CN104443427A - Aircraft flutter prediction system and method - Google Patents

Aircraft flutter prediction system and method Download PDF

Info

Publication number
CN104443427A
CN104443427A CN201410546791.8A CN201410546791A CN104443427A CN 104443427 A CN104443427 A CN 104443427A CN 201410546791 A CN201410546791 A CN 201410546791A CN 104443427 A CN104443427 A CN 104443427A
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mtr
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410546791.8A
Other languages
Chinese (zh)
Other versions
CN104443427B (en
Inventor
张伟伟
钟华寿
陈孔锦
宋述芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xixian New Area Tianshu Aviation Technology Co ltd
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201410546791.8A priority Critical patent/CN104443427B/en
Publication of CN104443427A publication Critical patent/CN104443427A/en
Application granted granted Critical
Publication of CN104443427B publication Critical patent/CN104443427B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The invention discloses an aircraft flutter prediction system and method which are used for solving the technical problem that an existing flutter prediction system is poor in prediction accuracy. According to the technical scheme, the system comprises an excitation signal generator, an excitation executing mechanism, a signal acquiring module and a data processing and flutter prediction module, wherein excitation signals generated by the excitation signal generator are input into a steering engine, the steering engine drives a control plane to deflect through a power booster according to a predetermined instruction so that gas power can be generated and excitation can be formed, and the control plane deflects at different speeds according to different input signals so that different external excitation forces can be generated and a test part can be fully excited. The signal acquiring module is used for acquiring acceleration responses and external excitation force response signals. According to each mach number, the data processing and flutter prediction module can predict a flutter critical point of the test mach number just through a subcritical speed testing point, prediction accuracy can also meet the requirement when the speed testing point is far away from the flutter critical point, and the prediction accuracy of the flutter prediction system is improved.

