CN106773782A - A kind of aeroelastic divergence hybrid modeling method - Google Patents
A kind of aeroelastic divergence hybrid modeling method Download PDFInfo
- Publication number
- CN106773782A CN106773782A CN201611161879.3A CN201611161879A CN106773782A CN 106773782 A CN106773782 A CN 106773782A CN 201611161879 A CN201611161879 A CN 201611161879A CN 106773782 A CN106773782 A CN 106773782A
- Authority
- CN
- China
- Prior art keywords
- centerdot
- modal
- infin
- formula
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing Of Engines (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
本发明属于气动伺服弹性领域,涉及一种气动伺服弹性建模方法。通过试验数据建立结构模型,计算建立气动弹性运动模型和控制模型,客观上降低了模型自由度,提高了计算效率。The invention belongs to the field of pneumatic servo elasticity and relates to a modeling method of pneumatic servo elasticity. The structural model is established through the test data, and the aeroelastic motion model and control model are established by calculation, which objectively reduces the degree of freedom of the model and improves the calculation efficiency.
Description
技术领域technical field
本发明属于气动伺服弹性领域,涉及一种气动伺服弹性建模方法。The invention belongs to the field of pneumatic servo elasticity and relates to a modeling method of pneumatic servo elasticity.
背景技术Background technique
对于带有伺服控制系统的飞机,气动伺服弹性稳定性问题是一项不可避免的问题。对于飞机首飞和飞机重大改型,都需要进行气动伺服弹性稳定性分析。For aircraft with servo control systems, the aeroservoelastic stability problem is an unavoidable problem. Aeroservoelastic stability analysis is required for both the first flight of an aircraft and major aircraft modifications.
目前,主要通过计算机仿真来分析气动伺服弹性稳定性问题,而计算机仿真建模与飞机实际情况有着较大差异,因而主要是通过试验方法对仿真模型进行修正,但是模型修正难度比较大,而且修正结果也很难完全吻合。At present, the problem of aerodynamic servo elastic stability is mainly analyzed through computer simulation, and the computer simulation modeling is quite different from the actual situation of the aircraft. Therefore, the simulation model is mainly corrected through the test method, but the model correction is relatively difficult, and the correction The results are also difficult to fully match.
发明内容Contents of the invention
本发明的目的:为了解决仿真模型与真实飞机差异较大以及仿真模型难于修正的问题,通过对试验数据进行分析,建立试验模型,然后通过试验和仿真的混合模型来进行气动伺服弹性分析。Purpose of the present invention: in order to solve the problem that the simulation model is quite different from the real aircraft and the simulation model is difficult to correct, by analyzing the test data, the test model is established, and then the aeroservoelasticity analysis is carried out through the mixed model of test and simulation.
本发明的技术方案:一种气动伺服弹性混合建模方法,其特征在于,所述的方法包括如下步骤:The technical solution of the present invention: an aeroservoelastic hybrid modeling method, characterized in that the method includes the following steps:
(1)选取n个测试点作为结构自由度,建立结构模型,进行全机地面共振试验,测量模态频率ω、模态振型Φh、模态阻尼Chh、模态质量Mhh;(1) Select n test points as structural degrees of freedom, establish a structural model, conduct a ground resonance test of the whole machine, and measure the modal frequency ω, modal vibration shape Φ h , modal damping C hh , and modal mass M hh ;
(2)根据测得的模态质量Mhh和模态频率ω求出模态刚度Khh;(2) Calculate the modal stiffness K hh according to the measured modal mass M hh and the modal frequency ω;
Khh=ω2Mhh K hh = ω 2 M hh
(3)根据试验模型在其结构自由度上建立控制面模态Φc;(3) Establish the control surface mode Φ c on its structural degrees of freedom according to the test model;
(4)根据模态振型Φh与模态质量Mhh计算结构自由度上的质量Mg;(4) Calculate the mass M g on the structural degree of freedom according to the mode shape Φ h and the mode mass M hh ;
(5)根据结构模态Φh与控制面模态Φc以及质量Mg求解结构模态与(5) According to the structural mode Φ h , the control surface mode Φ c and the mass M g , the structural mode and
控制面模态之间的耦合质量Mhc;Coupling mass M hc between control surface modes;
(6)建立结构运动方程:(6) Establish the structural motion equation:
式中ξ,δ分别表示广义结构位移与控制面偏转;where ξ and δ represent the generalized structural displacement and control surface deflection, respectively;
(7)根据试验得到的模态数据,利用流场求解器或其它数值计算方法计算非定常气动力,并识别出广义气动力矩阵Qh(s);(7) According to the modal data obtained from the test, use the flow field solver or other numerical calculation methods to calculate the unsteady aerodynamic force, and identify the generalized aerodynamic force matrix Q h (s);
