CN102012219A - 机载式全景旋翼共锥度测量装置 - Google Patents

机载式全景旋翼共锥度测量装置 Download PDF

Info

Publication number
CN102012219A
CN102012219A CN 201010526289 CN201010526289A CN102012219A CN 102012219 A CN102012219 A CN 102012219A CN 201010526289 CN201010526289 CN 201010526289 CN 201010526289 A CN201010526289 A CN 201010526289A CN 102012219 A CN102012219 A CN 102012219A
Authority
CN
China
Prior art keywords
module
rotor
hyperboloidal mirror
cover plate
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010526289
Other languages
English (en)
Other versions
CN102012219B (zh
Inventor
朱齐丹
蔡成涛
夏桂华
王立辉
姜迈
邓超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2010105262892A priority Critical patent/CN102012219B/zh
Publication of CN102012219A publication Critical patent/CN102012219A/zh
Application granted granted Critical
Publication of CN102012219B publication Critical patent/CN102012219B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

本发明提供的是一种机载式全景旋翼共锥度测量装置。由取景模块、透视成像模块、防护模块和全景图像嵌入式处理模块组成;取景模块通过连接器与防护模块相连,防护模块通过法兰连接固定安装在旋翼桨毂上,透视成像模块、全景图像嵌入式处理模块安装在防护模块中;取景模块包括安装在防护玻璃管内的双曲面反射镜、设置在防护玻璃管顶端的双曲面反射镜连接器;透视成像模块由高帧频科学级相机和透视镜头及Cameralink视频传输线组成;全景图像嵌入式处理模块由Cameralink视频输入输出接口、图像处理单元、数据输出接口组成。本测量装置具有结构紧凑、调节方便、安装维修简捷、工作稳定可靠的特点,用于直升机旋翼共锥度的测量。