Description

Aircraft flutter prediction system and method
Technical Field
The invention relates to a flutter prediction system, in particular to an aircraft flutter prediction system. And also relates to a flutter prediction method based on the aircraft flutter prediction system.
Background
The most striking physical phenomenon of the aeroelastic dynamics problem is flutter, and this dynamic instability often leads to catastrophic failure of the structure. The novel airplane or the airplane with the significant structural change must carry out flutter test flight so as to confirm that the airplane does not generate flutter in a flight envelope.
The flutter prediction system is an application of an excitation technology, a measurement technology, a data processing technology and the like in flutter flight tests. Flutter test flight has the characteristics of high risk, high consumption and long period, and is internationally recognized as a class I risk subject. The design and manufacture of a set of efficient, low-cost and low-risk flutter prediction system has great significance for reducing the flutter test flight period and cost and reducing the flutter test flight risk.
The flutter test flight mainly comprises three parts of structure excitation, response measurement, data processing and flutter boundary prediction, and the flow is generally as follows: the method comprises the steps of enabling an airplane to fly at a series of subcritical speed points under the same Mach number, applying excitation in a proper form to a structure, analyzing measured signals by monitoring responses of a certain number of points on the structure, utilizing curve extrapolation and predicting safety of the next flight speed point according to a proper stability criterion, further obtaining a flutter critical point under the Mach number, repeating the process under other Mach numbers, and finally obtaining a flight envelope determined by a flutter boundary through a large number of flight tests.
Refer to fig. 15. The document "Ring line and Marty Brenner" Flutter: An on-line tool predict robust flusher markers ", Journal of Aircraft, vol.37, No.6, pp.1105-1112,1998" discloses a flutter meter for online prediction of flutter boundaries. The flutter instrument is based on a robust flutter analysis method, integrates the functions of signal acquisition and processing, model confirmation, robust flutter margin calculation and the like, and is a highly integrated flutter test flight test tool. The flutter meter firstly needs to establish a nominal model of a system by utilizing theoretical aeroelasticity data, then establishes an uncertainty model, estimates the uncertainty of the model by combining test flight data, and finally carries out robust stability analysis to obtain a robust flutter critical point. The method combines a theoretical model and test data, and can effectively reduce flutter test flight risk and consumption on the basis of meeting the prediction accuracy. However, the model confirmation process of the flutter meter has large influence on robust flutter analysis, the prediction result has certain conservatism, and the predicted flutter critical speed is generally lower than that of the actual flutter critical speed.
Disclosure of Invention
The invention provides an aircraft flutter prediction system, aiming at overcoming the defect of poor prediction accuracy of the existing flutter prediction system. The system comprises an excitation signal generator, an excitation executing mechanism, a signal acquisition module and a data processing and flutter prediction module. The excitation signal generator generates an excitation signal based on natural frequency information obtained by a ground mode test. The excitation signal is input into the steering engine, the steering engine drives the control surface to deflect according to a preset instruction through the booster to generate aerodynamic force to form excitation, and according to the difference of the input signal, the control surface deflects at different rates to generate different external excitation force, so that the test part is fully excited. The signal acquisition module is used for acquiring acceleration response signals and external excitation force response signals. When the wing vibrates at a subcritical flutter flight test point, an acceleration/displacement response signal is collected by an acceleration sensor and transmitted to a storage element and displayed on a screen, and the change of the wing vibration is tracked in real time; the external excitation force response signal is collected by the force sensor and transmitted to the storage element and displayed on a screen, so that the excitation signal can be adjusted to obtain more proper external excitation. The data processing and flutter prediction module can predict the flutter critical point under the test Mach number only by one subcritical speed test point under each Mach number, and the prediction precision can meet the required requirement when the speed test point is far away from the flutter critical point, so that the flutter test flight safety can be improved, the test flight consumption and period can be reduced, the conservatism of the prediction result can be reduced, and the prediction precision of the flutter prediction system can be improved.
The invention also provides a flutter prediction method based on the aircraft flutter prediction system.
The technical scheme adopted by the invention for solving the technical problems is as follows: the aircraft flutter prediction system is characterized by comprising an excitation signal generator, an excitation execution mechanism, a signal acquisition module and a data processing and flutter prediction module. The excitation signal generator generates an excitation signal based on natural frequency information obtained by a ground mode test. The excitation actuator utilizes a steering engine 2, a booster 3 and a control surface 5 in an electric/electronic-hydraulic autopilot of the airplane. The excitation signal is input into the steering engine 2, the steering engine 2 drives the control surface 5 to deflect according to a preset instruction through the booster 3 to generate aerodynamic force to form excitation, and according to the difference of the input signal, the control surface 5 deflects at different rates to generate different external excitation force, so that a test part is fully excited. The signal acquisition module is used for acquiring acceleration response signals and external excitation force response signals. When the wing 1 vibrates at a subcritical flutter flight test point, an acceleration/displacement response signal is collected by the acceleration sensor 6 and transmitted to the storage element and displayed on a screen, and the change of the vibration of the wing 1 is tracked in real time; the external excitation force response signal is collected by the force sensor 4 and transmitted to the storage element and displayed on the screen, so that the excitation signal can be adjusted to obtain more proper external excitation.
A flutter prediction method based on the aircraft flutter prediction system is characterized by comprising the following steps:
reading generalized mass matrix M, rigidity matrix K, and transformation matrix phi of physical coordinate and modal coordinate obtained by ground modal test1Conversion matrix phi of physical force and modal force2. Flight Mach number Ma, incoming flow density ru, incoming flow velocity v, incoming flow dynamic pressure Q of flutter test flight state, and monitored physical acceleration responseExternal force response Fb *
Responding to monitored physical acceleration by using band-pass filtering or wavelet de-noising methodAnd external force response Fb *Carrying out denoising treatment;
according to the relationship between the physical coordinates and the generalized coordinates:
<math> <mrow> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msub> <mi>&Phi;</mi> <mn>1</mn> </msub> <mover> <mi>&xi;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Fb=Φ2Fb * (2)
solving modal acceleration responseAnd the external force response F in generalized coordinatesb
Solving generalized displacement response xi by utilizing discrete frequency domain/frequency domain quadratic integral;
neglecting the structural damping, utilizing the structural equation of motion under the modal coordinates:
<math> <mrow> <mi>M</mi> <mo>&CenterDot;</mo> <mover> <mi>&xi;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>+</mo> <mi>K</mi> <mo>&CenterDot;</mo> <mi>&xi;</mi> <mo>=</mo> <mi>Q</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
