CN102023389B - Homogenizer of array partial zone photon sieve - Google Patents

Homogenizer of array partial zone photon sieve Download PDF

Info

Publication number
CN102023389B
CN102023389B CN2009100932931A CN200910093293A CN102023389B CN 102023389 B CN102023389 B CN 102023389B CN 2009100932931 A CN2009100932931 A CN 2009100932931A CN 200910093293 A CN200910093293 A CN 200910093293A CN 102023389 B CN102023389 B CN 102023389B
Authority
CN
China
Prior art keywords
light
array
photon sieve
phase
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100932931A
Other languages
Chinese (zh)
Other versions
CN102023389A (en
Inventor
贾佳
谢长青
刘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN2009100932931A priority Critical patent/CN102023389B/en
Publication of CN102023389A publication Critical patent/CN102023389A/en
Application granted granted Critical
Publication of CN102023389B publication Critical patent/CN102023389B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The invention discloses a homogenizer of an array partial phase zone photon sieve and a manufacturing method thereof. The homogenizer of the array partial phase zone photon sieve is a partial phase zone photon sieve array manufactured on a transparent medium according to actual needs, and the size of the array is determined according to the actual needs. The manufacturing method of the partial phase zone photon sieve comprises the following steps of: firstly manufacturing a common photon sieve on the transparent medium; and then etching round rings at other Fresnel phase zones to form a phase-type Fresnel phase zone, wherein the phase of the phase zone is phi. Therefore, transparent parts are available on odd phase zones and even phase zones of a wave zone plate, which are transparent holes of odd rings and etching phase zones of even rings, or the transparent holes of the even rings and the etching phase zones of the odd rings, respectively. In the etching phase zones, the parts occupied by the round holes of the photon sieve are not etched, and the phase is still 0. By utilizing the invention, the wave front flat topping of Gaussian beams and other nonuniform and nonplanar wave front beams are realized, the homogenization of the beams is realized, and the wave front beam approximate to a plane is realized.

