CN109932902A - A kind of quadrotor output constrained control method - Google Patents
A kind of quadrotor output constrained control method Download PDFInfo
- Publication number
- CN109932902A CN109932902A CN201910099075.2A CN201910099075A CN109932902A CN 109932902 A CN109932902 A CN 109932902A CN 201910099075 A CN201910099075 A CN 201910099075A CN 109932902 A CN109932902 A CN 109932902A
- Authority
- CN
- China
- Prior art keywords
- formula
- indicate
- quadrotor
- follows
- derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
A kind of quadrotor output constrained control method, for the dynamic system of quadrotor, constant tangential type constrains liapunov function when selecting a kind of symmetrical, design it is a kind of based on it is symmetrical when constant tangential type constraint liapunov function quadrotor export constrained control method.The design of constant tangential type constraint liapunov function is while can also to reduce arrival time to guarantee that the output of system can limit and avoid excessive overshoot in a certain range when symmetrical.So as to improve the dynamic response performance of quadrotor system.The present invention provide it is a kind of based on it is symmetrical when constant tangential type constraint liapunov function quadrotor export constrained control method, make system that there is preferable dynamic response process.
Description
Technical field
The present invention relates to a kind of quadrotors to export constrained control method, there is quadrotor system preferably
Dynamic response process.
Background technique
The one kind of quadrotor as rotary aircraft, it is small in size with its, mobility is good, design is simple, system
The advantages that low in cost is made, the extensive concern of domestic and international university, research institution, company has been attracted.However, since quadrotor flies
Row device is small in size and light-weight, in-flight vulnerable to external disturbance, how to realize the high-performance movement control to quadrotor
System has become a hot issue.For the control problem of quadrotor, there are many control methods, such as PID to control
System, Active Disturbance Rejection Control, sliding formwork control, Reverse Step Control etc..
Wherein Reverse Step Control has been widely used for nonlinear system, advantage include fast response time, it is easy to implement,
And robustness of external disturbance uncertain to system etc..Traditional Reverse Step Control only considers the stable state of quadrotor
Performance, there is no pay close attention to its transient response performance too much.Therefore, traditional backstepping control method makes quadrotor
The application of system in a practical situation has very big obstruction.To solve this problem, the contragradience based on constraint liapunov function
Control method is suggested, and this method can effectively improve the mapping of quadrotor system in a practical situation.
Summary of the invention
Mapping in order to overcome the shortcomings of existing quadrotor system is poor, and the present invention provides a kind of bases
The quadrotor of constant tangential type constraint liapunov function exports constrained control method when symmetrical, reduces super
Tune amount and overshoot time make quadrotor system have a good dynamic response performance.
In order to solve the above-mentioned technical problem the technical solution proposed is as follows:
A kind of quadrotor output constrained control method, comprising the following steps:
Step 1, the dynamic model for establishing quadrotor system sets initial value, sampling time and the control of system
Parameter processed, process are as follows:
1.1 determine from the body coordinate system based on quadrotor system to the transfer of the inertial coordinate based on the earth
Matrix T:
Wherein, φ, θ, ψ are roll angle, pitch angle, the yaw angle of quadrotor respectively, indicate aircraft successively around
The angle of each reference axis rotation of inertial coodinate system;
Dynamic model during the translation of 1.2 quadrotors is as follows:
Wherein, x, y, z respectively indicate three positions of the quadrotor under inertial coodinate system, UfIndicate quadrotor