式中Qh=[Qhh Qhc],An=[Ahhn Ahcn](n=0,1,2),E=[Eh Ec]。L为参考长度,V为气流速度,s为拉普拉斯变量;In the formula, Q h =[Q hh Q hc ], A n =[A hhn A hcn ](n=0,1,2), E=[E h E c ]. L is the reference length, V is the air velocity, and s is the Laplace variable;
(8)利用拟合的广义气动力矩阵Qh(s)得到广义气动力fa;(8) Using the fitted generalized aerodynamic matrix Q h (s) to obtain the generalized aerodynamic force f a ;
式中q∞表示来流动压,q为广义位移,q=[ξ δ]T,包括广义结构位移ξ和舵面偏转δ;where q ∞ represents the incoming flow pressure, q is the generalized displacement, q=[ξ δ] T , including generalized structural displacement ξ and rudder surface deflection δ;
(9)取气动力状态变量:(9) Get the state variable of aerodynamic force:
转化到时域空间:Convert to time domain space:
时域广义气动力可以写成:The generalized aerodynamic force in time domain can be written as:
(10)建立气动弹性运动方程:(10) Establish the aeroelastic motion equation:
(11)将气动弹性方程写成状态空间形式:(11) Write the aeroelastic equation in state space form:
式中 In the formula
(12)根据试验测得舵机的频响函数,得到舵机状态方程:(12) According to the frequency response function of the steering gear measured by the test, the state equation of the steering gear is obtained:
(13)由于xact=uae,被控对象(plant)的状态方程可以用下式表示:(13) Since x act =u ae , the state equation of the controlled object (plant) can be expressed by the following formula:
式中 In the formula
Cp=[Cae Dae],Dp=0;C p =[C ae D ae ], D p =0;
(14)考虑控制系统状态方程,可以由仿真模型得到:(14) Considering the state equation of the control system, it can be obtained from the simulation model:
(15)建立被控对象与控制系统的开环传递函数:(15) Establish the open-loop transfer function between the controlled object and the control system:
式中Co=[DcCp Cc],Do=DcDp;In the formula C o = [D c C p C c ], D o = D c D p ;
(16)将状态空间方程转化为频响函数:(16) Transform the state space equation into a frequency response function:
H(s)=Co(sI-Ao)-1Bo+Do H(s)=C o (sI-A o ) -1 B o +D o
绘制Bode图与Nyquist图,可以进行稳定性分析与稳定裕度分析。Drawing Bode diagram and Nyquist diagram can be used for stability analysis and stability margin analysis.
本发明的有益效果:通过试验数据建立结构模型,通过计算建立气动弹性运动模型和控制模型,客观上降低了模型自由度,提高了计算效率。The beneficial effect of the present invention is that the structure model is established through test data, and the aeroelastic motion model and control model are established through calculation, which objectively reduces the degree of freedom of the model and improves the calculation efficiency.
具体实施方式detailed description
(1)选取n个测试点作为结构自由度,建立结构模型,进行全机地面共振试验,测量模态频率ω、模态振型Φh、模态阻尼Chh、模态质量Mhh。(1) Select n test points as structural degrees of freedom, establish a structural model, conduct a ground resonance test of the whole machine, and measure the modal frequency ω, modal vibration shape Φ h , modal damping C hh , and modal mass M hh .
(2)根据测得的模态质量Mhh和模态频率ω求出模态刚度Khh。(2) Calculate the modal stiffness K hh according to the measured modal mass M hh and modal frequency ω.
Khh=ω2Mhh K hh = ω 2 M hh
(3)根据试验模型在其结构自由度上建立控制面模态Φc。(3) Establish the mode Φ c of the control surface on its structural degrees of freedom according to the test model.
(4)根据质量Mg和模态矩阵Φh与模态质量矩阵Mhh之间的关系:(4) According to the relationship between mass M g and modal matrix Φ h and modal mass matrix M hh :
可以得到:can get:
于是,可以得到以下结构模态与控制面模态之间的耦合质量矩阵:Then, the following coupling mass matrix between the structural mode and the control surface mode can be obtained:
(5)根据试验得到的模态数据,求解广义气动力,拟合广义气动力矩阵:(5) According to the modal data obtained from the test, solve the generalized aerodynamic force and fit the generalized aerodynamic force matrix:
Qh(p)=A0+A1p+A2p2+D(Ip-R)-1EpQ h (p)=A 0 +A 1 p+A 2 p 2 +D(Ip-R) -1 Ep
式中Qh=[Qhh Qhc],An=[Ahhn Ahcn](n=0,1,2),E=[Eh Ec]。L为参考长度,V为气流速度,无量纲拉普拉斯变量p=sL/V,s为拉普拉斯变量。因此,广义气动力矩阵可以写成:In the formula, Q h =[Q hh Q hc ], A n =[A hhn A hcn ](n=0,1,2), E=[E h E c ]. L is the reference length, V is the air velocity, the dimensionless Laplace variable p=sL/V, and s is the Laplace variable. Therefore, the generalized aerodynamic matrix can be written as:
那么,广义气动力可以写成:Then, the generalized aerodynamic force can be written as:
式中q∞表示来流动压,q为广义位移,包括广义结构位移ξ和舵面偏转δ,q=[ξ δ]T。where q ∞ represents the incoming flow pressure, q is the generalized displacement, including generalized structural displacement ξ and rudder surface deflection δ, q=[ξ δ] T .