calculate Q.fa+FbSubtract FbObtaining a generalized aerodynamic coefficient response fa
Establishing an arx model of multiple input and multiple output:
<math> <mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>na</mi> </munderover> <msub> <mi>A</mi> <mi>i</mi> </msub> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>nb</mi> </munderover> <msub> <mi>B</mi> <mi>i</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
performing aerodynamic modeling, e (k) is random noise, xi is input signal, faFor output signals, na and nb are the delay orders of the output and input, respectively, and the process performs automatic optimization according to the requirement of identifying the error range. After the input and output parameters are cleared in a steady state, system identification is adopted to select a proper delay order to obtain A in the modeliAnd Bi
Introducing a state vector xa(t),xa(t)=[fa(t-1),…,fa(t-na),ξ(t-1),…,ξ(t-nb+1)]TThe arx model is converted into a pneumatic equation of state:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>&alpha;</mi> </msub> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>&alpha;</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>C</mi> <mi>&alpha;</mi> </msub> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>D</mi> <mi>&alpha;</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein D isa=[B0],Ca=[A1,A2 … Ana-1 Ana B1 B2 … Bnb-2 Bnb-1],Ba=[B0 0 0 … 0 I 0 0 … 0], A a = C a ( 1 : na + nb - 2 ) C a ( na + nb - 1 ) I 0 ;
Introducing a structural state variable xsConverting the structural motion equation into a structural state equation:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>D</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, A s = 0 I - M - 1 K 0 , B s = 0 M - 1 , C s = 0 I , Ds=[I 0];
coupling the pneumatic state equation and the structural state equation to obtain a stability analysis state equation of the aeroelastic system:
<math> <mrow> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>D</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mi>a</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>S</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
on the basis of dynamic pressure of a flight test, gradually increasing dynamic pressure q, and calculating a state matrix under different dynamic pressures <math> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>D</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mi>a</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math> When the real part of the eigenvalue of a certain order is changed from negative to positive for the first time, the flutter critical point is obtained. Or another test at another incoming flow pressure at Mach number to verify that obtained firstCritical point of flutter. And changing the flight Mach number, repeating the process, and determining the flight envelope determined by the flutter boundary.
Solving modal acceleration responseAnd selecting a method for acquiring the physical displacement response signal x of the test part and solving the physical displacement response signal x after coordinate conversion and secondary differentiation.
The invention has the beneficial effects that: the system comprises an excitation signal generator, an excitation executing mechanism, a signal acquisition module and a data processing and flutter prediction module. The excitation signal generator generates an excitation signal based on natural frequency information obtained by a ground mode test. The excitation signal is input into the steering engine, the steering engine drives the control surface to deflect according to a preset instruction through the booster to generate aerodynamic force to form excitation, and according to the difference of the input signal, the control surface deflects at different rates to generate different external excitation force, so that the test part is fully excited. The signal acquisition module is used for acquiring acceleration response signals and external excitation force response signals. When the wing vibrates at a subcritical flutter flight test point, an acceleration/displacement response signal is collected by an acceleration sensor and transmitted to a storage element and displayed on a screen, and the change of the wing vibration is tracked in real time; the external excitation force response signal is collected by the force sensor and transmitted to the storage element and displayed on a screen, so that the excitation signal can be adjusted to obtain more proper external excitation. The data processing and flutter prediction module can predict the flutter critical point under the test Mach number only by one subcritical speed test point under each Mach number, and the prediction precision can meet the required requirement when the speed test point is far away from the flutter critical point, so that the flutter test flight safety can be improved, the test flight consumption and period can be reduced, the conservatism of the prediction result can be reduced, and the prediction precision of the flutter prediction system can be improved.
The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
Drawings
FIG. 1 is a block diagram of an aircraft flutter prediction system of the present invention.
FIG. 2 is an excitation module implementation strategy of the aircraft flutter prediction system and method of the present invention.
FIG. 3 is a signal acquisition module implementation of the aircraft flutter prediction system and method of the present invention.
FIG. 4 is a flow chart of the data analysis and flutter prediction module operation of the aircraft flutter prediction system and method of the present invention.
FIG. 5 is a numerical simulation noisy physical displacement signal for the aircraft flutter prediction system and method of the present invention.
FIG. 6 is a signal after denoising of numerical simulation physical displacement for the system and method for predicting aircraft flutter of the present invention.
FIG. 7 is a generalized displacement signal obtained by numerical simulation calculations of the aircraft flutter prediction system and method of the present invention.
FIG. 6 is a generalized acceleration signal obtained by numerical simulation calculation of the aircraft flutter prediction system and method of the present invention
FIG. 9 is a numerical simulation external force sampling signal of the aircraft flutter prediction system and method of the present invention.
FIG. 10 shows the external excitation force in the numerical simulation modal coordinates of the system and method for predicting aircraft flutter according to the present invention.
FIG. 11 is a numerical simulation calculated modal aerodynamic coefficient for the aircraft flutter prediction system and method of the present invention.
FIG. 12 is a diagram of the numerical simulation system identification results of the aircraft flutter prediction system and method of the present invention.
FIG. 13 is a numerical simulation root trace diagram of the aircraft flutter prediction system and method of the present invention.
FIG. 14 is a numerical simulated velocity-damping diagram of the aircraft flutter prediction system and method of the present invention.
Fig. 15 is a flowchart of a method for predicting flutter based on a vibrator according to the related art.
In the figure, 1-wing, 2-steering engine, 3-booster, 4-force sensor, 5-control surface and 6-acceleration sensor.
Detailed Description
The following examples refer to fig. 1-14.
The aircraft flutter prediction system comprises an excitation signal generator, an excitation execution mechanism, a signal acquisition module and a data processing and flutter prediction module.
The excitation module consists of an excitation signal generator and an excitation actuating mechanism. The excitation signal generator generates an excitation signal based on natural frequency information obtained by a ground mode test. The control plane 5 deflects at different rates to generate different external exciting forces according to different input signals, so that a test part is fully excited. The excitation mode utilizes the inherent mechanism and equipment on the airplane, and does not add extra equipment to the wing 1, so the inherent mode of the wing 1 structure is not influenced, the excitation mode is simple, convenient and easy to operate, and meanwhile, enough energy and frequency band range can be provided, the main mode of the test structure can be fully excited, and high-quality response data can be obtained.