Description

机载式全景旋翼共锥度测量装置
技术领域
本发明涉及的是一种直升机旋翼共锥度测量的装置。
背景技术
当旋翼直升机飞行时,桨叶会微微往上翘,形成一个倒置的圆锥体,若升力一致,则各桨叶运动在同一个椎体上,通常称为共锥面。若升力不一致,那么各桨叶运动的轨迹不共锥,此时桨叶高度就不等高。直升机旋翼的共锥度是旋翼动平衡测量的一个主要指标,它直接关系到直升机的安全和其他各项重要性能的优劣,是直升机生产、维护中的重要检查项目。由于共锥度的测量往往是在桨叶高速旋转的动态下进行的,所以过去一直存在着测量难度较大、测量精度较差的问题。
传统视觉图像由普通镜头成像,只能观测到几十度视场内的目标;全景视觉传感器利用折反射全景成像机理可以观察到接近一个球面的全景视场信息,具有十分重要的应用前景。全景视觉传感器技术是一门新颖的技术,已经逐步应用到军用机器人导航、火星探测、视频监控、火险救灾、虚拟现实等众多领域。与传统视觉系统视场较小不同,全景成像指大于半球视场(360°×180°)的球面成像,全景视觉系统利用单视点双曲面反射镜通过CCD成像单元一次成像大于半球视场(360°×180°),一次获取整个场景的目标信息,不再需要为光电跟踪系统附加一套随动系统,采集到的数据经过图像采集卡转换成有效的图像数据交由图像处理装置进行处理,用于直升机旋翼共锥度的测量。
公开文献中关于对直升机旋翼共锥度的测量方法的报道较多,对直升机旋翼参数的测量也有一些描述,但是在测量中采用方法和手段均与不是基于机载式全景视觉的测量。
发明内容
本发明的目的在于提供一种结构简单、使用方便的机载式全景旋翼共锥度测量装置。
本发明的目的是这样实现的:
本发明的机载式全景旋翼共锥度测量装置由取景模块、透视成像模块、防护模块和全景图像嵌入式处理模块组成;取景模块通过连接器与防护模块相连,防护模块通过法兰连接固定安装在旋翼桨毂上,透视成像模块、全景图像嵌入式处理模块安装在防护模块中;取景模块包括安装在防护玻璃管内的双曲面反射镜、设置在防护玻璃管顶端的双曲面反射镜连接器;透视成像模块由高帧频科学级相机和透视镜头及Cameralink视频传输线组成;全景图像嵌入式处理模块由Cameralink视频输入输出接口、图像处理单元、数据输出接口组成。
本发明还可以包括这样一些结构特征:
1、所述全景图像嵌入式处理模块的构成为:视频信号通过MDR26连接器输入到Cameralink接收器,CL接收器实现串行视频信号到并行处理信号的转换,转换后的并行视频图像输入到FPGA中,FPGA完成图像读取、预处理、图像输出,DSP完成解算,FPGA和DSP依据SDRAM进行数据通讯。
防护结构及装配结构设计
2、所述防护模块包括防护玻璃管和支撑圆杆,防护玻璃管采用石英玻璃连熔制成,并在内侧镀膜,支撑圆杆由纯钢材料制成。
3、所述取景模块包括安装在防护玻璃管内的双曲面反射镜、设置在防护玻璃管顶端的双曲面反射镜连接器。
4、所述透视成像模块由高帧频科学级相机和透视镜头及Cameralink视频传输线组成。
5、所述双曲面反射镜连接器是由纯钢制作的圆盘,正中央为一个和双曲面反射镜通孔大小相似的通孔,外围有一圆形凹槽。
本发明的机载式全景旋翼共锥度测量装置的取景模块的防护玻璃采用石英玻璃连熔制成,并在内侧镀膜以最大限度的减小光线折返射给全景图像带来的影响。防护玻璃管的高度由摄像机与双曲面反射镜之间的距离决定。支撑圆杆由纯钢材料制成,主要起到支撑双曲面反射镜和保护玻璃管的作用,其高度应根据摄像机与双曲面反射镜之间的距离决定,半径在能够保证支撑强度的前提下不宜过大以免影响成像。双曲面反射镜连接器是由纯钢制作的圆盘,半径的大小由双曲面反射镜底面直径决定。连接器的正中央为一个和双曲面反射镜通孔大小相似的通孔,双曲面反射镜固定在该连接器上。同时,连接器外围有一圆形凹槽,凹槽的半径由玻璃管决定。
本发明的机载式全景旋翼共锥度测量装置的全景图像嵌入式处理模块采取FPGA与DSP协同工作模式,并为FPGA和DSP分配SDRAM作为图像缓存空间。
本发明装置采用上述结构后,通过悬挂在支架上的全景成像系统实时拍摄旋翼旋转状态,通过双曲面折反射系统的逆投影原理将旋翼图像坐标值反向推导转化为其在空间中的位置来计算旋翼的锥度差。具有结构紧凑、拍摄方便的优点。
附图说明
图1是本发明的机载式全景共锥度测量装置的结构示意图;
图2是嵌入式全景图象处理模块的组成图;
图3是双曲面折反射系统的逆投影原理图;
图4是在成像平面内的点投影;
图5是在全景图像平面内的点投影;