Description

Array portion girdle photon sieve light uniforming device
Technical field
The present invention relates to shaping technique field, laser beam corrugated; Particularly a kind of be used to realize before the high bass wave with irregular wave before laser beam in the wavefront flat-topization of far field construction light field, promptly realize approaching array portion girdle photon sieve light uniforming device of the light field that plane wave front distributes and preparation method thereof.This kind array portion girdle photon sieve light uniforming device can be used for beam shaping, microelectronics non-mask etching and other needs in the various light paths of plane wave front.
Background technology
By all means for before the high bass wave with irregular wave before laser beam spare light; Make optical beam transformation become to approach that the light beam of plane wave front is the problem of a practicality; In various light paths, all be widely used, such as needing in the various instruments of plane wave front at beam shaping, microelectronics non-mask etching and other.The optical device that can realize this function is referred to as light uniforming device.
Thereby position phase modulation technique is to distribute mutually through the position that changes diffracted ray propagation cross section to realize the technology of expection diffraction intensity distribution.The method that is used to modulate has multiple, the phase board that has fixed bit to distribute mutually, also the modulation sheet that can be distributed mutually by the Control of Voltage position processed of using light electric crystal.Because the utilization ratio of diffraction phase board luminous energy is the highest, so the most frequently used.
So-called light uniforming device is also referred to as even bundle device, is that a kind of incident beam wavefront that changes is to realize the optical device of similar plane wave front light beam.General light uniforming device comprises:
Prism method: principle of work is the quasi-parallel laser beam when a branch of light distribution approximate Gaussian function, and during through prism, light beam is divided into four light beams by kaleidoscope prism, and four light beams are after stack on the X-Y plane, and the beam distribution homogeneity has better improvement.(the x of any on X-Y plane; Y), through behind the kaleidoscope prism, the light intensity on the X-Y plane changes number percent less than 3%; The Laser Transmission rate can reach 94%; Can obtain well even effect of output beam and higher Laser Transmission rate with prism method, but the even effect of prism method only just obtains desirable effect when the strict symmetry of input beam, and obtain the extremely strict angle in position in uniform beam cross section corresponding to wedge.
The catoptron method: principle of work is the quasi-parallel laser beam process lens L when a branch of light distribution approximate Gaussian function 1Focus on mirror M 1On, through after the primary event, its energy distribution will be passed through lens L equally according to change and energy superposition phenomenon that beam direction takes place shown in Fig. 1-2 2And mirror M 2After, light beam will superpose again.Through after the light beam stack repeatedly, its initial Gaussian beam energy distribution will be by homogenising like this.Also can obtain well even effect of output beam and higher Laser Transmission rate with the catoptron method, but the assembling of catoptron method and debugging are very difficult.
The kaleidoscope method: principle of work is for being that the incident light of approximate Gaussian distribution is with maximum incident angle θ when light distribution MaxAfter getting into optical waveguide, have only with lens axis light parallel or become a less angle with optical axis without reflection directly through waveguide, the light of all the other incident lights will produce in waveguide on the difference that reflects the arrival output face.The kaleidoscope method makes, debugs simple and easy, and cost reduces greatly, can change the size of output facula easily, but the loss of this system is bigger.
The cylindrical mirror method: the method principle is for being surrounded the square structure of a hollow by four cylindrical mirrors, every cylindrical mirror is installed on the meticulous adjustment rack, through regulating the size and dimension that can control hollow space; Laser radiation is on device, and hollow space laser directly sees through, and is radiated at the strong part of the low light level that light on the edge cylindrical lens will compensate to intermediate light; Parameter through calculating cylindrical mirror is adjusted knob with suitably regulating; Just can obtain equal light effect, the advantage of this method is that the light beam transmitance is higher, and all light effect is better; But the designer has relatively high expectations, and the designer need calculate lens parameters and design high-precision micro-adjusting mechanism.
Fly's-eye lens array method: principle is a fly_eye lens array condenser system light path, and by the square lens arra L that m * m sheet focal length and measure-alike lenslet are formed, lens array L is divided into m to the collimated light beam corrugated of incident 2The bundle beamlet, actual in the light distribution that forms on the target surface is the integration that spherical mirror is focused at each beamlet the light intensity on its focal plane.Use the lens arra condenser system, even under the very poor situation of incident beam near field distribution homogeneity, still can on the focal plane, obtain uniform lighting effect.
