CN102019227A - Lean hematite stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique - Google Patents
Lean hematite stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique Download PDFInfo
- Publication number
- CN102019227A CN102019227A CN2009101874473A CN200910187447A CN102019227A CN 102019227 A CN102019227 A CN 102019227A CN 2009101874473 A CN2009101874473 A CN 2009101874473A CN 200910187447 A CN200910187447 A CN 200910187447A CN 102019227 A CN102019227 A CN 102019227A
- Authority
- CN
- China
- Prior art keywords
- flotation
- concentrate
- tailings
- fine
- coarse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及选矿技术领域,特别是一种贫赤铁矿阶段磨矿及强磁-重选-阴离子反浮选工艺。The invention relates to the technical field of ore dressing, in particular to a lean hematite stage grinding and strong magnetic-gravity separation-anion reverse flotation process.
背景技术Background technique
目前,我国贫赤铁矿多采用阶段磨矿、粗细分级、重选-强磁-阴离子反浮选工艺,一次分级溢流(-200目含量60%)经粗细分级作业分成粗、细两种产品。粗粒部分经粗螺、扫螺两段作业后,由弱磁、中磁抛尾;细粒部分由中磁、强磁抛尾。由于近年来贫赤铁矿入选品位持续下降,已由32%降至24%,因此增加了选矿设备的负荷,从而也增加了选矿成本。At present, my country's lean hematite mostly adopts stage grinding, coarse and fine classification, gravity separation-strong magnetic-anion reverse flotation process, and the primary classification overflow (-200 mesh content 60%) is divided into coarse and fine by coarse and fine classification. product. Coarse-grained part is thrown by weak and medium magnetic after two-stage operation of coarse snail and sweeping snail; the fine-grained part is thrown by medium and strong magnetic. As the selected grade of lean hematite has continued to decline in recent years, it has dropped from 32% to 24%, which increases the load on the mineral processing equipment, thereby also increasing the mineral processing cost.
发明内容Contents of the invention
本发明的目的是提供一种可降低选矿成本的贫赤铁矿阶段磨矿及强磁-重选-阴离子反浮选工艺。The purpose of the present invention is to provide a lean hematite stage grinding and strong magnetic-gravity separation-anion reverse flotation process that can reduce the cost of beneficiation.
本发明的目的是通过下述技术方案来实现的:The purpose of the present invention is achieved through the following technical solutions:
本发明的一种贫赤铁矿阶段磨矿及强磁-重选-阴离子反浮选工艺,其特征在于包括下述步骤:A kind of depleted hematite stage grinding and strong magnetic-gravity-anion reverse flotation process of the present invention is characterized in that comprising the following steps:
1)首先将品位22-25%,粒度为0-12毫米的贫赤铁矿给入一次磨矿,磨至一次分级溢流中-200目粒级含量达到60%,1) Firstly, the poor hematite with a grade of 22-25% and a particle size of 0-12 mm is fed into the primary grinding until the content of -200 mesh particle size reaches 60% in the primary classification overflow,
2)一次分级溢流给入中磁,中磁的精矿给入强磁,中磁的尾矿返回一次磨矿,2) A grading overflow is fed into the medium magnet, the concentrate of the medium magnet is fed into the strong magnet, and the tailings of the medium magnet are returned to a grinding,
3)强磁的精矿给入粗细分级,强磁的尾矿品位为<9%,将此强磁尾矿抛弃,3) The strong magnetic concentrate is given into coarse and subdivided grades, the strong magnetic tailings grade is <9%, and the strong magnetic tailings are discarded,
4)粗细分级分成粗、细两种产品,-200目粒级含量45-55%的粗粒产品给入粗螺,-200目粒级含量>90%的细粒产品给入浓缩,4) Coarse and fine grading is divided into two kinds of products, coarse and fine. The coarse-grained product with a particle size content of -200 mesh of 45-55% is fed into the coarse snail, and the fine-grained product with a particle size content of -200 mesh>90% is fed into concentration.