图6是防护结构示意图。
具体实施方式
下面结合附图举例对本发明做更详细地描述:
结合图1,直升机旋翼模型试验台采用不锈钢材料构成,将实际的直升机旋翼按比例缩小,使其具有与匀速前飞旋翼直升机实物相同的物理参数和特性。机载式全景旋翼共锥度测量装置由取景模块、透视成像模块、防护模块、全景图像嵌入式处理模块组成;取景模块通过双曲面反射镜连接器1与防护模块3相连,防护模块通过法兰连接11固定安装在旋翼桨毂12上,透视成像模块、全景图像嵌入式处理模块安装在防护模块3中;取景模块包括安装在防护玻璃管内的双曲面反射镜2、设置在防护玻璃管顶端的双曲面反射镜连接器1;透视成像模块由高帧频科学级相机6和透视镜头5及Cameralink视频传输线8组成;全景图像嵌入式处理模块由Cameralink视频输入输出接口9、图像处理单元10等组成。
实现机载的一个主要难题是测量系统的小型化,故需要将全景图像处理系统进行嵌入式设计。在具体实施过程中,采取FPGA与DSP协同工作模式,并为FPGA和DSP分配SDRAM作为图像缓存空间。结合图2,全景图像嵌入式处理模块的构成为:视频信号通过MDR26连接器输入到Cameralink接收器,CL接收器实现串行视频信号到并行处理信号的转换,转换后的并行视频图像输入到FPGA中,FPGA在此嵌入式图像处理系统中起核心作用,主要完成图像读取、预处理、图像输出等功能。DSP依据计算优势,完成解算方法。FPGA和DSP依据SDRAM进行数据通讯。
实际直升机旋翼模型台桨毂12直径为25cm,该系统的摄像机选用Dalsa公司生产的Falcon 4M60高分辨率面阵高速相机,该相机采用传输性能较好的Cameralink接口,分辨率为2352*1728,镜头在实际应用中选用了Nikon AF 20mm 2.8D作为透视成像透镜。
结合图1,利用法兰连接11将测量系统固定安装在旋翼桨毂12上。用长度适中的Cameralink数据线8将摄像机6与嵌入式图像处理系统连接,将摄像机固定安装在设计好的支架7上。最后设计取景模块,在摄像机-反射镜系统各参数确定后,确定防护玻璃管[3]的高度并将其内部镀膜,防护玻璃管应置于连接器上部圆盘的凹槽内。同时,依据上面提及到的全景视觉系统中双曲面反射镜的设计要求实际设计双曲面反射镜2,将其固定在双曲面反射镜圆盘上,并将此整体倒置于防护玻璃罩3上,防护玻璃罩3应置于法兰连接11的凹槽内。
利用调整柄14通过调整桨毂连接器13的转轴可以获得桨叶不同的锥度角,以桨叶顶点为目标观察点,通过取景模块将采集目标点并交由全景图像嵌入式处理模块进行处理,经过图像读取、预处理、图像输出等功能完成旋翼桨叶锥度的测量。
整套结构防尘、抗震,系统可获得水平方向360°,竖直方向240°的全景视角。可用于直升机旋翼旋转速度最大为400r/min各种飞行场合,连续工作时间不小于2小时。
下面对本发明的原理及应用作进一步说明:
旋翼锥度的解算方法
1入射光线k1、k1的计算
一幅全景图像表示的是观察时间不变而观察方向改变所能观察到的全部场景。如图3所示,F1,F2分别为双曲线的两个焦点,e为双曲面的焦距,
Figure BDA0000030265480000041
为入射光线,
Figure BDA0000030265480000042
为反射光线反向延长线。由于双曲面反射镜的上端面半径尺寸D是已知的,现将双曲面反射镜的上端面作为成像平面,A1A2为经反射镜反射后的像点。
双曲面反射镜在yoz平面内的公式为:
z 2 a 2 - y 2 b 2 = 1 - - - ( 1 )
式中,a,b为双曲面反射镜的面型参数。
全景图像上任意一点所对应空间内的入射光线的方位角可由水平方向的向量角和垂直方向的俯仰角(θ,α)来描述。
以被测桨叶尖部B1(x1,y1)发出的光线
Figure BDA0000030265480000044
为例,入射光线的斜率为k1,双曲面反射镜的焦点为F1(0,e),F2(0,-e),则在yoz平面内入射光线
Figure BDA0000030265480000045
的方程为:
z=k1y+e    (2)
设反射光线
Figure BDA0000030265480000046
的斜率为k3,则在yoz平面内
Figure BDA0000030265480000047
的方程为:
z=k3y-e    (3)
由几何关系可知:
k 3 = tan σ 1 = H ZA 1 - - - ( 4 )
H为CCD靶面到双曲面反射镜上端面的距离。