The input torque of aircraft, m are the quality of quadrotor, and g indicates acceleration of gravity,
Formula (1) is substituted into formula (2) to obtain:
Dynamic model in 1.3 quadrotor rotation processes are as follows:
Wherein, τx,τy,τzRespectively represent the moment components of each axis on body coordinate system, Ixx,Iyy,IzzRespectively indicate machine
The component of the rotary inertia of each axis under body coordinate system, × indicate multiplication cross, ωpIndicate rolling angular speed, ωqIndicate pitch angle
Speed, ωrIndicate yaw rate,Indicate rolling angular acceleration,Indicate pitching angular acceleration,Indicate yaw angle
Acceleration;
In view of aircraft is in low-speed operations or floating state, attitude angle variation is smaller, it is believed thatTherefore formula (4) is rewritten are as follows:
Joint type (3) and formula (5), obtain the kinetic model of quadrotor are as follows:
Wherein ux=cos φ sin θ cos ψ+sin φ sin ψ, uy=cos φ sin θ sin ψ-sin φ cos ψ;
1.4, according to formula (6), define φ, the desired value of θ are as follows:
Wherein, φdFor the expected signal value of φ, θdFor θ expected signal value, arcsin is arcsin function;
Step 2, in each sampling instant, calculating position tracking error and its first derivative;Posture angle tracking is calculated to miss
Difference and its first derivative;Design position and posture angle controller, process are as follows:
2.1 define z tracking error and its first derivative:
Wherein zdIndicate the desired signal of z;
2.2 design constraint liapunov functionsAnd solve its first derivative:
Wherein, Kb1For e1Boundary, meet Kb1>|e1|max, | e1|maxFor | e1| maximum value,α1For void
Quasi- control amount, expression formula are as follows:
Wherein, k11For normal number;
Formula (10) are substituted into formula (9), are obtained:
2.3 design liapunov function V12Are as follows:
The first derivative of solution formula (12), obtains:
Wherein
Formula (14) and formula (6) are substituted into formula (13), obtained:
2.4 design Uf:
Wherein, k12For normal number;
2.5 define x, and y tracking error is respectively e2,e3, then have:
e2=x-xd,e3=y-yd,Wherein, xd,ydX is respectively indicated,
The desired signal of y;
2.6 design constraint liapunov functionsIt asks respectively
Its first derivative is solved, is obtained:
Wherein, Kb2For e2Boundary, meet Kb2>|e2|max, | e2|maxFor | e2| maximum value;Kb3For e3Boundary, it is full
Sufficient Kb3>|e3|max, | e3|maxFor | e3| maximum value;α2,α3For virtual controlling amount, table
Up to formula are as follows:
Wherein, k21,k31For normal number;
Formula (19) are substituted into formula (18), are obtained:
2.7 design liapunov function V22,V32
The first derivative of solution formula (21), obtains:
Wherein
By formula (23), (6) substitute into formula (22), respectively:
2.8 by formula (24), and (25) separately design ux,uy:
Wherein, k22,k32For normal number;
2.9 define posture angle tracking error and its first derivative:
Wherein, j=4,5,6, x4=φ, x5=
θ,x6=ψ, x4dIndicate the desired value of φ, x5dIndicate the desired value of θ, x6dIndicate the desired value of ψ, e4Indicate the tracking error of φ,
e5Indicate the tracking error of θ, e6Indicate the tracking error of ψ;
2.10 design constraint liapunov functionAnd solve its first derivative:
Wherein, kjFor normal number, KbjFor ejBoundary, meet Kbj>|ej|max, | ej|maxFor | ej| maximum value;αjFor the virtual controlling amount of attitude angle, expression formula are as follows:
Wherein, kj1For normal number;
Formula (29) are substituted into formula (28), are obtained:
2.11 design constraint liapunov functions:
The first derivative of solution formula (31), obtains:
Wherein
Formula (33) and formula (6) are substituted into formula (32), respectively:
2.12 by formula (34), and (35), (36) separately design τx,τy,τz:
Wherein, k42,k52,k62For normal number;
Step 3, the stability of quadrotor system is verified, process is as follows:
Formula (16) are substituted into formula (15) by 3.1, are obtained:
Formula (26) are substituted into formula (24), (25) by 3.2, are obtained:
3.3 wushu (37) substitute into formula (34), (35), (36), obtain
3.4 by (38), and (39), (40) know that quadrotor system is stable.