5)粗螺的精矿给入精螺,粗螺的尾矿给入二次分级和二次磨矿,5) The concentrate of the coarse snail is fed into the fine snail, and the tailings of the coarse snail are fed into the secondary classification and secondary grinding,
6)精螺的精矿为品位>66%的重选精矿,精螺的尾矿进入二次分级和二次磨矿,6) The concentrate of Jingluo is gravity-selected concentrate with a grade>66%, and the tailings of Jingluo enter into secondary classification and secondary grinding,
7)二次分级溢流返回至中磁,7) The secondary grading overflow returns to the central magnetism,
8)细粒产品经浓缩后,浓度由20%提高到45%以上,浓缩的底流进入反浮选的粗浮选,浓缩的溢流抛弃,8) After the fine-grained product is concentrated, the concentration is increased from 20% to more than 45%, the concentrated underflow enters the rough flotation of reverse flotation, and the concentrated overflow is discarded.
9)粗浮选的精矿进入精浮选,粗浮选的尾矿进入一扫浮选,9) The concentrate of rough flotation enters fine flotation, and the tailings of rough flotation enters sweep flotation,
10)精浮选的精矿为浮选精矿,精浮选的尾矿返回至粗浮选,10) The concentrate of fine flotation is flotation concentrate, and the tailings of fine flotation are returned to rough flotation,
11)一扫浮选的精矿返回至粗浮选,一扫浮选的尾矿进入二扫浮选,11) The concentrated ore from the first-sweep flotation returns to the rough flotation, and the tailings from the first-sweep flotation enter the second-sweep flotation,
12)二扫浮选的精矿返回至一扫浮选,二扫浮选的尾矿进入三扫浮选,12) The concentrate from the second sweep flotation returns to the first sweep flotation, and the tailings from the second sweep flotation enter the third sweep flotation,
13)三扫浮选的精矿返回至二扫浮选,三扫浮选的尾矿抛弃,此浮选尾矿的品位为13-14%,13) The concentrate of the three-sweep flotation is returned to the second-sweep flotation, and the tailings of the three-sweep flotation are discarded. The grade of the flotation tailings is 13-14%.
14)重选精矿与浮选精矿合并为最终精矿,强磁尾矿、浓缩溢流与浮选尾矿合并为最终尾矿,此最终尾矿的品位为9-11%。14) Gravity separation concentrate and flotation concentrate are combined into final concentrate, and strong magnetic tailings, concentrated overflow and flotation tailings are combined into final tailings. The grade of the final tailings is 9-11%.
所述中磁采用中磁机,此中磁机的场强为3000-4000奥斯特。The medium magnetic machine adopts a medium magnetic machine, and the field strength of the magnetic machine is 3000-4000 Oersted.
所述强磁采用强磁机,强磁机的背景场强为12000-14000奥斯特。The strong magnet adopts a strong magnetic machine, and the background field strength of the strong magnetic machine is 12000-14000 Oersted.
本发明采用阶段磨矿、强磁-重选-阴离子反浮选新工艺,该工艺处理品位为24%的贫赤铁矿,可充分发挥阶段磨矿的优势,在粗磨情况下大量抛弃低品位脉石,大大降低了选矿设备的负荷,降低了选矿成本。其主要技术指标可达到精矿品位68%,尾矿品位10%,吨精矿成本480元。与现行的阶段磨矿、粗细分级、重选-强磁-阴离子反浮选工艺相比,技术指标基本相当,但吨精矿成本降低20元。The present invention adopts stage grinding, strong magnetic-gravity separation-anion reverse flotation new process, and this process treats poor hematite with a grade of 24%, can give full play to the advantages of stage grinding, and discard a large amount of low-grade hematite in the case of rough grinding Grade gangue greatly reduces the load on beneficiation equipment and the cost of beneficiation. Its main technical indicators can reach a concentrate grade of 68%, a tailings grade of 10%, and a ton of concentrate cost of 480 yuan. Compared with the current stage grinding, coarse and fine classification, gravity separation-strong magnetic-anion reverse flotation process, the technical indicators are basically the same, but the cost per ton of concentrate is reduced by 20 yuan.
附图说明Description of drawings
图1为本发明的工艺流程图。Fig. 1 is a process flow diagram of the present invention.
具体实施方式Detailed ways
下面结合附图中实施例说明本发明的具体实施方式。The specific implementation manner of the present invention will be described below in conjunction with the embodiments in the accompanying drawings.