则B1在成像平面内的模长为:
ρ 1 = H k 3 = Hy z + e - - - ( 5 )
其中ZA1=ρ1
成像平面如图4所示,像点A1的极坐标为(ρ1,θ1)。则:
所以已知三维空间中物点B1坐标,可以唯一确定一条入射光线
Figure BDA0000030265480000051
已知全景图的半径为R(像素单位),在全景图中建立相对于图像中心的极坐标系,如图5所示,对应的像素点A112,θ2)与成像平面内点A11,θ1)与幅角相同,而模长成一定倍数关系λ,其中
Figure BDA0000030265480000052
ρ2=ρ1×λ(6)
θ2=θ1    (7)
设全景图的中心坐标为Ot(x0,y0),A11(xt,yt)则
xt=x02·cosθ2(8)
yt=y02·sinθ2(9)
通过图像处理可以计算出A11的坐标(xt,yt)、全景图像中心坐标(x0,xy0)及全景圆半径R,代入公式(8)~(9)可以求得ρ2,θ2
将ρ2,θ2代入公式(6)~(7)求得ρ1,θ1
Figure BDA0000030265480000053
Figure BDA0000030265480000054
交点P1(xp1,yp1)代入公式(5)、(10)可知:
z p 1 2 a 2 - y p 1 2 b 2 = 1 ρ 1 = H k 3 = Hy p 1 z p 1 + e
解方程组求得:
z p 1 = a 2 ρ 1 2 e + ab 2 H ρ 1 2 + H 2 ( b 2 H 2 - a 2 ρ 1 2 ) = C 1 - - - ( 10 )
Figure BDA0000030265480000057
Figure BDA0000030265480000058
交点P1(xp1,yp1)代入公式(7)、(10)可知:
k 1 = z p 1 - e y p y p 1 = ρ 1 ( z p 1 + e ) H ⇒ k 1 = H ( z p 1 - e ) ρ 1 ( z p 1 + e ) - - - ( 11 )
将(10)代入(11)可得:
k 1 = H ( 2 a 2 ρ 1 2 e - e b 2 H 2 + a b 2 H ρ 1 2 + H 2 ) ρ 1 ( eb 2 H 2 + ab 2 H ρ 1 2 + H 2 ) = C 2 - - - ( 12 )
同理可知:
z p 2 = a 2 ρ 2 2 e + ab 2 H ρ 2 2 + H 2 ( b 2 H 2 - a 2 ρ 2 2 ) = C 3 - - - ( 13 )
k 2 = H ( 2 a 2 ρ 2 2 e - eb 2 H 2 + ab 2 H ρ 2 2 + H 2 ) ρ 2 ( eb 2 H 2 + a b 2 H ρ 2 2 + H 2 ) = C 4 - - - ( 14 )
旋翼锥度差的Δω计算
将前面计算出的k1=C2,k2=C4作为已知条件,继续对旋翼的锥度差值Δω进行推导。如图3所示,假设y1o1z1与yoz位于同一个平面内,o1相对于o左移m,下移n,旋翼桨毂与桨叶连接点位于o1,则由几何学可知,被测桨叶锥度β与标准桨叶锥度α正切值分别为:
tgα = z 2 + n y 2 - m - - - ( 15 )
tgβ = z 1 + n y 1 - m - - - ( 16 )
旋翼锥度差Δω的正切值为:
tg ( Δω ) = tg ( β - α ) = tgβ - tgα 1 + tgβ × tgα - - - ( 17 )
则旋翼锥度差为:
Δω = arctan = ( tgβ - tgα 1 + tgβ × tgα ) - - - ( 18 )
若旋翼桨叶长度为r,可知:
(y2-m)2+(z2+n)2=r2(19)
(y1-m)2+(z1+n)2=r2(20)
由方程(2)知:
z1=k1y1+e    (21)
同理可知:
z2=k2y2+e    (22)
联立式(19)~(22),其中k1=C2,k2=C4可得:
(y1,z1),(y2,z2)值,将其代入(15)~(18)即可求出旋翼的锥度差Δω。
Δω = arctan [ ( z 1 + n ) ( y 2 - m ) - ( z 2 + n ) ( y 1 - m ) ( y 1 - m ) ( y 2 - m ) + ( z 1 + n ) ( z 2 + n ) ] - - - ( 23 )
旋翼桨叶锥度差计算完毕。