The present invention is based on it is symmetrical when constant tangential type constraint liapunov function the limited control of quadrotor output
Method processed improves the mapping of system, reduces overshoot and arrival time.
Technical concept of the invention are as follows: for the dynamic system of quadrotor, design when one kind is based on symmetrical not
The quadrotor for becoming tangential type constraint liapunov function exports constrained control method.Constant tangential type is about when symmetrical
The design of beam liapunov function is avoided excessive to guarantee that the output of system can limit in a certain range
Overshoot, while arrival time can also be reduced.So as to improve the dynamic response performance of quadrotor system.
The invention has the benefit that reducing overshoot, arrival time is reduced, improves mapping.
Detailed description of the invention
Fig. 1 is position tracking effect diagram of the invention.
Fig. 2 is attitude angle tracking effect schematic diagram of the invention.
Fig. 3 is that positioner of the invention inputs schematic diagram.
Fig. 4 is that posture angle controller of the invention inputs schematic diagram.
Fig. 5 is control flow schematic diagram of the invention.
Specific embodiment
The present invention will be further described with reference to the accompanying drawing.
- Fig. 5 referring to Fig.1, a kind of quadrotor output constrained control method, comprising the following steps:
Step 1, the dynamic model for establishing quadrotor system sets initial value, sampling time and the control of system
Parameter processed, process are as follows:
1.1 determine from the body coordinate system based on quadrotor system to the transfer of the inertial coordinate based on the earth
Matrix T:
Wherein, φ, θ, ψ are roll angle, pitch angle, the yaw angle of quadrotor respectively, indicate aircraft successively around
The angle of each reference axis rotation of inertial coodinate system;
Dynamic model during the translation of 1.2 quadrotors is as follows:
Wherein, x, y, z respectively indicate three positions of the quadrotor under inertial coodinate system, UfIndicate quadrotor
The input torque of aircraft, m are the quality of quadrotor, and g indicates acceleration of gravity,
Formula (1) is substituted into formula (2) to obtain:
Dynamic model in 1.3 quadrotor rotation processes are as follows:
Wherein, τx,τy,τzRespectively represent the moment components of each axis on body coordinate system, Ixx,Iyy,IzzRespectively indicate machine
The component of the rotary inertia of each axis under body coordinate system, × indicate multiplication cross, ωpIndicate rolling angular speed, ωqIndicate pitch angle
Speed, ωrIndicate yaw rate,Indicate rolling angular acceleration,Indicate pitching angular acceleration,Indicate yaw angle
Acceleration;
In view of aircraft is in low-speed operations or floating state, attitude angle variation is smaller, it is believed thatTherefore formula (4) is rewritten are as follows:
Joint type (3) and formula (5), obtain the kinetic model of quadrotor are as follows:
Wherein, ux=cos φ sin θ cos ψ+sin φ sin ψ, uy=cos φ sin θ sin ψ-sin φ cos ψ;
1.4, according to formula (6), define φ, the desired value of θ are as follows:
Wherein, φdFor the expected signal value of φ, θdFor θ expected signal value, arcsin is arcsin function;
Step 2, in each sampling instant, calculating position tracking error and its first derivative;Posture angle tracking is calculated to miss
Difference and its first derivative;Design position and posture angle controller, process are as follows:
2.1 define z tracking error and its first derivative:
Wherein, zdIndicate the desired signal of z;
2.2 design constraint liapunov functionsAnd solve its first derivative:
Wherein, Kb1For e1Boundary, meet Kb1>|e1|max, | e1|maxFor | e1| maximum value,α1For void