取气动力状态变量:Pneumatic power state variables:
转化到时域空间:Convert to time domain space:
那么,气动力可以写成:Then, the aerodynamic force can be written as:
(6)气动伺服弹性运动方程可以写成:(6) The aeroservoelastic motion equation can be written as:
于是,气动伺服弹性方程可以写成状态空间形式:Then, the aeroservoelasticity equation can be written in the state space form:
式中 In the formula
(7)根据试验测得舵机的频响函数,得到舵机状态方程:(7) According to the frequency response function of the steering gear measured by the test, the state equation of the steering gear is obtained:
(8)由于xact=uae,被控对象(plant)的状态方程可以用下式表示:(8) Since x act =u ae , the state equation of the controlled object (plant) can be expressed by the following formula:
式中 In the formula
Cp=[Cae Dae],Dp=0。C p =[C ae D ae ], D p =0.
(9)考虑控制系统状态方程,可以由仿真模型得到也可以由试验测得:(9) Consider the state equation of the control system, which can be obtained from the simulation model or measured by the test:
(10)建立被控对象与控制系统的开环传递函数(10) Establish the open-loop transfer function between the controlled object and the control system
式中Co=[DcCp Cc],Do=DcDp In the formula C o = [D c C p C c ], D o = D c D p
(11)将状态空间方程转化为频响函数:(11) Transform the state space equation into a frequency response function:
H(s)=Co(sI-Ao)-1Bo+Do H(s)=C o (sI-A o ) -1 B o +D o
绘制Bode图与Nyquist图。可以进行稳定性分析与稳定裕度分析。Draw Bode diagrams and Nyquist diagrams. Stability analysis and stability margin analysis can be performed.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611161879.3A CN106773782B (en) | 2016-12-15 | 2016-12-15 | Pneumatic servo elastic hybrid modeling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611161879.3A CN106773782B (en) | 2016-12-15 | 2016-12-15 | Pneumatic servo elastic hybrid modeling method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106773782A true CN106773782A (en) | 2017-05-31 |
CN106773782B CN106773782B (en) | 2020-01-14 |
Family
ID=58891445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611161879.3A Active CN106773782B (en) | 2016-12-15 | 2016-12-15 | Pneumatic servo elastic hybrid modeling method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106773782B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108256264A (en) * | 2018-02-08 | 2018-07-06 | 北京航空航天大学 | A kind of aeroelastic divergence stability prediction method based on ground frequency response test |
CN109856989A (en) * | 2018-11-26 | 2019-06-07 | 广东工业大学 | A kind of pneumatic force servo system emulation modelling method |
CN110287505A (en) * | 2019-03-20 | 2019-09-27 | 北京机电工程研究所 | Aircraft Stability Analysis Method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102419238A (en) * | 2011-08-15 | 2012-04-18 | 中国航空工业集团公司西安飞机设计研究所 | Measuring device for mass moment of inertia of flutter model |
CN102566440A (en) * | 2011-12-29 | 2012-07-11 | 成都飞机工业(集团)有限责任公司 | Testing method for unmanned plane flight-control structure modal coupling |
US8393206B1 (en) * | 2010-02-09 | 2013-03-12 | Ping-Chih Chen | Dry wind tunnel system |
CN103530485A (en) * | 2013-11-05 | 2014-01-22 | 中国航空工业集团公司西安飞机设计研究所 | Full-aircraft beam frame type reduction stiffness combination modeling method |
CN103558842A (en) * | 2013-11-05 | 2014-02-05 | 中国航空工业集团公司西安飞机设计研究所 | Virtual open-loop frequency scanning method for airplane ground servo elasticity test |
CN105843073A (en) * | 2016-03-23 | 2016-08-10 | 北京航空航天大学 | Method for analyzing wing structure aero-elasticity stability based on aerodynamic force uncertain order reduction |
CN105929692A (en) * | 2016-05-16 | 2016-09-07 | 中国航空工业集团公司西安飞机设计研究所 | Elastic flying wing layout airplane gust alleviating controller parameter optimization method |
-
2016
- 2016-12-15 CN CN201611161879.3A patent/CN106773782B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8393206B1 (en) * | 2010-02-09 | 2013-03-12 | Ping-Chih Chen | Dry wind tunnel system |
CN102419238A (en) * | 2011-08-15 | 2012-04-18 | 中国航空工业集团公司西安飞机设计研究所 | Measuring device for mass moment of inertia of flutter model |
CN102566440A (en) * | 2011-12-29 | 2012-07-11 | 成都飞机工业(集团)有限责任公司 | Testing method for unmanned plane flight-control structure modal coupling |
CN103530485A (en) * | 2013-11-05 | 2014-01-22 | 中国航空工业集团公司西安飞机设计研究所 | Full-aircraft beam frame type reduction stiffness combination modeling method |