如图1所示,本发明的一种贫赤铁矿阶段磨矿及强磁-重选-阴离子反浮选工艺,其特征在于包括下述步骤:As shown in Figure 1, a kind of depleted hematite stage grinding of the present invention and strong magnetic-gravity-anion reverse flotation process are characterized in that comprising the following steps:
1)首先将品位22-25%,粒度为0-12毫米的贫赤铁矿给入一次磨矿,磨至一次分级溢流中-200目粒级含量达到60%,1) Firstly, the poor hematite with a grade of 22-25% and a particle size of 0-12 mm is fed into the primary grinding until the content of -200 mesh particle size reaches 60% in the primary classification overflow,
2)一次分级溢流给入中磁,中磁的精矿给入强磁,中磁的尾矿返回一次磨矿,2) A grading overflow is fed into the medium magnet, the concentrate of the medium magnet is fed into the strong magnet, and the tailings of the medium magnet are returned to a grinding,
3)强磁的精矿给入粗细分级,强磁的尾矿品位为<9%,将此强磁尾矿抛弃,3) The strong magnetic concentrate is given into coarse and subdivided grades, the strong magnetic tailings grade is <9%, and the strong magnetic tailings are discarded,
4)粗细分级分成粗、细两种产品,-200目粒级含量45-55%的粗粒产品给入粗螺,-200目粒级含量>90%的细粒产品给入浓缩,4) Coarse and fine grading is divided into two kinds of products, coarse and fine. The coarse-grained product with a particle size content of -200 mesh of 45-55% is fed into the coarse snail, and the fine-grained product with a particle size content of -200 mesh>90% is fed into concentration.
5)粗螺的精矿给入精螺,粗螺的尾矿给入二次分级和二次磨矿,5) The concentrate of the coarse snail is fed into the fine snail, and the tailings of the coarse snail are fed into the secondary classification and secondary grinding,
6)精螺的精矿为品位>66%的重选精矿,精螺的尾矿进入二次分级和二次磨矿,6) The concentrate of Jingluo is gravity-selected concentrate with a grade>66%, and the tailings of Jingluo enter into secondary classification and secondary grinding,
7)二次分级溢流返回至中磁,7) The secondary grading overflow returns to the central magnetism,
8)细粒产品经浓缩后,浓度由20%提高到45%以上,浓缩的底流进入反浮选的粗浮选,浓缩的溢流抛弃,8) After the fine-grained product is concentrated, the concentration is increased from 20% to more than 45%, the concentrated underflow enters the rough flotation of reverse flotation, and the concentrated overflow is discarded.
9)粗浮选的精矿进入精浮选,粗浮选的尾矿进入一扫浮选,9) The concentrate of rough flotation enters fine flotation, and the tailings of rough flotation enters sweep flotation,
10)精浮选的精矿为浮选精矿,精浮选的尾矿返回至粗浮选,10) The concentrate of fine flotation is flotation concentrate, and the tailings of fine flotation are returned to rough flotation,
11)一扫浮选的精矿返回至粗浮选,一扫浮选的尾矿进入二扫浮选,11) The concentrated ore from the first-sweep flotation returns to the rough flotation, and the tailings from the first-sweep flotation enter the second-sweep flotation,
12)二扫浮选的精矿返回至一扫浮选,二扫浮选的尾矿进入三扫浮选,12) The concentrate from the second sweep flotation returns to the first sweep flotation, and the tailings from the second sweep flotation enter the third sweep flotation,
13)三扫浮选的精矿返回至二扫浮选,三扫浮选的尾矿抛弃,此浮选尾矿的品位为13-14%,13) The concentrate of the three-sweep flotation is returned to the second-sweep flotation, and the tailings of the three-sweep flotation are discarded. The grade of the flotation tailings is 13-14%.
14)重选精矿与浮选精矿合并为最终精矿,强磁尾矿、浓缩溢流与浮选尾矿合并为最终尾矿,此最终尾矿的品位为9-11%。14) Gravity separation concentrate and flotation concentrate are combined into final concentrate, and strong magnetic tailings, concentrated overflow and flotation tailings are combined into final tailings. The grade of the final tailings is 9-11%.
所述中磁采用中磁机,此中磁机的场强为3000-4000奥斯特。The medium magnetic machine adopts a medium magnetic machine, and the field strength of the magnetic machine is 3000-4000 Oersted.