Quasi- control amount, expression formula are as follows:
Wherein, k11For normal number;
Formula (10) are substituted into formula (9), are obtained:
2.3 design liapunov function V12Are as follows:
The first derivative of solution formula (12), obtains:
Wherein
Formula (14) and formula (6) are substituted into formula (13), obtained:
2.4 design Uf:
Wherein, k12For normal number;
2.5 define x, and y tracking error is respectively e2,e3, then have:
e2=x-xd,e3=y-yd,
Wherein xd,ydRespectively indicate x, the desired signal of y;
2.6 design constraint liapunov functionsIt asks respectively
Its first derivative is solved, is obtained:
Wherein, Kb2For e2Boundary, meet Kb2>|e2|max, | e2|maxFor | e2| maximum value;Kb3For e3Boundary, it is full
Sufficient Kb3>|e3|max, | e3|maxFor | e3| maximum value;α2,α3For virtual controlling amount, table
Up to formula are as follows:
Wherein, k21,k31For normal number;
Formula (19) are substituted into formula (18), are obtained:
2.7 design liapunov function V22,V32
The first derivative of solution formula (21), obtains:
Wherein
By formula (23), (6) substitute into formula (22), respectively:
2.8 by formula (24), and (25) separately design ux,uy:
Wherein, k22,k32For normal number;
2.9 define posture angle tracking error and its first derivative:
Wherein, j=4,5,6, x4=φ, x5=θ, x6=ψ, x4dIndicate the desired value of φ, x5dIndicate the desired value of θ, x6d
Indicate the desired value of ψ, e4Indicate the tracking error of φ, e5Indicate the tracking error of θ, e6Indicate the tracking error of ψ;
2.10 design constraint liapunov functionAnd solve its first derivative:
Its, middle kjFor normal number, KbjFor ejBoundary, meet Kbj>|ej|max, | ej|maxFor | ej| maximum value;αjFor the virtual controlling amount of attitude angle, expression formula are as follows:
Wherein kj1For normal number;
Formula (29) are substituted into formula (28), are obtained:
2.11 design constraint liapunov functions:
The first derivative of solution formula (31), obtains:
Wherein
Formula (33) and formula (6) are substituted into formula (32), respectively:
2.12 by formula (34), and (35), (36) separately design τx,τy,τz:
Wherein k42,k52,k62For normal number;
Step 3, the stability of quadrotor system is verified, process is as follows:
Formula (16) are substituted into formula (15) by 3.1, are obtained:
Formula (26) are substituted into formula (24), (25) by 3.2, are obtained:
3.3 wushu (37) substitute into formula (34), (35), (36), obtain
3.4 by (38), and (39), (40) know that quadrotor system is stable.
In order to verify the feasibility of proposed method, The present invention gives emulation of the control method on MATLAB platform
As a result:
Parameter is given below: m=1.1kg, g=9.81N/kg in formula (2);In formula (4), Ixx=1.22kgm2, Iyy=
1.22kg·m2, Izz=2.2kgm2;Z in formula (8), formula (17) and formula (27)d=1, xd=1, yd=1, ψd=0.5;Formula
(10), k in formula (19) and formula (29)11=2, k21=2, k31=2, k41=2, k51=2, k61=2;Formula (16), formula (26) and formula
(37) k in12=2, k22=2, k32=2, k42=2, k52=2, k62=2;Formula (9), formula (18) and formula (28) kb1=1.5, kb2
=1.5, kb3=1.5, kb4=2, kb5=2, kb6=2.
From Fig. 1 and Fig. 2 it is found that system has good transient response, arrival time is 4.23 seconds, and overshoot is
0.0245。
In conclusion based on it is symmetrical when constant tangential type constraint liapunov function quadrotor output by
Limit control method can effectively improve the mapping of quadrotor system.
Described above is the excellent effect of optimization that one embodiment that the present invention provides is shown, it is clear that the present invention is not
It is only limited to above-described embodiment, without departing from essence spirit of the present invention and without departing from range involved by substantive content of the present invention
Under the premise of it can be made it is various deformation be implemented.