CN103558842A (en) * | 2013-11-05 | 2014-02-05 | 中国航空工业集团公司西安飞机设计研究所 | Virtual open-loop frequency scanning method for airplane ground servo elasticity test |
CN105843073A (en) * | 2016-03-23 | 2016-08-10 | 北京航空航天大学 | Method for analyzing wing structure aero-elasticity stability based on aerodynamic force uncertain order reduction |
CN105929692A (en) * | 2016-05-16 | 2016-09-07 | 中国航空工业集团公司西安飞机设计研究所 | Elastic flying wing layout airplane gust alleviating controller parameter optimization method |
Non-Patent Citations (2)
Title |
---|
乔洋 等: "弹性飞行器气动伺服弹性稳定性分析与控制", 《应用力学学报》 * |
惠俊鹏 等: "考虑参数摄动的飞行器气动伺服弹性鲁棒稳定性分析研究", 《导弹与航天运载技术》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108256264A (en) * | 2018-02-08 | 2018-07-06 | 北京航空航天大学 | A kind of aeroelastic divergence stability prediction method based on ground frequency response test |
CN109856989A (en) * | 2018-11-26 | 2019-06-07 | 广东工业大学 | A kind of pneumatic force servo system emulation modelling method |
CN110287505A (en) * | 2019-03-20 | 2019-09-27 | 北京机电工程研究所 | Aircraft Stability Analysis Method |
CN110287505B (en) * | 2019-03-20 | 2020-12-25 | 北京机电工程研究所 | Aircraft stability analysis method |
Also Published As
Publication number | Publication date |
---|---|
CN106773782B (en) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104443427B (en) | Aircraft tremor prognoses system and method | |
CN104589359B (en) | A kind of Vibrations of A Flexible Robot Arm control method based on Vibration device | |
WO2016197552A1 (en) | High-speed platform movement parameter self-tuning method based on model identification and equivalent simplification | |
CN103363993B (en) | A kind of aircraft angle rate signal reconstructing method based on Unscented kalman filtering | |
CN103400035B (en) | A kind of method of high credibility fast prediction aircraft rolling dynamic derivative | |
CN107729585A (en) | A kind of method that noise covariance to unmanned plane is estimated | |
CN102866637B (en) | Quadratic order-reduction based method for simulating unsteady aerodynamic force of aerofoil with operation surface | |
CN102591212B (en) | Method for observing longitudinal motion state of aircraft by using time varying measurement delay output signal | |
CN105868535B (en) | Wind tunnel model pole vibration suppression system actuator layout optimization method | |
Kim | System identification for coupled fluid-structure: Aerodynamics is aeroelasticity minus structure | |
CN103324083A (en) | Non-linear ship motion control method based on robust observer | |
CN106493735A (en) | There is the flexible mechanical arm disturbance observation control method of external disturbance | |
CN102540882A (en) | Aircraft track inclination angle control method based on minimum parameter studying method | |
CN105136423A (en) | Free vibration dynamic derivative test data analysis method with friction force being taken into consideration | |
CN106773782A (en) | A kind of aeroelastic divergence hybrid modeling method | |
CN104281730A (en) | Great-rotating-deformation plate shell structure dynamic response finite element analysis method | |
CN104699947A (en) | Method for simulating aircraft rock movement with RANS/LES (Reynolds average numerical simulation)/LES (large eddy simulation) mixing technique | |
CN107390525A (en) | A kind of control system parameter tuning method applied to hybrid mechanism | |
Zhao et al. | Structural and aeroelastic design, analysis, and experiments of inflatable airborne wings | |
Widhalm et al. | Efficient evaluation of dynamic response data with a linearized frequency domain solver at transonic separated flow condition | |
CN106444885B (en) | Composition and Simulation Method of a Flutter Active Suppression Controller | |
CN102609561B (en) | A Simulation Method for the Influence of Rotating Parts on Flexure Dynamics | |
Zeng et al. | GVT-based ground flutter test without wind tunnel | |
Grauer et al. | Aeroelastic modeling of X-56A stiff-wing configuration flight test data | |
Kier | An integrated loads analysis model for wake vortex encounters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |