制方法,改善了系统的瞬态性能,减少了超调量和到达时间。The invention is based on the limited output control method of the quadrotor aircraft based on the symmetric time-invariant tangent constraint Lyapunov function, which improves the transient performance of the system and reduces the overshoot and the arrival time.
本发明的技术构思为:针对四旋翼飞行器的动力学系统,设计一种基于对称 时不变正切型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法。对称时不 变正切型约束李雅普诺夫函数的设计是为了保证系统的输出能够限制在一定的 范围内,避免过大的超调,同时还能减少到达时间。从而改善四旋翼飞行器系统 的动态响应性能。The technical idea of the present invention is: for the dynamic system of the quadrotor aircraft, a method for limiting the output of the quadrotor aircraft based on the symmetric time-invariant tangent constraint Lyapunov function is designed. The design of the symmetric time-invariant tangent-constrained Lyapunov function is to ensure that the output of the system can be limited to a certain range, avoid excessive overshoot, and at the same time reduce the arrival time. Thereby improving the dynamic response performance of the quadrotor aircraft system.
本发明的有益效果为:降低超调量,减少到达时间,改善瞬态性能。The beneficial effects of the invention are: reducing the overshoot, reducing the arrival time and improving the transient performance.
附图说明Description of drawings
图1为本发明的位置跟踪效果示意图。FIG. 1 is a schematic diagram of the position tracking effect of the present invention.
图2为本发明的姿态角跟踪效果示意图。FIG. 2 is a schematic diagram of an attitude angle tracking effect of the present invention.
图3为本发明的位置控制器输入示意图。FIG. 3 is a schematic diagram of the input of the position controller of the present invention.
图4为本发明的姿态角控制器输入示意图。FIG. 4 is a schematic diagram of the input of the attitude angle controller of the present invention.
图5为本发明的控制流程示意图。FIG. 5 is a schematic diagram of a control flow of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings.
参照图1-图5,一种四旋翼飞行器输出受限控制方法,包括以下步骤:1-5, a method for limiting the output of a quadrotor aircraft, comprising the following steps:
步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间 以及控制参数,过程如下:Step 1, establish the dynamic model of the quadrotor aircraft system, set the initial value, sampling time and control parameters of the system, the process is as follows:
1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的 转移矩阵T:1.1 Determine the transition matrix T from the quadrotor system-based body coordinate system to the Earth-based inertial coordinate system:
其中,φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示飞行器依次 绕惯性坐标系的各坐标轴旋转的角度;Among them, φ, θ, ψ are the roll angle, pitch angle, and yaw angle of the quadrotor aircraft, respectively, indicating the rotation angle of the aircraft around each coordinate axis of the inertial coordinate system in turn;
1.2四旋翼飞行器平动过程中的动态模型如下:1.2 The dynamic model of the quadrotor during translation is as follows:
其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度,Among them, x, y, z respectively represent the three positions of the quadrotor in the inertial coordinate system, U f represents the input torque of the quadrotor, m is the mass of the quadrotor, g represents the acceleration of gravity,
将式(1)代入式(2)得:Substitute equation (1) into equation (2) to get:
1.3四旋翼飞行器转动过程中的动态模型为:1.3 The dynamic model during the rotation of the quadrotor is:
其中,τx,τy,τz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表 示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加 速度,表示偏航角加速度;Among them, τ x , τ y , τ z respectively represent the moment components of each axis on the body coordinate system, I xx , I yy , I zz respectively represent the components of the moment of inertia of each axis in the body coordinate system, × represents the cross product, ω p represents the roll angular velocity, ω q represents the pitch angular velocity, ω r represents the yaw angular velocity, is the roll angular acceleration, represents the pitch angle acceleration, represents the yaw angular acceleration;
考虑到飞行器处于低速飞行或者悬停状态,姿态角变化较小,认为因此式(4)改写为:Considering that the aircraft is in a low-speed flight or hovering state, the attitude angle changes little, it is considered that So formula (4) is rewritten as:
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:Combining Equation (3) and Equation (5), the dynamic model of the quadrotor aircraft is obtained as:
其中,ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ; Among them, u x =cosφsinθcosψ+sinφsinψ,u y =cosφsinθsinψ-sinφcosψ;
1.4根据式(6),定义φ,θ的期望值为:1.4 According to formula (6), the expected values of φ and θ are defined as:
其中,φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;Among them, φ d is the expected signal value of φ, θ d is the expected signal value of θ, and arcsin is the inverse sine function;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角 跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:Step 2, at each sampling moment, calculate the position tracking error and its first derivative; calculate the attitude angle tracking error and its first derivative; design the position and attitude angle controller, the process is as follows:
2.1定义z跟踪误差及其一阶导数:2.1 Define the z tracking error and its first derivative:
其中,zd表示z的期望信号;Among them, z d represents the desired signal of z;
2.2设计约束李雅普诺夫函数并求解其一阶导数:2.2 Design Constrained Lyapunov Functions and solve for its first derivative:
其中,Kb1为e1的边界,满足Kb1>|e1|max,|e1|max为|e1|的最大值,α1为虚拟控制量,其表达式为:Among them, K b1 is the boundary of e 1 , satisfying K b1 >|e 1 | max , |e 1 | max is the maximum value of |e 1 |, α 1 is a virtual control quantity, and its expression is:
其中,k11为正常数;Among them, k 11 is a positive number;
将式(10)代入式(9),得:Substituting equation (10) into equation (9), we get:
2.3设计李雅普诺夫函数V12为:2.3 Design the Lyapunov function V 12 as:
求解式(12)的一阶导数,得:Solving the first derivative of equation (12), we get:
其中in
将式(14)和式(6)代入式(13),得:Substituting equations (14) and (6) into equation (13), we get:
2.4设计Uf:2.4 Design U f :
其中,k12为正常数;Among them, k 12 is a positive number;
2.5定义x,y跟踪误差分别为e2,e3,则有:2.5 Define the x and y tracking errors as e 2 , e 3 respectively, then there are:
e2=x-xd,e3=y-yd, e 2 =xx d , e 3 =yy d ,
其中xd,yd分别表示x,y的期望信号;where x d , y d represent the desired signals of x and y, respectively;
2.6设计约束李雅普诺夫函数分 别求解其一阶导数,得:2.6 Design Constrained Lyapunov Functions Solving its first derivative separately, we get:
其中,Kb2为e2的边界,满足Kb2>|e2|max,|e2|max为|e2|的最大值;Kb3为e3的 边界,满足Kb3>|e3|max,|e3|max为|e3|的最大值;α2,α3为虚拟控制量,其表达式为:Among them, K b2 is the boundary of e 2 , satisfying K b2 >|e 2 | max , |e 2 | max is the maximum value of |e 2 |; K b3 is the boundary of e 3 , satisfying K b3 >|e 3 | max , |e 3 | max is the maximum value of |e 3 |; α 2 , α 3 are virtual control variables, and their expressions are:
其中,k21,k31为正常数;Among them, k 21 , k 31 are positive numbers;
将式(19)代入式(18),得:Substituting equation (19) into equation (18), we get:
2.7设计李雅普诺夫函数V22,V32 2.7 Designing Lyapunov functions V 22 , V 32
求解式(21)的一阶导数,得:Solving the first derivative of equation (21), we get:
其中in
将式(23),(6)代入式(22),分别得:Substituting equations (23) and (6) into equation (22), we get:
2.8通过式(24),(25)分别设计ux,uy:2.8 Design u x , u y respectively by formulas (24) and (25):
其中,k22,k32为正常数;Among them, k 22 , k 32 are positive numbers;
2.9定义姿态角跟踪误差及其一阶导数:2.9 Define the attitude angle tracking error and its first derivative:
其中,j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望 值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的 跟踪误差;Among them, j=4, 5, 6, x 4 = φ, x 5 = θ, x 6 = ψ, x 4d represents the expected value of φ, x 5d represents the expected value of θ, x 6d represents the expected value of ψ, and e 4 represents φ The tracking error of , e 5 represents the tracking error of θ, and e 6 represents the tracking error of ψ;
2.10设计约束李雅普诺夫函数并求解其一阶导数:2.10 Design Constrained Lyapunov Functions and solve for its first derivative:
其,中kj为正常数,Kbj为ej的边界,满足Kbj>|ej|max,|ej|max为|ej|的最大值;αj为姿态角的虚拟控制量,其表达式为:where k j is a positive number, and K bj is the boundary of e j , satisfying K bj >|e j | max , and |e j | max is the maximum value of |e j |; α j is the virtual control amount of the attitude angle, and its expression is:
其中kj1为正常数;where k j1 is a positive number;
将式(29)代入式(28),得:Substituting equation (29) into equation (28), we get:
2.11设计约束李雅普诺夫函数:2.11 Design constraint Lyapunov function:
求解式(31)的一阶导数,得:Solving the first derivative of equation (31), we get:
其中 in
将式(33)和式(6)代入式(32),分别得:Substituting equations (33) and (6) into equations (32), we get:
2.12通过式(34),(35),(36)分别设计τx,τy,τz:2.12 Design τ x , τ y , τ z by formulas (34), (35), (36) respectively:
其中k42,k52,k62为正常数;where k 42 , k 52 , and k 62 are positive numbers;
步骤3,验证四旋翼飞行器系统的稳定性,过程如下:Step 3, verify the stability of the quadrotor aircraft system, the process is as follows:
3.1将式(16)代入式(15),得:3.1 Substitute equation (16) into equation (15), we get:
3.2将式(26)代入式(24)、(25),得:3.2 Substitute equation (26) into equations (24) and (25) to get:
3.3把式(37)代入式(34)、(35)、(36),得3.3 Substituting equation (37) into equations (34), (35), (36), we get
3.4通过(38),(39),(40)知四旋翼飞行器系统是稳定的。3.4 The quadrotor system is known to be stable through (38), (39), (40).
为了验证所提方法的可行性,本发明给出了该控制方法在MATLAB平台上 的仿真结果:In order to verify the feasibility of the proposed method, the present invention provides the simulation results of the control method on the MATLAB platform:
参数给定如下:式(2)中m=1.1kg,g=9.81N/kg;式(4)中, Ixx=1.22kg·m2,Iyy=1.22kg·m2,Izz=2.2kg·m2;式(8),式(17)和式 (27)中zd=1,xd=1,yd=1,ψd=0.5;式(10),式(19)和式(29)中 k11=2,k21=2,k31=2,k41=2,k51=2,k61=2;式(16),式(26)和式(37) 中k12=2,k22=2,k32=2,k42=2,k52=2,k62=2;式(9),式(18)和式(28) kb1=1.5,kb2=1.5,kb3=1.5,kb4=2,kb5=2,kb6=2。The parameters are given as follows: in formula (2), m=1.1kg, g=9.81N/kg; in formula (4), Ixx= 1.22kg · m2 , Iyy= 1.22kg · m2 , Izz =2.2 kg·m 2 ; in formula (8), formula (17) and formula (27), z d =1, x d =1, y d =1, ψ d =0.5; formula (10), formula (19) and In formula (29), k 11 =2, k 21 =2, k 31 =2,k 41 =2,k 51 =2,k 61 =2; in formula (16), formula (26) and formula (37) k 12 =2,k 22 =2,k 32 =2,k 42 =2,k 52 =2,k 62 =2; formula (9), formula (18) and formula (28) k b1 =1.5,k b2 = 1.5, k b3 =1.5, k b4 =2, k b5 =2, k b6 =2.
从图1和图2可知,系统具有良好的瞬态特性,到达时间为4.23秒,超调量 为0.0245。It can be seen from Figure 1 and Figure 2 that the system has good transient characteristics, the arrival time is 4.23 seconds, and the overshoot is 0.0245.
综上所述,基于对称时不变正切型约束李雅普诺夫函数的四旋翼飞行器输出 受限控制方法能有效地改善四旋翼飞行器系统的瞬态性能。To sum up, the output-limited control method of quadrotor aircraft based on symmetric time-invariant tangent constrained Lyapunov function can effectively improve the transient performance of quadrotor aircraft system.
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明 不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉 及范围的前提下对其可作种种变形加以实施。What has been described above is the excellent optimization effect exhibited by an embodiment of the present invention. Obviously, the present invention is not limited to the above-mentioned embodiment. It can be implemented in various variations.
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810142245.6A CN108388118A (en) | 2018-02-11 | 2018-02-11 | The quadrotor total state constrained control method of liapunov function is constrained based on asymmetric time-varying tangential type |
CN2018101422456 | 2018-02-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109932902A true CN109932902A (en) | 2019-06-25 |
Family
ID=63068782
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810142245.6A Withdrawn CN108388118A (en) | 2018-02-11 | 2018-02-11 | The quadrotor total state constrained control method of liapunov function is constrained based on asymmetric time-varying tangential type |
CN201910099075.2A Withdrawn CN109932902A (en) | 2018-02-11 | 2019-01-31 | A kind of output limited control method of quadrotor aircraft |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810142245.6A Withdrawn CN108388118A (en) | 2018-02-11 | 2018-02-11 | The quadrotor total state constrained control method of liapunov function is constrained based on asymmetric time-varying tangential type |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN108388118A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108388117A (en) * | 2018-02-11 | 2018-08-10 | 浙江工业大学 | Based on it is symmetrical when constant tangential type constrain the quadrotor of liapunov function and export constrained control method |
CN109375639A (en) * | 2018-11-27 | 2019-02-22 | 浙江工业大学 | A kind of rigid aircraft posture restraint tracking and controlling method based on asymmetric modified obstacle liapunov function |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106094855A (en) * | 2016-07-27 | 2016-11-09 | 浙江工业大学 | Terminal cooperative control method for quad-rotor unmanned aerial vehicle |
US20170015405A1 (en) * | 2015-07-14 | 2017-01-19 | Qualcomm Incorporated | Control Normalization for Unmanned Autonomous Systems |
CN107368088A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Four-rotor aircraft nonlinear sliding mode pose control method based on error exponential function |
CN107368089A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on double exponential function |
CN107450324A (en) * | 2017-09-05 | 2017-12-08 | 西北工业大学 | Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint |
CN107561931A (en) * | 2017-07-11 | 2018-01-09 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on single exponential function |
-
2018
- 2018-02-11 CN CN201810142245.6A patent/CN108388118A/en not_active Withdrawn
-
2019
- 2019-01-31 CN CN201910099075.2A patent/CN109932902A/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170015405A1 (en) * | 2015-07-14 | 2017-01-19 | Qualcomm Incorporated | Control Normalization for Unmanned Autonomous Systems |
CN106094855A (en) * | 2016-07-27 | 2016-11-09 | 浙江工业大学 | Terminal cooperative control method for quad-rotor unmanned aerial vehicle |