The array light uniforming device; Be called the even bundle of array device again; Be based on mathematics integral principle design, it can be divided into unlimited a plurality of tiny light beams with light beam, and the inner energy distribution of each tiny light beam is uniform; Penlight accumulative total stack with all has just obtained the hot spot that energy even distributes in a certain position.[referring to, Lin ying, Lawrence Geoge N; Buck Jesse.Charaterization of excimer lasers for application to lenslet arrayhomogenizer [J]; Applied Optics, 2001,49 (12): 1931-1941].The basic array unit of array light uniforming device can be lens, and promptly above-mentioned fly eye lens array method also can be that Fresnel zone plate is [referring to Liu Xun; Chen Tao, Zuo Tiechuan is applied to the design studies of the binary optical elements of PRK corrugated shaping; Chinese laser (monograph), in March, 2008.]
So-called photon screen is a kind of novel focal imaging diffraction optical device, utilizes it to focus on and imaging X-ray, and this is that the image optics device of general prism and glass material can't be realized.Photon screen is compared with traditional optical element Fresnel zone plate, has advantages such as high resolving power and inhibition second-order diffraction principal maximum, can improve the contrast of imaging.And, as novel diffraction element, advantages such as volume is little, in light weight, transreplication that it has.
Photon screen can be applied to high resolution microscope, astronomical telescope, photoetching of future generation, the controlled nuclear fusion of laser (ICF) research etc.
In calendar year 2001, Kipper et al. has proposed a kind of novel diffraction optical device first: photon screen, come grenz ray and the focusing of EUV radiating light source and imaging [Kipp, L., Skibowski with it; M., Johnson, R.L., Berndt, R.; Adelung, R., Harm, S.; AndSeemann, R.Sharper images by focusing soft X-ray with photonsieves.Nature [J], 2001.414,184-188.].
Photon screen (Photon Sieve, PS) be the diffraction optical elements of on the Fresnel zone ring, making a large amount of transparent micropores that suitably distribute with different radii (Diffraction OpticalElement, DOE).
Partial zonal photon sieve [jia jia, xie changqing, Phase zone photon sieve, ChinesePhysics B, vol 18No1,2009] is a kind of mutation of neoteric photon screen device, and it has than photon screen more performance.Can be at a lot of local photon screens that substitute.The number of patent application 200810115562.5 of this kind partial zonal photon sieve.
Summary of the invention
The technical matters that (one) will solve
In view of this, fundamental purpose of the present invention is to provide a kind of array portion girdle photon sieve light uniforming device, to realize Gaussian beam and other wavefront non-uniform laser beams are transformed to the diffracted beam of wavefront almost plane.
(2) technical scheme
For achieving the above object; The invention provides a kind of array portion girdle photon sieve light uniforming device; This array portion girdle photon sieve light uniforming device is a kind of on transparent medium, the array of the partial zonal photon sieve of making according to actual needs, and the size of array is provided by actual needs.So-called partial zonal photon sieve is the elementary cell of this kind array type light uniforming device;
Wherein, this partial zonal photon sieve is a kind of on transparent medium, makes common photon screen earlier, then at remaining Fresnel endless belt place etching annulus, forms the Fresnel endless belt of phase-type, and the position of endless belt is π mutually.Odd and even number endless belt at zone plate all has the light transmission part like this, is respectively the etching position endless belt mutually of light hole and the even loop of odd loop, perhaps the etching position of the light hole of even loop and odd loop endless belt mutually.At the etching endless belt, by the occupied part of photon screen circular hole etching not, the position still is 0 mutually.
In the such scheme, so-called array is exactly the structure of this partial zonal photon sieve of repetition.
(3) beneficial effect
Array portion girdle photon sieve light uniforming device provided by the invention; Be based on mathematics integral principle design; It can be divided into unlimited a plurality of tiny light beams with light beam; The inner energy distribution of each tiny light beam is uniformly, and the penlight accumulative total stack with all has just obtained the hot spot that energy even distributes in a certain position.The elementary cell partial zonal photon sieve of this kind array light uniforming device; It is the diffraction element of a phase-type; Its independent function is to realize inciding light beam on it in the wavefront flat-topization in far field; And after incident beam incides this elementary cell, realized focusing on again and the diffusion in far field of light beam, thereby realized the even light of array device.
Description of drawings
Fig. 1 is the basic diffraction element of array portion girdle photon sieve light uniforming device, the synoptic diagram of partial zonal photon sieve.Black is the light transmission part among the figure, and the position is π mutually, and the part position of white circular hole printing opacity is 0 mutually, and grey is lighttight part, the chromium film.This partial zonal photon sieve is based on the partial zonal photon sieve of 10 ring Fresnel zone plates.Circularhole diameter and the wide ratio of corresponding Fresnel zone plate annulus are 1.5.
Fig. 2 is the synoptic diagram of 10 * 10 array photon screen light uniforming devices of one of array portion girdle photon sieve light uniforming device embodiment of the present invention, and diffraction element is Fig. 1;
The a branch of Gaussian beam of Fig. 3 incides the synoptic diagram of array portion girdle photon sieve light uniforming device.
Fig. 4 is the synoptic diagram of 10 * 10 array Fresnel zone plate light uniforming devices.The basic diffraction element formula Fresnel zone plate of this kind light uniforming device, this kind light uniforming device is published.The purpose that the present invention lists this light uniforming device is to compare array portion girdle photon sieve ring light uniforming device of the present invention and array fresnel's zone plate light uniforming device, thereby proves that even light result of the present invention is superior to array Fei Nier zone plate light uniforming device.
The a branch of Gaussian beam of Fig. 5 incides the synoptic diagram of array Fresnel zone plate light uniforming device.
Fig. 6 Gaussian beam does not incide any light uniforming device, incides array Fresnel zone plate light uniforming device, incides the intensity contrast figure of the diffracted beam of array portion girdle photon sieve light uniforming device.From figure, can obviously find out: do not incide any light uniforming device, the light intensity distributions of Gaussian beam is a Gaussian curve.Two kinds of light uniforming devices all are the even light of having realized Gaussian beam, but the even light effect of array portion girdle photon sieve light uniforming device provided by the invention is better than the even light effect of existing array Fresnel zone plate light uniforming device.Because it has realized more approaching the diffracted beam of plane wave front.
Fig. 7 is the experiment pick-up unit of array portion girdle photon sieve light uniforming device.
Embodiment
For making the object of the invention, technical scheme and advantage clearer, below in conjunction with specific embodiment, and with reference to accompanying drawing, to further explain of the present invention.
Array portion girdle photon sieve light uniforming device is a kind of novel diffraction optics phase part, i.e. phase board.This phase board is positioned over before or after the diffraction limit lens, and laser beam far field construction light field is revised, promptly even light, and realization more approaches the diffracted beam of plane wave front than (such as Gaussian beam) before the incident beam irregular wave.The present invention has provided the project organization of array portion girdle photon sieve light uniforming device, and has carried out relevant simulated experiment.Experimental verification adopt array portion girdle photon sieve light uniforming device can realize the flat-topization of Gaussian beam wavefront, promptly be for conversion into the diffracted beam that wavefront approaches plane wave front to Gaussian beam.Technology of the present invention can be used for beam shaping, microelectronics non-mask etching and other needs in the various light paths of plane wave front light beam.
This array portion girdle photon sieve light uniforming device provided by the invention is a kind of on transparent medium, the partial zonal photon sieve array of making according to actual needs, and the size of array is provided by actual needs.So-called partial zonal photon sieve is the elementary cell of this array portion girdle photon sieve light uniforming device.This partial zonal photon sieve is a kind of on transparent medium, makes common photon screen earlier, then at remaining Fresnel endless belt place etching annulus, forms the Fresnel endless belt of phase-type, and the position of endless belt is π mutually.Odd and even number endless belt at zone plate all has the light transmission part like this, is respectively the etching position endless belt mutually of light hole and the even loop of odd loop, perhaps the etching position of the light hole of even loop and odd loop endless belt mutually.By the occupied part of photon screen circular hole etching not, the position still is 0 mutually at the etching endless belt.So-called array is exactly the structure of this photon screen of repetition.
Fig. 2 is the synoptic diagram of 10 * 10 array photon screen light uniforming devices of one of array portion girdle photon sieve light uniforming device embodiment of the present invention, and diffraction element is Fig. 1; Black is the light transmission part among the figure, and the position is π mutually, and the position of white printing opacity circular hole is 0 mutually, and grey color part is light tight.This girdle photon sieve is based on the photon screen of 10 ring Fresnel zone plates.Circularhole diameter and the wide ratio of corresponding Fresnel zone plate annulus are 1.5.
Conclusion by the diffraction optics angular spectrum can be known:
Be located at and introduce an infinitely-great position photo that includes the light uniforming device structure on the z=0 plane, desirable Gaussian beam impinges upon on the light uniforming device.The transmittance function of light uniforming device is that (z): it is E (x, y, 0) that Gaussian beam sees through the light uniforming device light intensity to S for x, y, and discrete Fourier transformation obtains the angular spectrum F0 (fx, fy, 0) of incident light on diffraction screen through two-dimensional space.
E ( f x , f Y , 0 ) = ∫ - ∞ ∞ ∫ - ∞ ∞ E ( x , y , 0 ) exp [ - j 2 π ( f X x + f Y y ) ] dxdy - - - ( 1 )
In (1), f X, f YBe spatial frequency,
Figure GSB00000784936300062
Figure GSB00000784936300063
(α, β are wave vectors
Figure GSB00000784936300064
With the X axle, the angle between the Y axle).Incident light is propagated along the Z direction through behind the light uniforming device.At the Z=z place, the frequency spectrum E. of spatial frequency (fx, fy z) are:
E ( f X , f Y , z ) = E ( f X , f Y , 0 ) exp ( j 2 π 1 λ 2 - f X 2 - f Y 2 . z ) - - - ( 3 )
In (3), f xf YConditions must be fulfilled
Figure GSB00000784936300066
This formula shows that the effect of propagating the z of a segment distance has just changed the relative phase of each angular spectrum component.But during as
Figure GSB00000784936300067
; Frequency spectrum E. (the fx of spatial frequency; Fy z) does
E(f X,f Y,z)=E(f X,f Y,0)exp(-μz) (4)
In (4), μ = 2 π λ ( x z ) 2 + ( y z ) 2 - 1 .
Because μ is an arithmetic number, these wave components increase decay rapidly because of propagation distance.(4) formula is done inverse Fourier transform, obtain light wave amplitude E (x, y, z)
E ( x , y , z ) = ∫ - ∞ ∞ ∫ - ∞ ∞ E ( f X , f Y , 0 ) exp ( j 2 π 1 λ 2 - f X 2 - f Y 2 . z ) exp [ j 2 π ( f X x + f Y y ) ] df X df Y
(5)
More than being common angular spectrum diffraction theory, also is that we simulate the theoretical foundation of light uniforming device along light path.To array portion girdle photon sieve light uniforming device, what need modification is exactly each transmittance function.
The present invention has provided the design parameter of array portion girdle photon sieve light uniforming device.We have selected 10 * 10 array in Fig. 2, the selection of this array will be satisfied a principle: promptly the aperture of incident beam must be less than the amplitude of array, thereby can make incident beam to shine on the light uniforming device fully.Design parameter for the basic diffraction element of each partial zonal photon sieve is following: the Fresnel parameter of generally choosing same parameter array Fresnel zone plate light uniforming device; Obtain the parameter of photon screen then on this basis, Circularhole diameter is 1 with corresponding Fresnel zone plate ring width ratio.
Array portion girdle photon sieve light uniforming device of the present invention in the application of reality shown in 7.The 1st, collimation laser device, the 2nd, condenser lens, the 3rd, array portion girdle photon sieve light uniforming device of the present invention, the 4th, CCD photodetector.Light process condenser lens 2 and array portion girdle photon sieve light uniforming device 3 from collimation laser 1 sends produce diffractogram on the focal plane of condenser lens 2.Such diffracted beam intensity distributes and can detected and confirmed it by the ccd detector on the focal plane that is placed on condenser lens 24.
After the experiment proof adds the array portion girdle photon sieve light uniforming device that is designed, realized really being for conversion into emergent light to Gaussian beam near the plane wave front light beam.This explanation the present invention can be used for beam shaping, microelectronics non-mask etching and other needs in the various light paths of plane wave front.
The method of this making array portion girdle photon sieve light uniforming device provided by the invention utilizes lsi technology technology and plane photoetching process technology to realize, specifically may further comprise the steps:
Step 1, utilize the electron-beam direct writing legal system to make mother matrix;
Step 2, master pattern is transferred on the optical glass that scribbles photoresist through the contact photolithography method;
Step 3, utilize the inductive couple plasma lithographic technique, with moving on to pattern etch on the optical glass photoresist in optical glass.
Above-mentioned manufacturing array partial zonal photon sieve light uniforming device utilizes lsi technology technology and plane photoetching process technology to realize.At first, utilize the electron-beam direct writing legal system to make mother matrix, through the contact photolithography method, master pattern has been transferred on the optical glass that scribbles photoresist.The photoresist that is adopted is Shipley s1818, and thickness is 1.8 μ m.The error of repelication of contact exposure is less than 0.5 μ m.Each parameter of photon screen provides in preamble.Light path synoptic diagram according to Fig. 7 arranges the measurement light path. and the laser works wavelength is 632.8nm.The refractive index of optical glass is 1.521, thereby the corresponding degree of depth in π position is 0.607 μ m.The degree of depth of utilizing Taylor's contourgraph to measure full-ring photon sieve is 0.607 μ m.Expand bundle, collimation then.In experiment, be one 10 * 10 array girdle photon sieve light uniforming device, place ccd detector, the considerable thus size of measuring diffraction pattern then at the focal beam spot place.Measured data has proved the correctness of Theoretical Calculation.
Be example with one 10 * 10 array portion girdle photon sieve light uniforming device below, describe its method for making:
1), confirm the focal length and the number of rings of optical maser wavelength and partial zonal photon sieve, these parameters have actual needs to provide, principle is that the photon screen number of rings can not be too little, otherwise influence focuses on, can not be too big, too big diffraction primitive is unfavorable for last even light;
2), confirm the radius of the light beam of the wealthy Shu Yihou of laser according to need of work, the array that make must be greater than this radius.The size of array is by the size decision of light beam.
3), according to the draw domain of light uniforming device of method as herein described.
4), make array portion girdle photon sieve light uniforming device.
Suppose that optical maser wavelength is 632.8 nanometers, the focal length of partial zonal photon sieve is 2000 microns.The radius of drawing together the Shu Yihou Gaussian beam is 180 microns, selects 10 * 10 array, can satisfy whole requirements.Photon screen based on the number of rings of Fresnel zone plate be 10 rings, can design needed photon screen according to above parameter, as the diffraction primitive.Lighttight part all plates chromium.
Above-described practical implementation instance has carried out further detailed explanation to the object of the invention, technical scheme and beneficial effect.Institute it should be understood that the above is merely practical implementation instance of the present invention, is not limited to the present invention.All any modifications of within spirit of the present invention and principle, being made, be equal to replacement or improve etc., all should be included within protection scope of the present invention.

Claims (2)

1. array portion girdle photon sieve light uniforming device; It is characterized in that; This array portion girdle photon sieve light uniforming device is a kind of partial zonal photon sieve array of on transparent medium, making; The size of array is provided by actual needs, and the size of array selects to want to make the light beam of incident held by array fully that this partial zonal photon sieve is the elementary cell of array;
Wherein, this partial zonal photon sieve is a kind of on transparent medium, makes common photon screen earlier; Then at remaining Fresnel endless belt place etching annulus; Form the Fresnel endless belt of phase-type, the position of endless belt is π mutually, and the odd and even number endless belt at zone plate all has the light transmission part like this; It is respectively the etching position endless belt mutually of light hole and the even loop of odd loop; The perhaps etching position of the light hole of even loop and odd loop endless belt mutually, by the occupied part of photon screen circular hole etching not, the position still is 0 mutually at the etching endless belt.
2. array portion girdle photon sieve light uniforming device according to claim 1 is characterized in that this partial zonal photon sieve is at the local printing opacity of aperture and endless belt, and remainder is light tight, and lighttight place plates the chromium film.
CN2009100932931A 2009-09-16 2009-09-16 Homogenizer of array partial zone photon sieve Expired - Fee Related CN102023389B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100932931A CN102023389B (en) 2009-09-16 2009-09-16 Homogenizer of array partial zone photon sieve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100932931A CN102023389B (en) 2009-09-16 2009-09-16 Homogenizer of array partial zone photon sieve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012101422410A Division CN102681170A (en) 2009-09-16 2009-09-16 Method for manufacturing array phase zone photon sieve dodging device

Publications (2)

Publication Number Publication Date
CN102023389A CN102023389A (en) 2011-04-20
CN102023389B true CN102023389B (en) 2012-07-25

Family

ID=43864889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100932931A Expired - Fee Related CN102023389B (en) 2009-09-16 2009-09-16 Homogenizer of array partial zone photon sieve

Country Status (1)

Country Link
CN (1) CN102023389B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995882B2 (en) 2014-02-04 2018-06-12 University Of Florida Research Foundation, Inc. Photonic synthesis of large aperture telescopes from multi-telescope arrays

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271088B (en) * 2016-08-25 2019-02-26 南开大学 A kind of Fresnel zone plate array making method and application based on femtosecond laser
NL2017493B1 (en) * 2016-09-19 2018-03-27 Kulicke & Soffa Liteq B V Optical beam homogenizer based on a lens array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499159A (en) * 1984-04-13 1985-02-12 General Electric Company X-ray image converters utilizing rare earth oxyhalide phosphors
CN1584641A (en) * 2004-06-01 2005-02-23 中国科学院上海光学精密机械研究所 Photon crystal optical fibre
CN101034169A (en) * 2006-03-08 2007-09-12 中国科学院化学研究所 Use of wide-wavelength high-reflectivity pollution-resistant colloid photonics crystal diffused reflection film
CN101303452A (en) * 2008-06-25 2008-11-12 天津大学 Bundling optical fiber pulse delay overlapped shaper
CN101320222A (en) * 2008-07-02 2008-12-10 中国科学院光电技术研究所 Stepping type non-mask digital exposure device based on digital micro-lens array
CN101339129A (en) * 2007-09-03 2009-01-07 深圳大学 Variable visual field scanning microscope and the method based on fixed light path system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499159A (en) * 1984-04-13 1985-02-12 General Electric Company X-ray image converters utilizing rare earth oxyhalide phosphors
CN1584641A (en) * 2004-06-01 2005-02-23 中国科学院上海光学精密机械研究所 Photon crystal optical fibre
CN101034169A (en) * 2006-03-08 2007-09-12 中国科学院化学研究所 Use of wide-wavelength high-reflectivity pollution-resistant colloid photonics crystal diffused reflection film
CN101339129A (en) * 2007-09-03 2009-01-07 深圳大学 Variable visual field scanning microscope and the method based on fixed light path system
CN101303452A (en) * 2008-06-25 2008-11-12 天津大学 Bundling optical fiber pulse delay overlapped shaper
CN101320222A (en) * 2008-07-02 2008-12-10 中国科学院光电技术研究所 Stepping type non-mask digital exposure device based on digital micro-lens array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995882B2 (en) 2014-02-04 2018-06-12 University Of Florida Research Foundation, Inc. Photonic synthesis of large aperture telescopes from multi-telescope arrays

Also Published As

Publication number Publication date
CN102023389A (en) 2011-04-20

Similar Documents

Publication Publication Date Title
CN102799079B (en) For the irradiation system of microlithographic projection exposure apparatus
CN101430428B (en) Super-resolution Fresnel zone plate
EP1630612A2 (en) Method for manufacturing a microstructure, exposure device, and electronic apparatus
US11099400B2 (en) Beam propagation camera and method for light beam analysis
KR101029926B1 (en) Duplication type doe homogenizer optical system
CN104220931B (en) Compensate the Apparatus and method for of the channel defect of microlithography projection exposure system
KR102665970B1 (en) Method and apparatus for printing periodic patterns with variable duty cycle
CN101614961B (en) Partial zonal photon sieve and manufacturing method thereof
KR20040066038A (en) Transmission shear grating in checkboard configuration for euv wavefront sensor
CN102023386A (en) Array full-ring photon sieve light evener and manufacturing method thereof
US20120206786A1 (en) Laser light shaping and wavefront controlling optical system
KR101714005B1 (en) Optical device and exposure apparatus including the same
JP5585761B2 (en) Optical elements and illumination optics for microlithography
CN101881844B (en) Girdle photon sieve and manufacturing method thereof
CN102023389B (en) Homogenizer of array partial zone photon sieve
CN102681170A (en) Method for manufacturing array phase zone photon sieve dodging device
CN102023388A (en) Array photon sieve light evener and manufacturing method thereof
CN101398493A (en) Amplitude type zone plate photonsieve
CN102023387A (en) Array type light evening device with annulus photon screen and manufacturing method thereof
CN101661225B (en) Phase-type zone plate photon sieve
CN101430427B (en) Super-resolution photon screen preparation method
CN101470269A (en) Ultra-resolution compression amplitude optical modulator for laser remote transmission of central light spot
CN101470270A (en) Circular ring type photon screen and method for producing the same
CN102023390A (en) Array three-ring multiple-valued phase-ring light uniformity device and manufacturing method thereof
CN102023392A (en) Array two-ring phase-ring light uniformity device and manufacturing method whereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120725