Claims (6)

1.一种机载式全景旋翼共锥度测量装置,由取景模块、透视成像模块、防护模块和全景图像嵌入式处理模块组成;其特征是:取景模块通过连接器与防护模块相连,防护模块通过法兰连接固定安装在旋翼桨毂上,透视成像模块、全景图像嵌入式处理模块安装在防护模块中;取景模块包括安装在防护玻璃管内的双曲面反射镜、设置在防护玻璃管顶端的双曲面反射镜连接器;透视成像模块由高帧频科学级相机和透视镜头及Cameralink视频传输线组成;全景图像嵌入式处理模块由Cameralink视频输入输出接口、图像处理单元、数据输出接口组成。
2.根据权利要求1所述的机载式全景旋翼共锥度测量装置,其特征是:所述全景图像嵌入式处理模块的构成为:视频信号通过MDR26连接器输入到Cameralink接收器,CL接收器实现串行视频信号到并行处理信号的转换,转换后的并行视频图像输入到FPGA中,FPGA完成图像读取、预处理、图像输出,DSP完成解算,FPGA和DSP依据SDRAM进行数据通讯。防护结构及装配结构设计。
3.根据权利要求2所述的机载式全景旋翼共锥度测量装置,其特征是:所述防护模块包括防护玻璃管和支撑圆杆,防护玻璃管采用石英玻璃连熔制成,并在内侧镀膜,支撑圆杆由纯钢材料制成。
4.根据权利要求3所述的机载式全景旋翼共锥度测量装置,其特征是:所述取景模块包括安装在防护玻璃管内的双曲面反射镜、设置在防护玻璃管顶端的双曲面反射镜连接器。
5.根据权利要求4所述的机载式全景旋翼共锥度测量装置,其特征是:所述透视成像模块由高帧频科学级相机和透视镜头及Cameralink视频传输线组成。
6.根据权利要求5所述的机载式全景旋翼共锥度测量装置,其特征是:所述双曲面反射镜连接器是由纯钢制作的圆盘,正中央为一个和双曲面反射镜通孔大小相似的通孔,外围有一圆形凹槽。 
CN2010105262892A 2010-11-01 2010-11-01 机载式全景旋翼共锥度测量装置 Expired - Fee Related CN102012219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105262892A CN102012219B (zh) 2010-11-01 2010-11-01 机载式全景旋翼共锥度测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105262892A CN102012219B (zh) 2010-11-01 2010-11-01 机载式全景旋翼共锥度测量装置

Publications (2)

Publication Number Publication Date
CN102012219A true CN102012219A (zh) 2011-04-13
CN102012219B CN102012219B (zh) 2012-02-01

Family

ID=43842474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105262892A Expired - Fee Related CN102012219B (zh) 2010-11-01 2010-11-01 机载式全景旋翼共锥度测量装置

Country Status (1)