所述强磁采用强磁机,强磁机的背景场强为12000-14000奥斯特。The strong magnet adopts a strong magnetic machine, and the background field strength of the strong magnetic machine is 12000-14000 Oersted.
由于该工艺在粗磨情况下大量抛弃低品位脉石,大大降低了选矿设备的负荷,确保了低成本运行。以某选矿厂为例:该厂目前的精矿规模为230万吨位,以此精矿规模计算,年效益约为4600万元。Because this process discards a large amount of low-grade gangue in the case of rough grinding, it greatly reduces the load on the mineral processing equipment and ensures low-cost operation. Take a mineral processing plant as an example: the current concentrate scale of the plant is 2.3 million tons, and the annual benefit is about 46 million yuan based on this concentrate scale.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910187447 CN102019227B (en) | 2009-09-18 | 2009-09-18 | Stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique for lean hematite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910187447 CN102019227B (en) | 2009-09-18 | 2009-09-18 | Stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique for lean hematite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102019227A true CN102019227A (en) | 2011-04-20 |
CN102019227B CN102019227B (en) | 2013-01-16 |
Family
ID=43861246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910187447 Active CN102019227B (en) | 2009-09-18 | 2009-09-18 | Stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique for lean hematite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102019227B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102284359A (en) * | 2011-08-08 | 2011-12-21 | 鞍钢集团矿业公司 | Process for roasting, stage grinding, coarse-fine grading and reselection-magnetic separation of hematite |
CN102357408A (en) * | 2011-08-09 | 2012-02-22 | 鞍钢集团矿业公司 | Re-cleaning technology for flotation tailings of fine embedded lean hematite |
CN102773150A (en) * | 2011-05-12 | 2012-11-14 | 云南锡业集团(控股)有限责任公司 | Polymetallic (iron, tin and zinc) ore comprehensive recovery beneficiation method |
CN102814233A (en) * | 2012-09-20 | 2012-12-12 | 鞍钢集团矿业公司 | Preselecting technology for extremely hungry hematite one-step classifying overflows through high gradient magnetic separator |
CN102921540A (en) * | 2012-11-16 | 2013-02-13 | 鞍钢集团矿业公司 | Lean hematite processing technology |
CN103447161A (en) * | 2013-09-05 | 2013-12-18 | 鞍钢集团矿业公司 | Flocculation desliming and alkaline flotation method of high-ferrous ore fine particle products |
CN103464287A (en) * | 2013-09-05 | 2013-12-25 | 鞍钢集团矿业公司 | Flocculation desliming and acidic flotation method for iron carbonate ore fine-grained products |
CN103977882A (en) * | 2014-05-23 | 2014-08-13 | 山东华联矿业股份有限公司 | Magnetite concentrate quality-improving impurity-reducing process |
CN104722393A (en) * | 2015-03-19 | 2015-06-24 | 长沙矿冶研究院有限责任公司 | Beneficiation method for improving fine grain specularite recovery |
CN104759355A (en) * | 2015-04-28 | 2015-07-08 | 中冶北方(大连)工程技术有限公司 | Micro-fine particle hematite greater circulation mine returning negative ion reverse flotation technology |
CN105521869A (en) * | 2016-02-02 | 2016-04-27 | 大连地拓重工有限公司 | Re-concentration method for hematite combined tailings |
CN106269177A (en) * | 2016-10-14 | 2017-01-04 | 鞍钢集团矿业有限公司 | Magnetic strength magnetic reverse floatation process in lean hematite thickness grading, gravity treatment |
CN108970802A (en) * | 2018-09-20 | 2018-12-11 | 鞍钢集团矿业有限公司 | A kind of floating combined mineral dressing technology of the stage grinding-magnetic-weight-sorting hematite |
CN109718947A (en) * | 2019-03-20 | 2019-05-07 | 中钢集团马鞍山矿山研究院有限公司 | Microfine magnetic-red compound iron ore magnetic-floats beneficiation combined method method |
CN109985723A (en) * | 2019-03-20 | 2019-07-09 | 中钢集团马鞍山矿山研究院有限公司 | A kind of beneficiation method of microfine magnetic-red compound iron ore |