Claims (1)
1. a kind of quadrotor exports constrained control method, which comprises the following steps:
Step 1, the dynamic model for establishing quadrotor system sets initial value, sampling time and the control ginseng of system
Number, process are as follows:
1.1 determine from the body coordinate system based on quadrotor system to the transfer matrix T of the inertial coordinate based on the earth:
Wherein, φ, θ, ψ are roll angle, pitch angle, the yaw angle of quadrotor respectively, indicate aircraft successively around inertia
The angle of each reference axis rotation of coordinate system;
Dynamic model during the translation of 1.2 quadrotors is as follows:
Wherein, x, y, z respectively indicate three positions of the quadrotor under inertial coodinate system, UfIndicate quadrotor
Input torque, m be quadrotor quality, g indicate acceleration of gravity,
Formula (1) is substituted into formula (2) to obtain:
Dynamic model in 1.3 quadrotor rotation processes are as follows:
Wherein, τx, τy, τzRespectively represent the moment components of each axis on body coordinate system, Ixx, Iyy, IzzRespectively indicate body seat
The component of the rotary inertia of each axis under mark system, × indicate multiplication cross, ωpIndicate rolling angular speed, ωqIndicate rate of pitch,
ωrIndicate yaw rate,Indicate rolling angular acceleration,Indicate pitching angular acceleration,Indicate yaw angular acceleration;
In view of aircraft is in low-speed operations or floating state, attitude angle variation is smaller, it is believed thatTherefore formula (4) is rewritten are as follows:
Joint type (3) and formula (5), obtain the kinetic model of quadrotor are as follows:
Wherein ux=cos φ sin θ cos ψ+sin φ sin ψ, uy=cos φ sin θ sin ψ-sin φ cos ψ;
1.4, according to formula (6), define φ, the desired value of θ are as follows:
Wherein, φdFor the expected signal value of φ, θdFor θ expected signal value, arcsin is arcsin function;
Step 2, in each sampling instant, calculating position tracking error and its first derivative;Calculate posture angle tracking error and
Its first derivative;Design position and posture angle controller, process are as follows:
2.1 define z tracking error and its first derivative:
Wherein zdIndicate the desired signal of z;
2.2 design constraint liapunov functionsAnd solve its first derivative:
Wherein, Kb1For e1Boundary, meet Kb1> | e1|max, | e1|maxFor | e1| maximum value,α1Virtually to control
Amount processed, expression formula are as follows:
Wherein, k11For normal number;
Formula (10) are substituted into formula (9), are obtained:
2.3 design liapunov function V12Are as follows:
The first derivative of solution formula (12), obtains:
Wherein
Formula (14) and formula (6) are substituted into formula (13), obtained:
2.4 design Uf:
Wherein, k12For normal number;
2.5 define x, and y tracking error is respectively e2, e3, then have:
Wherein, xd, ydRespectively indicate x, the desired signal of y;
2.6 design constraint liapunov functionsOne is solved respectively
Order derivative obtains:
Wherein, Kb2For e2Boundary, meet Kb2> | e2|max, | e2|maxFor | e2| maximum value;Kb3For e3Boundary, meet Kb3
> | e3|max, | e3|maxFor | e3| maximum value;α2, α3For virtual controlling amount, expression formula
Are as follows:
Wherein, k21, k31For normal number;
Formula (19) are substituted into formula (18), are obtained:
2.7 design liapunov function V22, V32
The first derivative of solution formula (21), obtains:
Wherein
By formula (23), (6) substitute into formula (22), respectively:
2.8 by formula (24), and (25) separately design ux, uy:
Wherein, k22, k32For normal number;
2.9 define posture angle tracking error and its first derivative:
Wherein, j=4,5,6, x4=φ, x5=θ, x6=ψ, x4dIndicate the desired value of φ, x5dIndicate the desired value of θ, x6dIndicate ψ
Desired value, e4Indicate the tracking error of φ, e5Indicate the tracking error of θ, e6Indicate the tracking error of ψ;
2.10 design constraint liapunov functionAnd solve its first derivative:
Wherein, kjFor normal number, KbjFor ejBoundary, meet Kbj> | ej|max, | ej|maxFor | ej| maximum value;αjFor the virtual controlling amount of attitude angle, expression formula are as follows:
Wherein, kj1For normal number;
Formula (29) are substituted into formula (28), are obtained:
2.11 design constraint liapunov functions:
The first derivative of solution formula (31), obtains:
Wherein
Formula (33) and formula (6) are substituted into formula (32), respectively:
2.12 by formula (34), and (35), (36) separately design τx, τy, τz:
Wherein k42, k52, k62For normal number;
Step 3, the stability of quadrotor system is verified, process is as follows:
Formula (16) are substituted into formula (15) by 3.1, are obtained:
Formula (26) are substituted into formula (24), (25) by 3.2, are obtained:
3.3 wushu (37) substitute into formula (34), (35), (36), obtain
3.4 by (38), and (39), (40) know that quadrotor system is stable.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2018101422456 | 2018-02-11 | ||
CN201810142245.6A CN108388118A (en) | 2018-02-11 | 2018-02-11 | The quadrotor total state constrained control method of liapunov function is constrained based on asymmetric time-varying tangential type |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109932902A true CN109932902A (en) | 2019-06-25 |
Family
ID=63068782
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810142245.6A Withdrawn CN108388118A (en) | 2018-02-11 | 2018-02-11 | The quadrotor total state constrained control method of liapunov function is constrained based on asymmetric time-varying tangential type |
CN201910099075.2A Withdrawn CN109932902A (en) | 2018-02-11 | 2019-01-31 | A kind of quadrotor output constrained control method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810142245.6A Withdrawn CN108388118A (en) | 2018-02-11 | 2018-02-11 | The quadrotor total state constrained control method of liapunov function is constrained based on asymmetric time-varying tangential type |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN108388118A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108388117A (en) * | 2018-02-11 | 2018-08-10 | 浙江工业大学 | Based on it is symmetrical when constant tangential type constrain the quadrotor of liapunov function and export constrained control method |
CN109375639A (en) * | 2018-11-27 | 2019-02-22 | 浙江工业大学 | A kind of rigid aircraft posture restraint tracking and controlling method based on asymmetric modified obstacle liapunov function |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106094855A (en) * | 2016-07-27 | 2016-11-09 | 浙江工业大学 | Terminal cooperative control method for quad-rotor unmanned aerial vehicle |
US20170015405A1 (en) * | 2015-07-14 | 2017-01-19 | Qualcomm Incorporated | Control Normalization for Unmanned Autonomous Systems |
CN107368088A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Four-rotor aircraft nonlinear sliding mode pose control method based on error exponential function |
CN107368089A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on double exponential function |
CN107450324A (en) * | 2017-09-05 | 2017-12-08 | 西北工业大学 | Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint |
CN107561931A (en) * | 2017-07-11 | 2018-01-09 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on single exponential function |
-
2018
- 2018-02-11 CN CN201810142245.6A patent/CN108388118A/en not_active Withdrawn
-
2019
- 2019-01-31 CN CN201910099075.2A patent/CN109932902A/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170015405A1 (en) * | 2015-07-14 | 2017-01-19 | Qualcomm Incorporated | Control Normalization for Unmanned Autonomous Systems |
CN106094855A (en) * | 2016-07-27 | 2016-11-09 | 浙江工业大学 | Terminal cooperative control method for quad-rotor unmanned aerial vehicle |
CN107368088A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Four-rotor aircraft nonlinear sliding mode pose control method based on error exponential function |
CN107368089A (en) * | 2017-07-11 | 2017-11-21 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on double exponential function |
CN107561931A (en) * | 2017-07-11 | 2018-01-09 | 浙江工业大学 | Nonlinear sliding mode pose control method of quadrotor aircraft based on single exponential function |
CN107450324A (en) * | 2017-09-05 | 2017-12-08 | 西北工业大学 | Consider the hypersonic aircraft adaptive fusion method of angle of attack constraint |