CN107368088A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Four-rotor aircraft nonlinear sliding mode pose control method based on error exponential function |
CN107368089A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on double exponential function |
CN107561931A (en) * | 2017-07-11 | 2018-01-09 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on single exponential function |
CN107450324A (en) * | 2017-09-05 | 2017-12-08 | 西北工业大学 | Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint |
Non-Patent Citations (3)
Title |
---|
JACEK KABZIŃSK,等: "Comparison of Various Barrier Lyapunov Functions for Adaptive Control of Nonlinear Systems", 《2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR)》 * |
陈乐剑,等: "基于BarrierLyapunov函数的模糊自适应迭代学习控制", 《第27届中国控制与决策会议论文集》 * |
陈强,等: "基于全阶滑模的四旋翼无人机有限时间控制", 《第七届中国航空学会青年科技论坛文集》 * |
Also Published As
Publication number | Publication date |
---|---|
CN108388118A (en) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108037662B (en) | An output-limited backstepping control method for quadrotor aircraft based on integral sliding mode obstacle Lyapunov function | |
CN107831671B (en) | An output-limited backstepping control method for quadrotor aircraft based on asymmetric time-varying obstacle Lyapunov function | |
CN107831670B (en) | It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor export limited backstepping control method | |
CN107942672B (en) | An output-limited backstepping control method for quadrotor aircraft based on symmetric time-invariant obstacle Lyapunov function | |
CN109917650A (en) | An Asymmetric Time-varying Constrained Aircraft Attitude Control Method | |
CN109932902A (en) | A kind of output limited control method of quadrotor aircraft | |
CN108052115B (en) | An all-state restricted backstepping control method for quadrotor aircraft based on asymmetric time-invariant obstacle Lyapunov functions | |
CN108388119A (en) | Based on it is symmetrical when constant tangential type constrain the quadrotor total state constrained control method of liapunov function | |
CN108107726A (en) | A kind of limited backstepping control method of quadrotor output based on symmetrical time-varying obstacle liapunov function | |
CN108388117A (en) | Based on it is symmetrical when constant tangential type constrain the quadrotor of liapunov function and export constrained control method | |
CN109870912A (en) | An aircraft attitude control method using asymmetric time-invariant constraint functions | |
CN109917651A (en) | A Symmetrical Time-varying Output-Limited Aircraft Attitude Control Method | |
CN109870913A (en) | An all-state restricted control method for aircraft with time-varying exponential tangent constraints | |
CN108107900B (en) | A full-state restricted backstepping control method for quadrotor aircraft based on symmetric time-invariant obstacle Lyapunov function | |
CN108303892A (en) | The quadrotor that liapunov function is constrained based on asymmetric time-varying tangential type exports constrained control method | |
CN108427279A (en) | Based on it is symmetrical when the compound constraint liapunov function of varying index tangent quadrotor export constrained control method | |
CN108536162A (en) | Based on it is symmetrical when the not compound constraint liapunov function of varying index tangent quadrotor total state constrained control method | |
CN108333950A (en) | Quadrotor based on the compound constraint liapunov function of symmetrical time-varying tangent cosine exports constrained control method | |
CN108388116A (en) | The quadrotor that liapunov function is constrained based on symmetrical time-varying tangential type exports constrained control method | |
CN109917649A (en) | A control method for aircraft arctangent output constraint | |
CN108563117A (en) | Based on symmetrical time-varying anyway cut type constrain liapunov function quadrotor export constrained control method | |
CN109828470A (en) | A kind of quadrotor index tangent output constraint control method | |
CN108427274A (en) | Quadrotor based on the compound constraint liapunov function of symmetrical time-varying logarithm secant exports constrained control method | |
CN108563116A (en) | Based on it is asymmetric when constant cut type anyway constrain the quadrotor of liapunov function and export constrained control method | |
CN108536010A (en) | Based on it is asymmetric when the constant compound constraint liapunov function of logarithm tangent quadrotor export constrained control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20190625 |
|
WW01 | Invention patent application withdrawn after publication |