CN110639690A (en) * | 2019-10-14 | 2020-01-03 | 广东省资源综合利用研究所 | Beneficiation method for high-mud micro-fine particle rare earth minerals |
CN112588431A (en) * | 2020-12-08 | 2021-04-02 | 鞍钢集团矿业有限公司 | Ore grinding-weak magnetic strong magnetic-gravity separation-reverse flotation process for magnetic hematite |
CN115921128A (en) * | 2023-01-05 | 2023-04-07 | 鞍钢集团矿业有限公司 | A process of ore grinding-weak magnetic strong magnetic-coarse grain gravity separation regrinding and fine grain reverse flotation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB947670A (en) * | 1961-04-26 | 1964-01-29 | Pickands Mather & Co | Beneficiating low-grade specular hematite ore material |
CN1231223A (en) * | 1998-04-09 | 1999-10-13 | 丛文华 | Process for preparation of high-purity iron powder |
CN1548234A (en) * | 2003-05-23 | 2004-11-24 | 鞍钢集团鞍山矿业公司研究所 | Ore dressing process of treating poor hematite |
-
2009
- 2009-09-18 CN CN 200910187447 patent/CN102019227B/en active Active
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102773150A (en) * | 2011-05-12 | 2012-11-14 | 云南锡业集团(控股)有限责任公司 | Polymetallic (iron, tin and zinc) ore comprehensive recovery beneficiation method |
CN102284359A (en) * | 2011-08-08 | 2011-12-21 | 鞍钢集团矿业公司 | Process for roasting, stage grinding, coarse-fine grading and reselection-magnetic separation of hematite |
CN102284359B (en) * | 2011-08-08 | 2013-03-20 | 鞍钢集团矿业公司 | Process for roasting, stage grinding, coarse-fine grading and reselection-magnetic separation of hematite |
CN102357408A (en) * | 2011-08-09 | 2012-02-22 | 鞍钢集团矿业公司 | Re-cleaning technology for flotation tailings of fine embedded lean hematite |
CN102357408B (en) * | 2011-08-09 | 2013-05-01 | 鞍钢集团矿业公司 | Re-cleaning technology for flotation tailings of fine embedded lean hematite |
CN102814233A (en) * | 2012-09-20 | 2012-12-12 | 鞍钢集团矿业公司 | Preselecting technology for extremely hungry hematite one-step classifying overflows through high gradient magnetic separator |
CN102921540A (en) * | 2012-11-16 | 2013-02-13 | 鞍钢集团矿业公司 | Lean hematite processing technology |
CN103447161B (en) * | 2013-09-05 | 2015-01-07 | 鞍钢集团矿业公司 | Flocculation desliming and alkaline flotation method of high-ferrous ore fine particle products |
CN103464287A (en) * | 2013-09-05 | 2013-12-25 | 鞍钢集团矿业公司 | Flocculation desliming and acidic flotation method for iron carbonate ore fine-grained products |
CN103447161A (en) * | 2013-09-05 | 2013-12-18 | 鞍钢集团矿业公司 | Flocculation desliming and alkaline flotation method of high-ferrous ore fine particle products |
CN103977882A (en) * | 2014-05-23 | 2014-08-13 | 山东华联矿业股份有限公司 | Magnetite concentrate quality-improving impurity-reducing process |
CN104722393A (en) * | 2015-03-19 | 2015-06-24 | 长沙矿冶研究院有限责任公司 | Beneficiation method for improving fine grain specularite recovery |
CN104759355A (en) * | 2015-04-28 | 2015-07-08 | 中冶北方(大连)工程技术有限公司 | Micro-fine particle hematite greater circulation mine returning negative ion reverse flotation technology |
CN105521869A (en) * | 2016-02-02 | 2016-04-27 | 大连地拓重工有限公司 | Re-concentration method for hematite combined tailings |
CN106269177A (en) * | 2016-10-14 | 2017-01-04 | 鞍钢集团矿业有限公司 | Magnetic strength magnetic reverse floatation process in lean hematite thickness grading, gravity treatment |
CN106269177B (en) * | 2016-10-14 | 2018-04-24 | 鞍钢集团矿业有限公司 | Lean hematite thickness grading, gravity treatment-middle magnetic-strong magnetic-reverse floatation process |
CN108970802A (en) * | 2018-09-20 | 2018-12-11 | 鞍钢集团矿业有限公司 | A kind of floating combined mineral dressing technology of the stage grinding-magnetic-weight-sorting hematite |
CN108970802B (en) * | 2018-09-20 | 2020-07-28 | 鞍钢集团矿业有限公司 | A stage grinding-magnetic-gravity-flotation combined beneficiation process for separating hematite ore |