Country Link
CN (1) CN102012219B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297664A (zh) * 2011-05-24 2011-12-28 哈尔滨工程大学 基于全景视觉的多功能直升机旋翼共锥度测量装置
CN105467742A (zh) * 2015-12-28 2016-04-06 北京极图科技有限公司 曲面反射式实时全景成像装置
CN105487332A (zh) * 2016-01-14 2016-04-13 上海大学 一种立体成像装置
CN106516101A (zh) * 2016-11-30 2017-03-22 中国直升机设计研究所 一种直升机旋翼塔旋翼连接件
CN108093179A (zh) * 2018-01-11 2018-05-29 长春理工大学 一种高分辨率全景视频图像采集与处理系统
CN113579683A (zh) * 2021-08-23 2021-11-02 安徽艾瑞思信息科技有限公司 基于Falcon相机用于流水线零件高精度拾取的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144522A (ja) * 1997-07-25 1999-02-16 Koyo Seiko Co Ltd 角度測定装置
EP2020594A1 (en) * 2007-07-30 2009-02-04 Snap-on Equipment Srl a unico socio. Method of and apparatus for determining geometrical dimensions of a vehicle wheel
WO2009028883A1 (en) * 2007-08-28 2009-03-05 Posco Device and method for optically detecting surface defect of round wire rod
CN101666632A (zh) * 2009-10-12 2010-03-10 哈尔滨工程大学 直升机旋翼共锥度测量装置
CN101813467A (zh) * 2010-04-23 2010-08-25 哈尔滨工程大学 基于双目立体视觉技术的旋翼共锥度测量装置及其方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144522A (ja) * 1997-07-25 1999-02-16 Koyo Seiko Co Ltd 角度測定装置
EP2020594A1 (en) * 2007-07-30 2009-02-04 Snap-on Equipment Srl a unico socio. Method of and apparatus for determining geometrical dimensions of a vehicle wheel
WO2009028883A1 (en) * 2007-08-28 2009-03-05 Posco Device and method for optically detecting surface defect of round wire rod
CN101666632A (zh) * 2009-10-12 2010-03-10 哈尔滨工程大学 直升机旋翼共锥度测量装置
CN101813467A (zh) * 2010-04-23 2010-08-25 哈尔滨工程大学 基于双目立体视觉技术的旋翼共锥度测量装置及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《应用科技》 20100731 邓超等 直升机旋翼共锥度测量系统设计 11-14 1-6 第37卷, 第7期 2 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297664A (zh) * 2011-05-24 2011-12-28 哈尔滨工程大学 基于全景视觉的多功能直升机旋翼共锥度测量装置
CN105467742A (zh) * 2015-12-28 2016-04-06 北京极图科技有限公司 曲面反射式实时全景成像装置
CN105487332A (zh) * 2016-01-14 2016-04-13 上海大学 一种立体成像装置
CN106516101A (zh) * 2016-11-30 2017-03-22 中国直升机设计研究所 一种直升机旋翼塔旋翼连接件
CN106516101B (zh) * 2016-11-30 2018-11-23 中国直升机设计研究所 一种直升机旋翼塔旋翼连接件
CN108093179A (zh) * 2018-01-11 2018-05-29 长春理工大学 一种高分辨率全景视频图像采集与处理系统
CN113579683A (zh) * 2021-08-23 2021-11-02 安徽艾瑞思信息科技有限公司 基于Falcon相机用于流水线零件高精度拾取的装置

Also Published As

Publication number Publication date
CN102012219B (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
CN102012219B (zh) 机载式全景旋翼共锥度测量装置
ES2847234T3 (es) Disposición de control de aparato de inspección para un aparato de inspección de un aerogenerador
CN202795066U (zh) 利用线列探测器实现全景扫描的光电跟踪装置
CN102012268B (zh) 采用双光楔实现的机载红外扫描观察装置
CN102927982B (zh) 双光谱的自主导航敏感器及其设计方法
US20190313032A1 (en) Scanning method of photoelectric remote sensing system
CN107765263A (zh) 激光扫描装置及移动测量系统
CN110171565A (zh) 一种用于光伏电站故障检测的无人机及其检测方法
CN104345448B (zh) 大视场快速二维扫描镜安装结构
CN102393213A (zh) 天基探测与跟踪成像系统测试装置及测试方法
CN204650290U (zh) 有限空间内无人机全景拍摄云台
CN210526874U (zh) 一种机载三光光电吊舱系统
CN104330048B (zh) 一种基于图像的铁路雪深测量装置及方法
CN110986886A (zh) 一种双相机动态旋转扫描立体成像的模拟装置
CN106882364A (zh) 一种控制精确的智能型四旋翼无人机
CN103091737A (zh) 基于曲面透镜阵列的宽视场对数极坐标映射成像方法
CN106646506A (zh) 一种基于高速摆镜的红外面阵搜索跟踪系统及方法
CN202885806U (zh) 多功能天文经纬仪
CN109238304A (zh) 空间相机超高速变行频测试装置
CN104238116A (zh) 大视场高分辨率光电成像系统
CN106125280A (zh) 用于视场拼接的折返式光学系统
CN103175527A (zh) 一种应用于微小卫星的大视场低功耗的地球敏感器系统
CN201917326U (zh) 一种基于立体视觉的直升机旋翼共锥度测量装置
CN210835241U (zh) 一种路侧感知系统
CN103760668B (zh) 大口径长焦距连续扫描成像光学系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120201

Termination date: 20171101

CF01 Termination of patent right due to non-payment of annual fee