The signal acquisition module is used for acquiring acceleration response signals and external excitation force response signals. When the wing 1 vibrates at a subcritical flutter flight test point, an acceleration/displacement response signal is collected by the acceleration sensor 6 and transmitted to the storage element and displayed on a screen, and the change of the vibration of the wing 1 is tracked in real time; the external excitation force response signal is collected by the force sensor 4 and transmitted to the storage element and displayed on the screen, so that the excitation signal can be adjusted to obtain more proper external excitation.
The data processing and flutter predicting module consists of a microcomputer and a data processing and flutter predicting program. Acceleration/displacement signals and external excitation signals obtained by sampling are combined with generalized stiffness information obtained by a ground modal test, and flutter critical characteristics under the test Mach number can be obtained by a flutter prediction program after data processing and calculation. The calculation method and the implementation process of the data processing and flutter prediction module comprise the following steps:
reading generalized mass matrix M, rigidity matrix K, and transformation matrix phi of physical coordinate and modal coordinate obtained by ground modal test1Conversion matrix phi of physical force and modal force2. Flight Mach number Ma, incoming flow density ru, incoming flow velocity v, incoming flow dynamic pressure Q of flutter test flight state, and monitored physical acceleration responseExternal force response Fb *
Acquired by band-pass filtering or wavelet de-noisingAnd Fb *Carrying out denoising treatment;
according to the relationship between the physical coordinates and the generalized coordinates:
<math> <mrow> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msub> <mi>&Phi;</mi> <mn>1</mn> </msub> <mover> <mi>&xi;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Fb=Φ2Fb * (2)
solving modal acceleration responseAnd the external force response F in generalized coordinatesb
Solving generalized displacement response xi by utilizing discrete frequency domain/frequency domain quadratic integral;
in order to improve the applicability of the flutter prediction system, according to the test environment and conditions, a physical displacement response signal x of a test component can be selected and collected, and after coordinate conversion and secondary differentiation, modal acceleration response is solvedThe subsequent steps are the same.
Neglecting the structural damping, utilizing the structural equation of motion under the modal coordinates:
<math> <mrow> <mi>M</mi> <mo>&CenterDot;</mo> <mover> <mi>&xi;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>+</mo> <mi>K</mi> <mo>&CenterDot;</mo> <mi>&xi;</mi> <mo>=</mo> <mi>Q</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
calculate Q.fa+FbSubtract FbObtaining a generalized aerodynamic coefficient response fa
Establishing an arx model of multiple input and multiple output:
<math> <mrow> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>na</mi> </munderover> <msub> <mi>A</mi> <mi>i</mi> </msub> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>nb</mi> </munderover> <msub> <mi>B</mi> <mi>i</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
performing aerodynamic modeling, e (k) is random noise, xi is input signal, faFor output signals, na and nb are the delay orders of the output and input, respectively, and the process performs automatic optimization according to the requirement of identifying the error range. After the input and output parameters are cleared in a steady state, system identification is adopted, a proper delay order is selected, and A in the model can be obtainediAnd Bi
Introducing a state vector xa(t),xa(t)=[fa(t-1),…,fa(t-na),ξ(t-1),…,ξ(t-nb+1)]TThe arx model is converted into a pneumatic equation of state:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>&alpha;</mi> </msub> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>&alpha;</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>C</mi> <mi>&alpha;</mi> </msub> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>D</mi> <mi>&alpha;</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein: da=[B0],Ca=[A1,A2 … Ana-1 Ana B1 B2 … Bnb-2 Bnb-1],Ba=[B0 0 0 … 0 I 0 0 … 0], A a = C a ( 1 : na + nb - 2 ) C a ( na + nb - 1 ) I 0 ;
Introducing a structural state variable xsConverting the structural motion equation into a structural state equation:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>D</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein A s = 0 I - M - 1 K 0 , B s = 0 M - 1 , C s = 0 I , Ds=[I 0];
Coupling the pneumatic state equation and the structural state equation to obtain a stability analysis state equation of the aeroelastic system:
<math> <mrow> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>D</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mi>a</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>S</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
on the basis of dynamic pressure of a flight test, gradually increasing dynamic pressure q, and calculating a state matrix under different dynamic pressures <math> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>D</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mi>a</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math> Of the eigenvalue of a certain orderThe real part is changed from negative to positive for the first time, and then the flutter critical point can be obtained. Another test at another incoming flow pressure at this mach number was also performed to verify the first obtained critical point for flutter. And changing the flight Mach number, and repeating the process to determine the flight envelope determined by the flutter boundary.
The invention relates to a data analysis and flutter prediction module numerical simulation process of an aircraft flutter prediction system and method.
In the numerical simulation calculation example, the first three-order mode of the wing 1 is the main mode, and the flutter critical speed under the test Mach number is about 194 m/s. In the simulation process, acquiring physical displacement response signals with noise at 12 points on the wing 1, filtering and converting the physical displacement response signals into a modal space to obtain modal displacement response signals, and obtaining modal acceleration response signals through secondary differentiation; acquiring an external excitation force signal received by the wing 1, and filtering and converting coordinates to obtain an external excitation force of a modal space; combining generalized mass and generalized stiffness matrix obtained by a ground modal test, solving a resultant external force at the right end of an equation by using a structural motion equation, subtracting an external excitation of a modal space and dividing the external excitation by an incoming flow pressure to obtain a modal aerodynamic coefficient; establishing a discrete input and output differential model, taking modal displacement as an input signal and a modal aerodynamic coefficient as an output signal, and performing system identification to establish an aerodynamic model; coupling the aerodynamic model and the structural model to obtain a reduced-order aeroelasticity stability analysis state matrix, gradually increasing incoming flow pressure on the basis of testing the dynamic pressure, solving a characteristic value of the state matrix to obtain a root locus diagram of the system, wherein a point where the characteristic value passes through a virtual axis for the first time is a flutter critical point; the root locus diagram is converted into a v-g diagram, namely a speed-damping diagram, so that the flutter critical speed under the Mach number can be more conveniently and visually seen.
The model in the numerical simulation calculation example has a flutter critical speed of 193m/s at the test Mach number. The incoming flow speed in the simulation calculation example is 150m/s, the predicted flutter critical speed under the Mach number is 190m/s, namely the flutter critical speed under the Mach number can be accurately predicted by utilizing a subcritical test point far away from the flutter critical speed, and the flutter prediction technology has the characteristics of safety, high efficiency and accuracy requirement satisfaction.

Claims (3)

1. An aircraft flutter prediction system characterized by: the device comprises an excitation signal generator, an excitation executing mechanism, a signal acquisition module and a data processing and flutter prediction module; the excitation signal generator generates an excitation signal on the basis of natural frequency information obtained by a ground mode test; the excitation actuating mechanism utilizes a steering engine (2), a booster (3) and a control surface (5) in an electric/electronic-hydraulic automatic pilot of the airplane; an excitation signal is input into the steering engine (2), the steering engine (2) drives the control surface (5) to deflect according to a preset instruction through the booster (3) to generate aerodynamic force to form excitation, and the control surface (5) deflects at different rates to generate different external excitation force according to different input signals, so that a test part is fully excited; the signal acquisition module is used for acquiring acceleration response signals and external stress response signals; when the wing (1) vibrates at a subcritical flutter test flying point, an acceleration/displacement response signal is collected by an acceleration sensor (6) and transmitted to a storage element and displayed on a screen, and the change of the vibration of the wing (1) is tracked in real time; the external excitation force response signal is collected by the force sensor (4) and transmitted to the storage element and displayed on a screen, so that the excitation signal can be adjusted to obtain more proper external excitation.
2. A flutter prediction method using the aircraft flutter prediction system according to claim 1, characterized by comprising the steps of:
reading generalized mass matrix M, rigidity matrix K, and transformation matrix phi of physical coordinate and modal coordinate obtained by ground modal test1Conversion matrix phi of physical force and modal force2(ii) a Flight Mach number Ma, incoming flow density ru, incoming flow velocity v, incoming flow dynamic pressure Q of flutter test flight state, and monitored physical acceleration responseExternal force response Fb *
Responding to monitored physical acceleration by using band-pass filtering or wavelet de-noising methodAnd external force response Fb *Carrying out denoising treatment;
according to the relationship between the physical coordinates and the generalized coordinates:
<math> <mrow> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msub> <mi>&Phi;</mi> <mn>1</mn> </msub> <mrow> <mover> <mi>&xi;</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>=</mo> <mrow> <msub> <mi>&Phi;</mi> <mn>2</mn> </msub> <msup> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>*</mo> </msup> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
solving modal acceleration responseAnd the external force response F in generalized coordinatesb
Solving generalized displacement response xi by utilizing discrete frequency domain/frequency domain quadratic integral;
neglecting the structural damping, utilizing the structural equation of motion under the modal coordinates:
<math> <mrow> <mi>M</mi> <mo>&CenterDot;</mo> <mover> <mrow> <mi>&xi;</mi> <mo>+</mo> <mi>K</mi> <mo>&CenterDot;</mo> </mrow> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>&xi;</mi> <mo>=</mo> <mi>Q</mi> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
calculate Q.fa+FbSubtract FbObtaining a generalized aerodynamic coefficient response fa
Establishing an arx model of multiple input and multiple output:
<math> <mrow> <mtext></mtext> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>na</mi> </munderover> <msub> <mi>A</mi> <mi>i</mi> </msub> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>nb</mi> </munderover> <msub> <mi>B</mi> <mi>i</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math> performing aerodynamic modeling, e (k) is random noise, xi is input signal, faFor the output signal, na and nb are the delay order of the output and input respectively, and the automatic optimization is carried out according to the identification error range requirement program; after the input and output parameters are cleared in a steady state, system identification is adopted to select a proper delay order to obtain A in the modeliAnd Bi
Introducing a state vector xa(t),xa(t)=[fa(t-1),…,fa(t-na),ξ(t-1),…,ξ(t-nb+1)]TThe arx model is converted into a pneumatic equation of state:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>&alpha;</mi> </msub> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>&alpha;</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>C</mi> <mi>&alpha;</mi> </msub> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>D</mi> <mi>&alpha;</mi> </msub> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein D isa=[B0],Ca=[A1,A2 … Ana-1Ana B1B2 … Bnb-2Bnb-1],Ba=[B0 0 0 … 0 I 0 0 … 0],
A a = C a ( 1 : na + nb - 2 ) C a ( na + nb - 1 ) I 0 ;
Introducing a structural state variable xsConverting the structural motion equation into a structural state equation:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>f</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&xi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>D</mi> <mi>s</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math> wherein, A s = 0 I - M - 1 K 0 , B s = 0 M - 1 , C s = 0 I , D s = I 0 ;
coupling the pneumatic state equation and the structural state equation to obtain a stability analysis state equation of the aeroelastic system:
<math> <mrow> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>D</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mi>a</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mi>&alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mi>S</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>F</mi> <mi>b</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
on the basis of dynamic pressure of a flight test, gradually increasing dynamic pressure q, and calculating a state matrix under different dynamic pressures <math> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>s</mi> </msub> <mo>+</mo> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>D</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <mi>q</mi> <mo>&CenterDot;</mo> <msub> <mi>B</mi> <mi>s</mi> </msub> <msub> <mi>C</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mi>a</mi> </msub> <msub> <mi>D</mi> <mi>s</mi> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mi>a</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math> When the real part of the eigenvalue of a certain order is changed from negative to positive for the first time, the flutter critical point is obtained; or another test is carried out under another incoming flow pressure under the Mach number to verify the first obtained flutter critical point; and changing the flight Mach number, repeating the process, and determining the flight envelope determined by the flutter boundary.
3. The method of claim 2, wherein: solving modal acceleration responseAnd selecting a method for acquiring the physical displacement response signal x of the test part and solving the physical displacement response signal x after coordinate conversion and secondary differentiation.
CN201410546791.8A 2014-10-15 2014-10-15 Aircraft tremor prognoses system and method Active CN104443427B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410546791.8A CN104443427B (en) 2014-10-15 2014-10-15 Aircraft tremor prognoses system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410546791.8A CN104443427B (en) 2014-10-15 2014-10-15 Aircraft tremor prognoses system and method