CN109718947A (en) * | 2019-03-20 | 2019-05-07 | 中钢集团马鞍山矿山研究院有限公司 | Microfine magnetic-red compound iron ore magnetic-floats beneficiation combined method method |
CN109985723A (en) * | 2019-03-20 | 2019-07-09 | 中钢集团马鞍山矿山研究院有限公司 | A kind of beneficiation method of microfine magnetic-red compound iron ore |
CN110639690A (en) * | 2019-10-14 | 2020-01-03 | 广东省资源综合利用研究所 | Beneficiation method for high-mud micro-fine particle rare earth minerals |
CN112588431A (en) * | 2020-12-08 | 2021-04-02 | 鞍钢集团矿业有限公司 | Ore grinding-weak magnetic strong magnetic-gravity separation-reverse flotation process for magnetic hematite |
CN115921128A (en) * | 2023-01-05 | 2023-04-07 | 鞍钢集团矿业有限公司 | A process of ore grinding-weak magnetic strong magnetic-coarse grain gravity separation regrinding and fine grain reverse flotation |
Also Published As
Publication number | Publication date |
---|---|
CN102019227B (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102019227B (en) | Stage grinding and high intensity magnetism, gravity separation, negative ion reverse flotation technique for lean hematite | |
CN101468330B (en) | Technique for processing mixed type iron ore | |
CN103586146B (en) | Mineral processing process for processing mixed ore of magnetic iron ore and hematite-limonite ore | |
CN101664715B (en) | Ore-dressing technique capable of effectively improving comprehensive utilization rate of mine resources | |
CN101927209B (en) | Benefication technology of extra poor hematite | |
CN103567058B (en) | Technique for processing high-iron-carbonate mixed ore | |
CN103567051B (en) | Small-scale lean hematite separation technology | |
CN102019228A (en) | Ultra-lean hematite dressing process | |
CN102228861B (en) | Sorting method of multi-metal lean hematite | |
CN108970802B (en) | A stage grinding-magnetic-gravity-flotation combined beneficiation process for separating hematite ore | |
CN102553707A (en) | Process for separating lean-magnetite fine ore | |
CN102228863B (en) | Novel separation process of multi-metal lean hematite | |
CN102909125B (en) | Recleaning process for section of strong magnetic tailings in mixed lean iron ores | |
CN101773869A (en) | Process for processing low grade hematite ore | |
CN103406197B (en) | The technique of iron ore concentrate is sorted from chromium depleted zone mine tailing | |
CN103272684B (en) | Hematite stage grinding and magnetic-separation-flotation process | |
CN102806140A (en) | Method for recovering comprehensive tailings of hematite | |
CN104148172B (en) | A kind of bloodstone mine tailing is ore grinding, strong magnetic-reverse flotation recovery process respectively | |
CN101708481A (en) | Additional grading technology for spiral chute roughing tailings | |
CN109201322A (en) | A kind of sorting process of the hematite containing ferric carbonate | |
CN102274789B (en) | Recleaning method of fine-grain embedded hematite flotation tailings | |
CN104014415A (en) | Technology for treating fine particle dissemination carbonate-containing hematite ore | |
CN108970803A (en) | A kind of floating process integration of the magnetic-weight-sorting the hematite containing ferric carbonate | |
CN113304874A (en) | Flotation pretreatment method for niobium ores | |
CN106423533A (en) | Poor hematite high-pressure roller grinding, roughness and fineness classification and reselection-magnetic separation-reverse flotation technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP01 | Change in the name or title of a patent holder |
Address after: 114001 Anshan District, Liaoning, No. 219 Road, No. 39, Tiedong Patentee after: Anshan Iron and Steel Group Mining Co., Ltd. Address before: 114001 Anshan District, Liaoning, No. 219 Road, No. 39, Tiedong Patentee before: Angang Group Mine Company |