Non-Patent Citations (3)
Title |
---|
JACEK KABZIŃSK,等: "Comparison of Various Barrier Lyapunov Functions for Adaptive Control of Nonlinear Systems", 《2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR)》 * |
陈乐剑,等: "基于BarrierLyapunov函数的模糊自适应迭代学习控制", 《第27届中国控制与决策会议论文集》 * |
陈强,等: "基于全阶滑模的四旋翼无人机有限时间控制", 《第七届中国航空学会青年科技论坛文集》 * |
Also Published As
Publication number | Publication date |
---|---|
CN108388118A (en) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108037662B (en) | A kind of limited backstepping control method of quadrotor output based on Integral Sliding Mode obstacle liapunov function | |
CN107831671B (en) | A kind of limited backstepping control method of quadrotor output based on asymmetric time-varying obstacle liapunov function | |
CN107831670B (en) | It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor export limited backstepping control method | |
CN109932902A (en) | A kind of quadrotor output constrained control method | |
CN108267961A (en) | Quadrotor total state constrained control method based on symmetrical time-varying tangential type constraint liapunov function | |
CN109917650A (en) | A kind of Spacecraft Attitude Control of asymmetric varying constraint | |
CN108052115B (en) | It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor total state be limited backstepping control method | |
CN108388117A (en) | Based on it is symmetrical when constant tangential type constrain the quadrotor of liapunov function and export constrained control method | |
CN108388119A (en) | Based on it is symmetrical when constant tangential type constrain the quadrotor total state constrained control method of liapunov function | |
CN108388116A (en) | The quadrotor that liapunov function is constrained based on symmetrical time-varying tangential type exports constrained control method | |
CN109870913A (en) | It is a kind of with when varying index tangent constraint aircraft total state constrained control method | |
CN109917651A (en) | A kind of Spacecraft Attitude Control that symmetrical time-varying output is limited | |
CN109870912A (en) | It is a kind of using it is asymmetric when constraint independent of time function Spacecraft Attitude Control | |
CN108536162A (en) | Based on it is symmetrical when the not compound constraint liapunov function of varying index tangent quadrotor total state constrained control method | |
CN108549218A (en) | Based on it is symmetrical when the constant compound constraint liapunov function of tangent cosine quadrotor export constrained control method | |
CN108303892A (en) | The quadrotor that liapunov function is constrained based on asymmetric time-varying tangential type exports constrained control method | |
CN108107900B (en) | Four-rotor aircraft all-state limited backstepping control method based on symmetric time invariant obstacle Lyapunov function | |
CN109917649A (en) | A kind of aircraft arc tangent output constraint control method | |
CN108594647A (en) | Quadrotor total state constrained control method based on the compound constraint liapunov function of symmetrical time-varying logarithm tangent | |
CN109917652A (en) | A kind of aircraft logarithm tangent total state constrained control method | |
CN108388127A (en) | Based on it is asymmetric when the compound constraint liapunov function of varying index tangent quadrotor total state constrained control method | |
CN108388129A (en) | Quadrotor total state constrained control method based on the compound constraint liapunov function of asymmetric time-varying logarithm tangent | |
CN108563115A (en) | Based on it is symmetrical when the constant compound constraint liapunov function of logarithm tangent quadrotor total state constrained control method | |
CN108388131A (en) | Based on it is symmetrical when the constant compound constraint liapunov function of logarithm tangent quadrotor export constrained control method | |
CN108594649A (en) | Based on it is symmetrical when the constant compound constraint liapunov function of logarithm secant quadrotor export constrained control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20190625 |