Publications (2)

Publication Number Publication Date
CN104443427A true CN104443427A (en) 2015-03-25
CN104443427B CN104443427B (en) 2016-08-31

Family

ID=52890337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410546791.8A Active CN104443427B (en) 2014-10-15 2014-10-15 Aircraft tremor prognoses system and method

Country Status (1)

Country Link
CN (1) CN104443427B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105083584A (en) * 2015-06-23 2015-11-25 中国航空工业集团公司西安飞机设计研究所 Flutter model of plane missile system
CN105314128A (en) * 2015-11-04 2016-02-10 中国直升机设计研究所 Hydraulic control system for helicopter ground integrated test bench
CN105843073A (en) * 2016-03-23 2016-08-10 北京航空航天大学 Method for analyzing wing structure aero-elasticity stability based on aerodynamic force uncertain order reduction
CN106240839A (en) * 2015-06-04 2016-12-21 波音公司 For analyzing the system and method for flutter test data
CN106441780A (en) * 2016-09-06 2017-02-22 中国航空工业集团公司沈阳飞机设计研究所 Scaling model flight flutter test pulse excitation method
CN106570264A (en) * 2016-10-28 2017-04-19 南京航空航天大学 Method for quickly adjusting excitation force in pure modal test
CN106853873A (en) * 2017-02-16 2017-06-16 北京临近空间飞行器系统工程研究所 Tactful method for designing is cut and changed to a kind of aerocraft system identification pumping signal
CN108318203A (en) * 2018-03-02 2018-07-24 西安费斯达自动化工程有限公司 Aircraft equivalence ground flutter comprehensive testing method
CN108341073A (en) * 2018-03-02 2018-07-31 西安费斯达自动化工程有限公司 Airplane flutter hot test image measurement method
CN108387359A (en) * 2018-03-02 2018-08-10 西安费斯达自动化工程有限公司 Aircraft flutter analysis grid model Fourier modeling method
CN108398231A (en) * 2018-03-02 2018-08-14 西安费斯达自动化工程有限公司 Aircraft flutter analysis grid model Hartley modeling methods
CN109063290A (en) * 2018-07-20 2018-12-21 中国航空工业集团公司沈阳飞机设计研究所 A kind of flutter prediction technique based on nerual network technique
CN109086501A (en) * 2018-07-20 2018-12-25 中国航空工业集团公司沈阳飞机设计研究所 A kind of flutter prediction technique
CN109683473A (en) * 2018-10-26 2019-04-26 中国飞行试验研究院 A kind of comprehensive pilot-aircraft closed loop system modeling and verification method
CN109933876A (en) * 2019-03-03 2019-06-25 西北工业大学 A kind of unsteady aerodynamic force order reducing method based on broad sense aerodynamic force
CN110631801A (en) * 2019-09-18 2019-12-31 西安交通大学 Bending-torsion rigidity decoupling flutter wind tunnel test device
CN110657939A (en) * 2019-08-30 2020-01-07 中国空气动力研究与发展中心高速空气动力研究所 Flutter critical prediction method and device
CN110929336A (en) * 2019-11-22 2020-03-27 扬州大学 Method for solving linear flutter speed of three-dimensional wing based on multi-body system transfer matrix method
CN110949689A (en) * 2019-12-06 2020-04-03 江西洪都航空工业集团有限责任公司 Method for measuring full-motion horizontal tail rotation mode of airplane
CN111460576A (en) * 2020-03-19 2020-07-28 东南大学 Characteristic value tracking method for flutter analysis of wings
CN111898327A (en) * 2020-06-30 2020-11-06 西北工业大学 Flutter signal abnormal data expansion method for aeroelastic system
CN111950079A (en) * 2020-07-28 2020-11-17 中国飞机强度研究所 Aerodynamic modeling and full-aircraft flutter analysis method based on wind tunnel test response

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190484B1 (en) * 1999-02-19 2001-02-20 Kari Appa Monolithic composite wing manufacturing process
US20020069040A1 (en) * 2000-12-05 2002-06-06 Hideo Omotani Flutter test model
US6947858B2 (en) * 2003-06-27 2005-09-20 The Boeing Company Methods and apparatus for analyzing flutter test data using damped sine curve fitting
CN101599104A (en) * 2009-07-16 2009-12-09 北京航空航天大学 A kind of analogy method of blade flutter boundary of aviation turbine engine
CN101908088A (en) * 2010-07-22 2010-12-08 北京航空航天大学 Time domain bidirectional iteration-based turbine vane flutter stress forecasting method
CN102235937A (en) * 2010-05-06 2011-11-09 中国商用飞机有限责任公司 Airplane model flutter suppression device
US20130158891A1 (en) * 2011-12-16 2013-06-20 Instytut Lotnictwa W Warszawie Method for in-flight assessment of freedom from flutter of an airplane
CN103530511A (en) * 2013-10-10 2014-01-22 南京航空航天大学 Flutter boundary prediction method in wind tunnel flutter test under turbulence excitation condition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190484B1 (en) * 1999-02-19 2001-02-20 Kari Appa Monolithic composite wing manufacturing process
US20020069040A1 (en) * 2000-12-05 2002-06-06 Hideo Omotani Flutter test model
US6947858B2 (en) * 2003-06-27 2005-09-20 The Boeing Company Methods and apparatus for analyzing flutter test data using damped sine curve fitting
CN101599104A (en) * 2009-07-16 2009-12-09 北京航空航天大学 A kind of analogy method of blade flutter boundary of aviation turbine engine
CN102235937A (en) * 2010-05-06 2011-11-09 中国商用飞机有限责任公司 Airplane model flutter suppression device
CN101908088A (en) * 2010-07-22 2010-12-08 北京航空航天大学 Time domain bidirectional iteration-based turbine vane flutter stress forecasting method
US20130158891A1 (en) * 2011-12-16 2013-06-20 Instytut Lotnictwa W Warszawie Method for in-flight assessment of freedom from flutter of an airplane
CN103530511A (en) * 2013-10-10 2014-01-22 南京航空航天大学 Flutter boundary prediction method in wind tunnel flutter test under turbulence excitation condition

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106240839B (en) * 2015-06-04 2021-07-27 波音公司 System and method for system identification using closed form shape fitting
CN106240839A (en) * 2015-06-04 2016-12-21 波音公司 For analyzing the system and method for flutter test data
CN105083584B (en) * 2015-06-23 2017-02-01 中国航空工业集团公司西安飞机设计研究所 Flutter model of plane missile system
CN105083584A (en) * 2015-06-23 2015-11-25 中国航空工业集团公司西安飞机设计研究所 Flutter model of plane missile system
CN105314128B (en) * 2015-11-04 2017-08-29 中国直升机设计研究所 A kind of helicopter integrated ground test platform hydraulic control system
CN105314128A (en) * 2015-11-04 2016-02-10 中国直升机设计研究所 Hydraulic control system for helicopter ground integrated test bench
CN105843073A (en) * 2016-03-23 2016-08-10 北京航空航天大学 Method for analyzing wing structure aero-elasticity stability based on aerodynamic force uncertain order reduction
CN106441780A (en) * 2016-09-06 2017-02-22 中国航空工业集团公司沈阳飞机设计研究所 Scaling model flight flutter test pulse excitation method
CN106570264A (en) * 2016-10-28 2017-04-19 南京航空航天大学 Method for quickly adjusting excitation force in pure modal test
CN106570264B (en) * 2016-10-28 2019-10-25 南京航空航天大学 The method for adjusting exciting force is quickly fitted in pure modal test
CN106853873A (en) * 2017-02-16 2017-06-16 北京临近空间飞行器系统工程研究所 Tactful method for designing is cut and changed to a kind of aerocraft system identification pumping signal
CN108318203A (en) * 2018-03-02 2018-07-24 西安费斯达自动化工程有限公司 Aircraft equivalence ground flutter comprehensive testing method
CN108341073A (en) * 2018-03-02 2018-07-31 西安费斯达自动化工程有限公司 Airplane flutter hot test image measurement method
CN108387359A (en) * 2018-03-02 2018-08-10 西安费斯达自动化工程有限公司 Aircraft flutter analysis grid model Fourier modeling method
CN108398231A (en) * 2018-03-02 2018-08-14 西安费斯达自动化工程有限公司 Aircraft flutter analysis grid model Hartley modeling methods
CN108318203B (en) * 2018-03-02 2020-07-14 西安费斯达自动化工程有限公司 Aircraft equivalent ground flutter comprehensive test method
CN109086501A (en) * 2018-07-20 2018-12-25 中国航空工业集团公司沈阳飞机设计研究所 A kind of flutter prediction technique
CN109063290A (en) * 2018-07-20 2018-12-21 中国航空工业集团公司沈阳飞机设计研究所 A kind of flutter prediction technique based on nerual network technique
CN109683473A (en) * 2018-10-26 2019-04-26 中国飞行试验研究院 A kind of comprehensive pilot-aircraft closed loop system modeling and verification method
CN109683473B (en) * 2018-10-26 2021-12-24 中国飞行试验研究院 Comprehensive man-machine closed-loop system modeling and verifying method
CN109933876A (en) * 2019-03-03 2019-06-25 西北工业大学 A kind of unsteady aerodynamic force order reducing method based on broad sense aerodynamic force
CN109933876B (en) * 2019-03-03 2022-09-09 西北工业大学 Unsteady aerodynamic order reduction method based on generalized aerodynamic force
CN110657939A (en) * 2019-08-30 2020-01-07 中国空气动力研究与发展中心高速空气动力研究所 Flutter critical prediction method and device
CN110631801A (en) * 2019-09-18 2019-12-31 西安交通大学 Bending-torsion rigidity decoupling flutter wind tunnel test device
CN110929336A (en) * 2019-11-22 2020-03-27 扬州大学 Method for solving linear flutter speed of three-dimensional wing based on multi-body system transfer matrix method
CN110929336B (en) * 2019-11-22 2023-04-28 扬州大学 Method for solving linear flutter speed of three-dimensional wing based on multi-body system transfer matrix method
CN110949689B (en) * 2019-12-06 2022-07-22 江西洪都航空工业集团有限责任公司 Method for measuring full-motion horizontal tail rotation mode of airplane
CN110949689A (en) * 2019-12-06 2020-04-03 江西洪都航空工业集团有限责任公司 Method for measuring full-motion horizontal tail rotation mode of airplane
CN111460576A (en) * 2020-03-19 2020-07-28 东南大学 Characteristic value tracking method for flutter analysis of wings
CN111898327A (en) * 2020-06-30 2020-11-06 西北工业大学 Flutter signal abnormal data expansion method for aeroelastic system
CN111950079A (en) * 2020-07-28 2020-11-17 中国飞机强度研究所 Aerodynamic modeling and full-aircraft flutter analysis method based on wind tunnel test response

Also Published As

Publication number Publication date
CN104443427B (en) 2016-08-31

Similar Documents

Publication Publication Date Title
CN104443427B (en) Aircraft tremor prognoses system and method
CN105843073B (en) A kind of wing structure aeroelastic stability analysis method not knowing depression of order based on aerodynamic force
CN101321667B (en) Method for reconstructing gusts and structural loads at aircraft, in particular passenger aircraft
WO2016197552A1 (en) High-speed platform movement parameter self-tuning method based on model identification and equivalent simplification
CN102540882B (en) Aircraft track inclination angle control method based on minimum parameter studying method
Goulos et al. Mission performance simulation of integrated helicopter–engine systems using an aeroelastic rotor model
Lind et al. Flutterometer: an on-line tool to predict robust flutter margins
CN102795323B (en) Unscented Kalman filter (UKF)-based underwater robot state and parameter joint estimation method
CN107976908B (en) Aircraft coupling dynamic stability characteristic analysis method
Schwochow et al. Automatic operational modal analysis for aeroelastic applications
Mader et al. Computation of aircraft stability derivatives using an automatic differentiation adjoint approach
Chwalowski et al. Progress on Transonic Flutter and Shock Buffet Computations in Support of the Third Aeroelastic Prediction Workshop
Vatsa et al. Aeroacoustic simulation of nose landing gear on adaptive unstructured grids with FUN3D
Grauer et al. Real-time parameter estimation for flexible aircraft
CN104678989A (en) State perception optimization method for improving fault diagnosability in noise environment
CN106773782A (en) A kind of aeroelastic divergence hybrid modeling method
Silva et al. Development of unsteady aerodynamic and aeroelastic reduced-order models using the FUN3D code
Suh et al. Modal filtering for control of flexible aircraft
Kim et al. Rapid estimation of impaired-aircraft aerodynamic parameters
Venkatachari et al. Boundary-Layer Transition Prediction Through Loose Coupling of OVERFLOW and LASTRAC
Leijonhufvud et al. Industrial application of robust aeroelastic analysis
Jameson Post-manoeuvre and online parameter estimation for manned and unmanned aircraft
Oliveira et al. Output error method and two step method for aerodynamic model identification
Bunge et al. High angle of attack aerodynamic model identification for spin recovery simulation using non-parametric smoothing functions
Silva et al. Identification of computational and experimental reduced-order models

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230105

Address after: 710086 F15, 3-D Science and Innovation Building, Phase I, Start Zone, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an, Shaanxi

Patentee after: Xixian New Area Tianshu Aviation Technology Co.,Ltd.

Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Patentee before: Northwestern Polytechnical University